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THE MINIMUM ENTROPY %2718
PRODUCTION PRINCIPLE

E. T. Jaynes

Arthur Holly Compton Laboratory of Physics, Washington University, St.
Louis, Missouri 63130

INTRODUCTION

It seems intuitively reasonable that Gibbs’ variational principle de-
termining the conditions of heterogeneous equilibrium can be gener-
alized to nonequilibrium conditions. That is, a nonequilibrium steady
state should be the one that makes some kind of generalized entropy
production stationary; and even in the presence of irreversible fluxes,
the condition for migrational equilibrium should still be the equality of
some generalized chemical potentials.

We summarize progress to date toward this goal, reviewing (a) the
early history, (b) work of Onsager and first attempts at generalization,
(¢) the new direction the field took after 1967 with the work of Tykodi
and Mitchell, and (d) the present situation and prospects. Our conclu-
sion will be, briefly, that the outlook is good in that the basic principles
are believed known; but we do not yet know whether they can be
reduced to simple rules immediately useful in practice, in the way that
the Gibbs phase rule is useful. For this, we need more experience in the
technique of applying them to particular cases, and more data to test
some conjectures.

EARLY HISTORY

In 1848, Kirchhoff (1) generalized Ohm’s law to three dimensions, and
noted an interesting fact. If the electric field is £= — V¢, the conductiv-
ity o(x), then when a steady state is reached the potential ¢(x) must
cause no accumulation of electric charge at any point:

V- (oVep)=0. 1.
But this is just the Euler-Lagrange equation stating that the rate of
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production of Joule heat in a volume ¥
f o(Vo)dv 2,
v 4

is stationary with respect to variations 8¢(x) that vanish on the
boundary of V. Thus the current distributes itself so as to dissipate the
least possible heat for given voltages apphied on its boundary. This is
probably the first example of a steady nonequilibrium state determined
by a variational principle.

In this respect, quantitative nonequilibrium thermodynamics may
claim an earlier origin even than our conventional equilibrium theory,
for Kirchhoff’s discovery antedated by 27 years Gibbs’ announcement
(2) of the general variational principle for heterogeneous equilibrium,
and even preceded Clausius’ introduction (3) of the word “entropy” by
17 years. Yet 125 years after Kirchhoff’s result, Girardeau & Mazo (4)
state: “Variational methods for nonequilibrium statistical mechanics are
virtually nonexistent.” Why, after such a promising head start, has
nonequilibrium theory lagged so far behind thermostatics?

It was evident that Kirchhoff’s result could be generalized, and
quickly other laws of “least dissipation of energy” and the almost
equivalent reciprocal relations were found. In particular, an 1859 work
of Helmholtz (5), which contained some of his greatest mathematical
achievements, gave the acoustical reciprocity theorem, later extended by
Rayleigh (6) and Lorentz (7) to mechanics and electrodynamics.

These first applications (where the thermal aspect, although in the
picture, was not in the foreground) all involved variational principles for
energy dissipation. Gibbs surely had first-hand knowledge of them, for
he had spent a post-doctoral year (1868-1869) with Kirchhoff and
Helmholtz in Heidelberg. But in Gibbs” own work, which began to
appear four years later, the thermal aspect was the primary thing, and
he gave instead a variational principle for entropy.

Gibbs lived another 25 years after completing his monumental work
on heterogeneous equilibrium. Why then, with his seemingly perfect
background for it, did not Gibbs himself generalize the Kirchhoff-
Helmholtz results, and announce the principle of minimum entropy
production 100 years ago? Perhaps Gibbs saw at once the difficulty.

Anyone familiar with Kirchhoff’s work might simplify the arrange-
ment to this: two resistors R, R, are in thermal contact with two heat
reservoirs at temperatures 7,, 7,. Connecting the resistors in parailel, we
send a total current /=17, +1, through them. How does it divide?

When a steady state is reached, the rates of production of heat and
entropy are =R, I[Z+R,12, S=(R,/T)I?+(R,/T,)I?. The entropy
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production is a minimum when the current distribution satisfies
R, I1,/T,=R,1,/T,. We know, of course, that the actual distribution
mll sat1sfy R I,=R,I,, which 1s the condition for minimum heat
production.

The example is admittedly oversimplified; but one can invent arbi-
trarily complicated networks with the resistors at different temperatures
and again, given the existence of a potential field ¢(x) and the phenom-
enological laws A¢,= R, I, connecting current and potential difference
for the individual elements, the steady-state current distribution for any
applied voltages or currents is completely determined by Kirchhoff’s
condition of charge conservation at the nodes; there is logically no
room for any further principle.

Now there 1s nothing special about electric current; what is true for
fluxes of electrons is surely true for fluxes of any kind of stable
particles, or of anything else that 1s conserved (energy, momentum, etc).
Given the phenomenological relations connecting fluxes and forces, the
steady state is determined by the conservation laws, leaving no room for
any other principle; but then, what are we to make of the recent
discussions of it?

Prigogine (8) postulates the existence of fluxes J, and forces X,
connected by the phenomenological relations J=1,X; (summauon
over repeated indices understood), so defined that the rate of entropy
production is S=JX,=L, ;X X, Considering some of the forces to be
fixed and others to be free the condition that § be a minimum with
respect to a free variable X, is 8S/8Xm=(,£mj L,)X;=0,if the L,
are constants. But if the reciprocal relations i, = £, hold, this is the
same as J, =0, which is considered synonymous with “stationary state.”
This 1s the entire content of his theorem.

de Groot & Mazur (9) generalize Prigogine’s treatment by taking
spatial variations (but not convection currents) into account. They
undertake to show that in heat conduction, “the stationary state is
characterized by a minimum of the entropy production, compatible with
the imposed temperature distribution at the walls of the system.” Their
proof is a paraphrase of Kirchhoff’s, and it requires the assumption that
the phenomenological coefficient L_, defined by the heat current ex-
pression J =L V{1~ B s mdepend@m of temperature; i.e. that the
thermal conducthty A defined by J, = —AVT varies with temperature as
T2

Since there is no known substance obeying this relation, there is no
real situation involving heat conduction where the stationary state
would be predicted quantitatively by minimizing entropy production. If
Aoc T8, the steady state is the condition for minimum rate of production
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of the quantity F= [T?*24S. But for all b, the steady state is predicted
correctly by energy conservation, V-J, =V (T?VT)=0. The same diffi-
culty would have invalidated Kirchhoff’s theorem if the electric conduc-
tivity o varied with the potential ¢.

de Groot & Mazur then give a more general example involving
simultaneous heat conduction, diffusion, and chemical reactions. Their
argument must now assume all the phenomenological coefficients L,
involved to be independent of both temperature and the concentrations
of the participating substances.

In all the examples given in (8,9), after these restrictive assumptions
are made the final Euler-LLagrange equations expressing minimum en-
tropy production reduce simply to the conservation laws, which were
valid exactly without any restrictive assumptions. So if we have enough
information to apply the principle with any confidence, then we have
more than enough information to solve the steady-state problem without
it. This same criticism was made by Klein (10).

Gibbs surely would not have given any principle unless it met his
standards of logical precision and was of some constructive use; so we
are no longer surprised at his failure to give this one.

Yet after all criticisms, there remains a feeling that the principle does
at least hint at an important truth, however imperfectly expressed. If the
principle had nothing in it but misdirection, there would be no reason to
write a review article about it.

REORIENTATION

There is a major part missing from our theoretical structure: On the one
hand, the Kirchhoff-Helmholtz principles call out for generalization to
thermodynamics; on the other, Gibbs’ variational principle calls out for
generalization to nonequilibrium cases. Surely, this gap can be filled; i.e.
there must exist an exact variational principle for steady irreversible
processes. It should include Gibbs® principle as a special case and be
also (a) precise and general, requiring no restrictive assumptions like
the above, and (b) constructive, yielding useful information that we
would not have without it. But to find such a principle we must reorient
our thinking in two respects.

First, we note the backward direction of the logic in the aforemen-
tioned examples. One assumed phenomenological forms which were
only approximate; then stated a principle which could be only an
approximate substitute for the conservation laws. We should rather take
the conservation laws as exact and given, and seek a principle which
gives the correct phenomenological relations without our having to
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assume them. It is reasoning in this direction that might lead to a
precise, constructive principle.

But reversing the direction of the logic ought to reverse the principle.
If the conservation laws represent the approximate condition of mini-
mum entropy production for prescribed approximate phenomenological
laws, then perhaps the exact phenomenology is the one that has maxi-
mum entropy production for prescribed exact conservation laws. In-
deed, such a reversed principle would be much closer to the spirit of
Gibbs’ work.

Second, we need a verbal reorientation. The main difficulties that
have retarded progress for a century are not mathematical, but concep-
tual; and these in turn are mainly artifacts of semantics. The words
“irreversible,” “entropy,” “probability” are used indiscriminately with
many different meanings, and the fact that the same word is used
prevents many from seeing that the meanings are different.

Thus such a common phrase as “the paradox of how to reconcile the
irreversibility of the second law with the reversibility of the equations of
motion” records not a paradox but an abuse of language, the term
“reversible” being used with two entirely different meanings. It is
impossible to think and communicate rationally about these problems
unless we use different words and symbols to convey different ideas.

By far the most abused word in science is “entropy.” Confusion over
the different meanings of this word, already serious 35 years ago,
reached disaster proportions with the 1948 advent of Shannon’s infor-
mation theory, which not only appropriated the same word for a new
set of meanings; but even worse, proved to be highly relevant to
statistical mechanics. So it is necessary to insert at this point a short
lexicon.

ENTROPY

As befits a word with many mutually contradictory meanings, “entropy”’
has also a rich and varied folklore concerning its etymology. According
to Prigogine (8) it comes “from the Greek e»mpown meaning ‘evolution’.”
According to Clausius (3) it comes from 7po7, meaning “a turning” or
“a turning point” (the same root that appears in isotropic, phototropic,
troposphere, etc). Clausius states that he added the en- only to make the
word look and sound like “energy,” although he might have noted that
en- is in Greek, as in German and English, a standard modifying prefix,
and evtpomn which (according to three Greek dictionaries and two
Greek friends) means “to turn one’s head aside,” rather neatly expresses

the one-sided character of S that he had discovered. Because every



584 JAYNES

German noun 1s required to have a geuder he also determined, by
means unexplained, that “Die Entropie” is feminine.

Prigogine & Mayné (11) consider a quantity Sy,, which they call
“entropy,” so defined that only near equilibrium can one express it in
terms of macroscopic quantities. Their “second law” 8,,, >0 is then to
be a theorem in dynamics, and not in phenomenological physics.

The “entropies” with which we shall be concerned here are of a
totally different nature, First is the experimental entropy S, of Clausius,
Gibbs, and ©. N. Lewis, which is by construction a function
Sg(T, P, M, ...} of the observed macroscopic quantities. For us, as for
themn, the term “second law” refers to a property of Sy observed in
laboratory experiments. It is therefore, by definition, a proposition of
macroscopic phenomenology. Whether it might be alsc a theorem in
dynamics was answered in the negative aiready by Gibbs (2) with a very
vivid example of gas diffusion.

Second, we use the information entropy S,= —2p,;log p;, a property
of any probability distribution. In quantum theory, the {p,} are eigen-
values of a density matrix g, and $,(p)= —Tr(plogp).

If §, is maximized subject to certain constraints {A4,...4,}, the
maximum attamed defines a third entropy S(4,... 4,)=(S5)),,..» Which
is a function of those constraints. Since we may choose the constraints
in many different ways, there are many different quantities S(A), with
different meanings. Just as Clausius’ S, is undefined until we specify
which macroscopic variables are to be used, one must also indicate in
each case which constraints are used—and therefore become the inde-
pendent variables—in defining S(A4). In our applications, the {4,} may
be any macroscopic guantities about which we have some information.

To keep the distinctions clear, our Sy is, as in conventional thermody-
namics, a numerical multiple of Boltzmann’s constant &, while §, and
S(A) are dimensionless, following Shannon. Being defined as the maxi-
mum in a constrained variational problem, S(A4) will have, like S, a
tendency to increase whenever a constraint is removed, thus paralleling
m our mathematics what is observed in the laboratory (12).

Many other entropies appear in the literature, among which we note
the Boltzmann and Gibbs S, S, defined from the single-particle and
N-particle distribution functions, and the quantity S, ,=klogW of
Boltzmann, Einstein, and Planck. The relations between these have been
discussed in detail elsewhere (13a,b).

As should be evident, there is no possibility of finding the correct
relations for irreversible processes unless one understands clearly the
distinctions in meaning and the different properties of S, S,,
S(A), Sp, S, and Sg.p. We can hardly expect that the variational
principle we seek can hold for all of them. While the properties of S,



ENTROPY PRODUCTION 585

and S(A) are mathematical theorems, those of §, are summaries of
experimental facts.

For a closed system, Clausius defined S, by the integral of 4Q/T
over a reversible path and stated that, in an adiabatic process from an
initial equilibrium state (7, V) to a final one {7}, V),

S.(2) > S,(1) 3.

with equality if and only if the process is reversible. Of all the state-
ments of the second law made by Clausius and Planck, only Eq. 3 meets
our requirements of logical precision; given certain provisos that we
have stressed before (13), its truth or falsity can be determined in the
laboratory to an accuracy limited only by the accuracy of our measure-
ments, and not by the accuracy of definition of the terms in the
equation. But in applications it tells us only in what general direction a
change of state will go—not how far, how fast, or along what path.

Gibbs (2) generalized this to open systems and showed that a stronger
statement is more useful 1n practice, telling us precisely “how far” and
thus leading to quantitative predictions of the final equilibrium state
reached. Let us call Eq. 3 the Clausius weak form of the second law,
and append to it the Gibbs strong form: S, not only “tends” to
increase; it will increase, to the maximum value permitted by the
constraints imposed. The exact constraints for which this is asserted
(essentially the conservation laws} involve some standard technical
discussion.

In the strong form we see entropy rising above its obscure beginnings
and, so to speak, “presiding over” all of thermostatics; i.e. it determines,
by its variational properties £5=0, the set of all possible equilibrium
states. In a similar way, the Lagrangian I presides over all of mechanics
and electrodynamics, determining by its variationai properties §/Ldt=0
all the equations of motion, in any coordinate system.

We seek a generalization of entropy with properties more like a
Lagrangian, which can by iis variational properties generate our “equa-
tions of motion,” telling us how fast, and along what path, an irreversi-
ble process will take place. The first general attack on this problem was
made by Onsager (14a,b), whose work we now survey.

ONSAGER’S THECRY

Irreversible thermodynamics had 1ts historical origins in Thomson’s
analysis of the thermocouple in 1854. For the effect of transporting a
charge ¢ around the circuit, he assumed that one might apply Carnot’s
principle in the form 2Q,/7,=0 10 the reversible Peltier and Thomison
heat effects even though irreversible heat conduction was also present.
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Indeed, unless something like this were true, there would be few real
applications in which one could ever apply Carnot engine arguments
with any confidence. His assumption went beyond the principles of
thermostatics and yielded, for the interaction of heat flow and electric
current, the first example of an “Onsager reciprocal relation.”

By 1931 many such relations had been noted, and Onsager (14)
sought a general theoretical justification for them. His argument is still
worth recalling because the formal relations survive, generalized and
reinterpreted, in our present theory. We summarize it briefly, noting the
four “serious” assumptions by Roman numerals and limiting comments
to the square brackets.

A closed system is characterized by certain parameters {a,...a,}, SO
defined that they vanish in the equilibrium state of maximum entropy.
Then in a neighborhood of equilibrium we may expand:

S=5,—(1/2)ZG;.a,a.+ ... 4,

i

where G is a positive definite, symmetric matrix, G=G”. The system is
displaced from equilibrium by means unspecified, then released to find
its way back to equilibrium. The derivatives

X, =d85/0%a,= —2G;,a; 5.

A
are thought of as the “forces” which drive the system back according to
1. a,=2L,X 6.

where the L, are the “Onsager phenomenological coefficients.” Thus
the a’s relax to zero along a trajectory given in matrix notation by
a= —LGa, or

a(t+7)=exp(—LG7)a(t), T>0. 7.

Now we turn to situations very close to equilibrium and examine the
small thermal fluctuations in the a’s (which were neglected above). We
postulate that the same entropy function S(a,) that supplied the forces
X is also to supply the probability distribution of these fluctuations, 1.e.
the equilibrium distribution of the a’s at equal times is given by a
density function

1. f(a...a,)xexp[ k 'S(a,)] 8.

where & is Boltzmann’s constant [at this point it appears that Onsager’s
entropy is most closely related to the Sp., noted above]. Denoting
averages over this distribution by angular brackets, we have {a,) =0,
while the matrix of second moments, K,;={a;a;) is essentially the
inverse of G: KG=GK=kI, where I is the unit matrix; K,; is a
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covariance indicating how far, but not how rapidly, the a, may be
expected to fluctuate about zero.

We now make an assumption about this: that the average regression
of these spontaneous fluctuations follows the same law, Eq. 7, as that
assumed for forced deviations from equilibrium. That is, given the event
a(t), the conditional average of a(r+7) at a later time, over many
repetitions of the event, shall be

I11. {a(t+71))> =exp(— LG7)a(t), 7>0. 9.

[This step is characteristic of the logic of stochastic theories; instead of
asking what the microscopic equations of motion have to say about the
matter, one simply ignores them and introduces intuitive *“stochastic
assumptions” at the macroscopic level.]

With this assumption we can define a time-dependent covariance
matrix:

Kij(T)E<<ai(t+T)aj(t)>> 10.

in which the double average is over the different motions averaged in
Eq. 9, and then over the distribution, Eq. 8. Inserting Eq. 9 into Eq. 10,
this means that the covariance matrix must also decay according to the
macroscopic law, Eq. 7:

K(7)=exp(—LG7)K(0)=K(0) exp(—GL7), >0 11.
where K(0)=kG ! is the same matrix that we denoted by K above, and
we used an identity of any matrix function: f(LG)G™'=G 'f(GL).
K(r) as defined by Eq. 10 is independent of ¢; K(—7)=K(7); or from
Eq. 11,

K(—7)=K(0) exp(—GL'7), >0 12.

since the transposed matrix function is f7(LG)=f(GTL")=f(GL").
Finally, we invoke the famous assumption that Onsager called “mi-
croscopic reversibility™:

v, K(—71)=K(7). 13.
Comparing Eq. 11 and 12 we have the grand result
L=L". 14.

Onsager’s argument showed a remarkable instinct for sensing the
right formal relations, which have stood the test of fifty years. But he
chose a thorny path to them, ignoring the smooth path made by his
predecessor at Yale. The relation he needed was Eq. 11; given that, the
rest of the derivation is a two-line triviality. But to reach it he (a)
assumed a phenomenological form that was (Ia) linear, (I5) without
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memory; (b) assumed that the average regression of fluctuations fol-
lows that same phenomenological law; (¢) from these deduced Eq. 11:
the covariance function K(¢) also follows that phenomenological law.

But had he taken the path of a Gibbsian statistical theory instead of a
stochastic one, this result—including space dependences and all mem-
ory effects—would have been present from the start with no need to
assume any phenomenological form or to mention regression of fluctua-
tions at all. For in such a theory, the predicted space-time dependence
of any macroscopic process is given by a covariance function
K(x,t:x", ¢,

For example, in acoustics the sound pressure § P(x, ¢) due to a source
distribution s(x’, #"ysec”' (ie. cm® sec”'per cm’) is given by a linear
superposition

6P(x,t)=jd3x’fr dt'G(x,t; x", t)s(x',1'). 15.

At thermal equilibrium, Gibbsian statistical theory gives for the Green’s
function
Gx,t;x',1)=(1/kTYP(x,1)6P(x', 1), 16.

i.e. just (KT) ! times the covariance of the thermal pressure fluctua-
tions. This linear response kernel contains all memory effects, including
propagation time delays, reflection from walls, “ringing” due to multiple
scatterers and resonators, ultrasonic dispersion and attenuation due to
relaxation in the medium, etc. Its obvious symmetry is just the Helm-
holtz-Rayleigh reciprocity theorem.

Onsager’s viewpoint fits in nicely with our conjectured reorientation.
If, as stated by Eq. 5, the force driving the system back to equilibrium is
the entropy gradient, then instead of munimizing entropy production,
the system is maximizing it, trying to get to equilibrium as rapidly as it
can, subject to whatever restraints are preventing this. But looking at the
relations in this way suggests an additional conjecture.

It appears to us that Onsager might have obtained more useful results
by making a different assumption, which seems no stronger than Eq. 13.
Since G is real and symmetric, it can be diagonalized by an orthogonal
matrix O. In the coordinate system of the new variables a;,=2,0,,a,,
the matrix G'=0GO ! is diagonal, and so the force X, is merely a
numerical multiple of a;. The a; are uncorrelated at equal times and the
entropy function S=2>S8(a;) is the same as if we had n separate,
noninteracting systems. So it seems plausible that in the absence of
magnetic or Coriolis forces the a; should relax independently; in other
words, that the new phenomenological matrix L'=0L0O ! should also
be diagonal. If so, then L. and G must commute in the original
coordinate system [aq;].
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But LG=GL is a stronger condition than the Onsager symmetries
L.=L". For example, with n=3 fluxes, the Onsager relations reduce the
number of independent phenomenological coefficients from n*=9 to
n(n+1)/2=6. The condition LG=GL yields these and three additional
relations, leaving only n=3 independent coefficients. If the matrix G
were known from equilibrium measurements, one would then need only
three nonequilibrium measurements: for example the self-conductances
L.y, Loy, Las; whereupon all six coupling coefficients L, ;, 7=/, would be
determined. In the case n=2, the coupling coefficients would reduce to
Lyy=Ly =G (L= Lp)/ (G~ Gn)

We point this out in the hope that some readers may be in possession
of enough experimental data to check the relation LG=GL. If this
conjecture should be confirmed, irreversible thermodynamics would
become more useful, since one could predict considerably more about
irreversible processes from equilibrium data.

INTERLUDE

in the 1940s and 1950s some attempts were made to generalize Onsager’s
treatment to a macroscopic continuum theory based on the notions of
local equilibrium and local rate of entropy production. In 1962 this
approach was summarized in the book of de Groot & Mazur (9), where
references to the vast literature it generated can be found.

This approach postulates the existence of a local entropy density
s(x, t) which plays the role of a field variable. It 1s to have alsc a flow
rate J, and source strength o{x, 1)> 0, so as to obey the field equation
§+V-J =a(x,t). Entropy is thus conceived of as a kind of fluid which,
once created, is conserved forever after.

Mathematically, the notion of entropy can be generalized to non-
equilibrium conditions in many different ways. Basically, the 1ssue 1s not
which is “correct,” but which ones have demonstrable and useful
physical properties. We agree that a useful theory should be set up as a
continuum field theory; but if we allow entropy to degrade into no more
than one of many field variables, we shall lose just those properties that
made entropy uniquely useful in the work of Gibbs and Onsager.

Therefore we shall seek, rather, to elevate entropy to a functional
S[A(x, 1)... 4,(x, )] over the thermokinetic history of the field varia-
bles so that it can retain those properties, while acquiring a new
generating power like a Lagrangian; only thus do we see the possibility
of reaching our goal.

In any event, de Groot & Mazur use, without defining, a local
entropy density in an inhomogeneous nonequilibrium state. In addition
they suppose that the equilibrium expressions for temperature and
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chemical potentials can be used as local field variables, obeying the
Gibbs equilibrium relation TdS=dU+ PdV —2u,dn; even when gradi-
ents and irreversible fluxes are present.

Now one expects that procedures of this kind should, like Thomson’s,
meet with some success very close to equilibrium; and of course de
Groot and Mazur did not claim any more than this. But a “local
equilibrium” approach has no criterion for judging its range of validity
and provides no basis for further development, since it contains scarcely
any quantity that has a precise meaning in a nonequilibrium state.

This approach, therefore, reached a dead end. The logic of using
equilibrium relations in nonequilibrium situations was hardly an ad-
vance over that used by Thomson in 1854; indeed, we are unable to see
wherein they differ at all. To make further progress beyond this point, it
was necessary to go back to first principles and reason things out all
over again, much more carefully, The coup de grace and final benedic-
tions were administered by Wei (15) and Truesdell (16).

RESURRECTION

In 1967, Tykodi (17) showed how entropy production theories might be
not only salvaged, but made in a sense exact, using logic so stmple and
direct that one could not question any part of it without at the same
time questioning a considerable part of established equilibrium theory.
He simply abandoned altogether the notions of local equilibrium and
local entropy production, and reasoned as follows.

There is one case where logically impeccable inferences about an
irreversible process were drawn from the relations of equilibrium the-
ory: the Joule-Thomson porous plug experiment of 1852. The inflowing
gas is at thermal equilibrium with temperature and pressure (7, P,),
and we measure the outflowing gas far enough downstream from the
plug so that it has come back to thermal equilibrium, with new values
(T,, P,). By a simple argument given in all the textbooks we are
persuaded at once that, however violent the irreversible process taking
place in the plug (it might, for example, involve locally supersonic
velocities, shock waves, chemical reactions catalyzed by the plug, etc), if
the plug cannot communicate directly with the outside world, so it does
no work and all the heat generated must be carried off by the effluent
gas, then when a steady state is reached, the (enthalpy + kinetic energy
of mass flow) of the incoming and outgoing gases must be the same.

In other words, established equilibrium theory does enable us to draw
rigorous inferences about steady irreversible processes that begin and
end in states of complete thermal equilibrium. This is just the conclu-
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sion we noted already in Eq. 3, and which had been stressed in the
writer’s pedagogical article (13). But as soon as we recognize this the
road is straight and we can see for miles, for the Joule-Thomson
example can be generalized endlessly.

In the first place, the barrier need not be a simple “plug.” It may
contain apparatus of any complexity, and even if conditions in it never
come to a steady state, but go into limit-cycle oscillations, if the
apparatus contains suitable “mufflers” so that there is eventually uni-
form inflow and outflow, the conclusion still holds.

Furthermore, nothing restricts us to a system with only two channels,
one for inflow and one for outflow. We can have any number of inflow
channels, containing different chemical substances, or mixtures of them,
at different pressures and temperatures, flowing at different rates; and
any number of similar outflow channels. And nothing restricts us to
gases; a channel could transport liquid, solids, plasma, electrons, radi-
ation, etc. There need not be a single reaction region; the plumbing
might be arranged to carry any number of substances to any number of
reaction vessels in any sequence. In short, we may imagine an arbitrary
continuous-flow processing plant.

For any such arrangement we can define an energy flux H; =(enthalpy
+ kinetic energy of mass flow) transported from the reaction region per
unit time or per oscillation cycle in the ith channel, and a similar
entropy flux S;. The reaction region may communicate directly with the
outside world, doing work W per unit time or per oscillation cycle.
Under these conditions the energy balance requirement gives rigorously
> H/+ W=0, while at the same time the total rate of entropy production
>, is now unambiguously defined by equilibrium theory.

Only at this point is one in a position to discuss entropy production
principles in a meaningful way. All ambiguities about the definition of
temperature and entropy in a nonequilibrium state have been eliminated,
since however such notions may or may not be defined eventually, at
least in a steady state they are not changing. And we are not limited to
near-equilibrium regimes with linear phenomenological laws; nor have
we neglected fading memory effects.

If J; is the flux in the ith channel in moles (grams) per second, then
the rate of entropy production is

S,=kZ A\, J, 17.
where kA, is the entropy per mole (gram) of the 7th substance. If it is a
pure chemical substance, then A;= —pu,/kT is essentially the chemical

potential. The quantities A, which we call simply the “potentials,” are,
however, the fundamental quantities of our theory.
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Although Eq. 17 looks at first glance like the Onsager expression
S=3X,J, it has a different meaning. In the first place, Eq. 17 is not a
quadratic approximation holding near equilibrium; it is the exact rate of
entropy production for any departure from equilibrium. Secondly, there
are more terms in Eq. 17 and they are not independent. If particles of
type k enter via channel 3 and emerge unchanged but for pressure and
temperature in channel 7, in Eq. 17 this contributes two terms A{A;J, +
A4J7), constrained by the conservation law J;+J,=0, but only one X, J,
in the Onsager form. Where Onsager took his forces as derivatives,
X,=0S5/0a,, we see that the exact “force” should be X, =k(A;—A3), a
finite difference of potentials.

If we eliminate fluxes determined by the conservation laws and
rewrite Eq. 17 1n terms of independently variable fluxes we obtain the
Onsager form S,=3X,J,. In these terms, Tykodi states a minimum
entropy production principle that, close to equilibrium, is equivalent to
the Onsager relations. He conjectures that this principle (varying X,
while holding the other forces constant, minimum § occurs at J_=0)
should hold also far from equilibrium. It would be interesting to have
experimental data which could check this.

Of course, other conjectures may be made. If we restate the phenome-
nology in differential form, af, =2 L} .dX;, then the symmetries L} ;=
L7, will hold in the nonlinear regime if and onmly if there exists a
function f(X,... X ) such that J,=9f/9X,. Because it appears that this
form may be obtained from a Gibbsian statistical theory, experiments to
check the symmetry of L) far from equilibrium would be of great
interest.

In summary, progress to this point consists of some conjectured
principles that, thanks to Tykodi, can at least be stated in precise and
experimentally meaningful terms so that their correctness or incorrect-
ness can be determined 1n the laboratory. But we set for ourselves a
more ambitious goal than this.

Since the methods of analysis reviewed above were not powerful
enough to gwde us to the missing theoretical principle, we are driven
finally to recognize what should have been obvious from the start. Only
the Gibbs standards of logical reasoning were powerful enough to give
us the first variational principle, on which physical chemistry has been
feeding for a century; and only a Gibbsian statistical analysis is powerful
enough to extend that principle to irreversible processes. But in recent
years the field that is now called “statistical mechanics,” with its
reversion to kinetic theory, stochastic equations, and ergodicity, has
deviated so widely from the program for which Gibbs introduced that
term, that we need to coin a new name for Gibbs’ program if we are not
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to propagate still more semantic confusion. We now explain briefly an
extension of Gibbs’ work currently underway, set apart by a new
descriptive word.

PREDICTIVE STATISTICAL MECHANICS

Predictive statistical mechanics is not a physical theory, but a form of
statistical inference. As such, it is equally applicable in other fields than
physics (e.g. engineering, econometrics, etc). In fact, it 1s having its
greatest current success in the new techniques for image reconstruction
in optics and radio astronomy (18a,b). We emphasize the sharp distine-
tion in purpose and content between these two methods of reasoning.

A physical theory asks bluntly, “How does the system behave?” and
seeks to answer it by deductive reasoning from the known laws of
physics. But, for example, the Onsager reciprocal relations cannot be
proved by deductive logic from the equations of motion (they are not
true for every possible mitial state). Therefore, to obtain them in the
manner of a physical theory requires that one make extra physical
assumptions of an “ergodic” or “stochastic” nature, beyond what is
contained in the equations of motion.

Predictive statistical mechanics, instead of seeking the unattainable,
asks a more modest question: “Given the partial information that we
do, in fact, have, what are the best predictions we can make of
observable phenomena?” It does not claim deductive certainty for its
predictions, but to ensure the ‘“objectivity” of the predictions we do
make, it explicitly forbids the use of extraneous assumptions beyond the
data at hand. The formal device which accomplishes this is that we shall
draw 1nferences only from that probability distribution whose sample
space represents what is known about the structure of microstates, and
that maximizes .5; subject to the macroscopic data.

By this device, the probability is distributed as uniformly as possible
over the class C of microstates compatible with our information. There-
fore, we shall make sharp predictions only of those phenomena which
are characteristic of each of the vast majority of the states in C. But
those are just the reproducible phenomena which a physical theory had
sought to predict.

Our aim is not to “explain irreversibility,” but to describe and predict
the observable facts. If one succeeds in doing this correctly from first
principles, he will find that philosophical questions about the “nature of
irreversibility” will either have been answered automatically, or else will
be seen as ill-considered and irrelevant.
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The background and technical details of this approach have been
explained in another recent review article (19). We recall here only what
1s needed for the immediate purpose.

On the space I" of all possible microstates there is defined a measure
dI' which may be classical phase volume: dI'=dg,...dpy, or some
appropriate generalization of this for quantum theory or any other
microscopic theory that we might consider. Choosing some set of
macroscopic variables {A4,... A,, n< N}, the set of their possible values
defines a macrospace £2. The mapping of I" onto £ defines a measure on
{! by projection:

n

dQ=W(A,... A )dA,...dA =fdr 18.
R

where the region R of integration is all microstates for which 4, is in
dA;, 1<i<n.

Microscopic properties are relevant to macroscopic predictions only
to the extent that certain aspects of the microstates “leak through™ and
appear at the macroscopic level. Most evident are the conservation laws
for mass, energy, and momentum, which made it possible to discover
the principles of mechanics at the macroscopic level long before they
were recognized as equally valid microscopically, leading to the first
law. Next in importance is the above measure W, through this the
fantastically great variations in number of microscopic possibilities of
realization manifest themselves at the macroscopic level, as the second
law. At sufficiently low energies, log W becomes essentially independent
of other parameters, leading to the third law.

These are the only microscopic properties involved in conventional
equilibrium thermodynamics; the content of Gibbs’ variational principle
is that, given the measure W as a function of certain macroscopic
quantities (energy, volume, mole numbers, etc) the equilibrium proper-
ties of a system are determined. As a procedure for inference, his
principle amounts to this: We shall predict that behavior that can
happen in the greatest number of ways, consistent with our data.

Predictive statistical mechanics seeks to do no more than this, but
only to do it more generally. All its mathematical formalism is nothing
but a kind of bookkeeping system by which we may “count the number
of ways” in which various conceivable events can happen, consistent
with whatever macroscopic data we may have. If our data are of the
kind considered by Gibbs (constant in time, piecewise homogeneous in
space), then our principle will reduce to his. It is more general in that we
must be prepared to deal, both in the information used and in the
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predictions made, with arbitrary space-time dependences. Mathemati-
cally, this means that the functions of Gibbs are promoted to function-
als.

Any probability distribution w(g,... p,) over microstates defines a
macroscopic distribution P(A,... 4,) on £ by w dI'= PdA. Its informa-
tion entropy is then

S,=—fwlogwdr=—fdAP(A)log[P(A)/W(A)] 19.

and so, given the measure W( A4), we may carry out the maximization in
either space.

Direct evaluation of W would be very difficult; much more manage-
able and equally informative is its n-fold Laplace transform, called the
partition function:

Z(Al...)\n)=fﬂWeA-AdA=Le—*'Adr 20.

where we used the abbreviations dA =dA,...dA,, A-A =2\, A,
When the integral converges, it is because the rapidly increasing factor
W is overpowered by an even more rapidly decreasing factor exp(—A-A4),
so that the integrand W exp(—A-A) has an enormously sharp peak at
some point {/L}. Most of the contribution to the integral then comes
from the immediate neighborhood of this peak.

Now the probability density P(A) which maximizes S; subject to
prescribed mean values {4, is just the canonical distribution P(A4)=
Z 'W(A) exp(—A-A), of which Gibbs gave several examples. The peak
of this density in the macrospace £ is so sharp that for all practical
purposes the mode A ; and mean {A; > are the same. Therefore we need
only choose the {A;} so as to place that peak at the experimentally
observed values {A]... A,}. The simplest way of doing this 1s to note
that the first moments of P(A) are given by

(A;>=—0log Z/0OA,, 1<i<n 21.

so setting these equal to the experimental values (A;) =4}, gives n
simultaneous equations for the » unknowns A,.

In fact, all moments of P(A4) are determined by derivatives of log Z;
differentiating Eq. 21 with respect to A, we find a combined reciprocity-
covariance law:

(A A — A CAD = =4, JON,=—3(A,> /AN, 22.

and we suspect already that reciprocal relations are going to appear
rather trivial in this theory.
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Note that these relations are perfectly general, whatever microscopic
theory we imagine as underlying the macroscopic one. This is a point
that was stressed by FEinstein many years ago, and it is the reason that
he was able to move so confidently in the transition from classical to
quantum theory. He knew that Eq. 22 was trustworthy whatever our
microscopic theory; as long as conservation of mass and energy were
not being called into question, the only thing that could change was the
underlying measure: W, —W_ ... So he applied Eq. 22 to determine
the energy fluctuations (A E)? of black-body radiation from the empiri-
cal Planck law d{E > /97, noted a term identical with the fluctuations
of an 1deal gas, and inferred the existence of photons.

Having noted this generality, we may equally well use the notation of
quantum theory; the A4, are then operators, the canonical density matrix
p=Z""exp(—\-A) maximizes S,= — Tr(plog p) subject to given values
of A;=(A,,=Tr(pA;), where the partition function is Z(A\)=Tr
exp(—A-4).

For a system of macroscopic size the measure logW(4}) is (13,19)
essentially the maximum of §, thus attained: (S;),,..=S(A4]...4))
=log Z+A-A’. For all purposes that could be relevant experimentally,
S(A4’) may be taken as the logarithm of the number of microstates
compatible with the macroscopic data 4. If this function is known, then
the A’s (which arose as Lagrange multipliers in the maximization of S;)
are given simply by A;=3dS/9dA4!. They are, therefore, just the “poten-
tials” appearing in Tykodi’s entropy production rate, Eq. 17.

The potential A; thus measures the rate at which the number of
microscopic possibilities would change if 4; were slightly different.
According to Onsager’s interpretation, Eq. 5, the “statistical force” that
drives a system back to equilibrium is essentially a change in A, given
near equilibrium by the matrix G of second derivatives of S(A4").
Tykodi’s Eq. 17 suggests that this may be, in fact, exact.

All the formal properties noted above—although perhaps not the
interpretation we have just made—have been well known for many
years; if the A, are energy and mole numbers, P(A) reduces to the grand
canonical ensemble of Gibbs. Predictive statistical mechanics applies
this same formalism, with more general choices of the A, than Gibbs
made. Two different stages of generalization, and therefore two differ-
ent generalized entropies S(A4"), are useful in present applications.

The quantity 4, might be observed at different positions 4,(x;); for
each such datum there would be a Lagrange multiplier A, ;. In the limit
as the points x; become dense, the scalar product A-4 then goes into
A A3 [N (x)A4,(x)d>x. Tf all this pertains to one time ¢, we indicate
this by a subscript ¢: the partition function and entropy then become
functionals Z,=Z,[A ,(x)], S,=S,[ A:(x)].
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The density matrix p,=2; ' exp(—A-A) is then, for certain choices of
the As, formally identical with what has been called a “local equilibrium”
density matrix, but its meaning is here entirely different; in particular, it
has nothing to do with equilibrium. p, represents information about the
space distribution of the fields at one instant of time, and no other
information whatsoever, because it has maximum S, subject to that
constraint. The functional S, measures the number of microstates com-
patible with that information, and it generates the potential fields A,(x)
by what has now become functional differentiation: A;(x)=48S,/84;(x).

Note that S, measures the total number of all microstates compatible
with the macrostate 4;(x) at time ¢, regardless of the thermokinetic
history by which the system came into that state. Thus it contains, with
various relative weightings, a kind of mixture of every conceivable
history. It is obvious, then, that in general p, cannot contain enough
information to predict other quantities B, or the future evolution of the
system; for the characteristic feature of irreversible processes 1s the
appearance of fading memory effects, and in p, all memory of the past
has been thrown away. This is the logical defect that makes any “local
equilibrium” approach inadequate.

In 1964, Robertson (20) showed how, in spite of this, one can make
predictions of later irreversible behavior from p, by adding corrective
memory terms that accumulate as one integrates the equations of
motion forward in time from ¢. This work developed and applied the
continued fraction expansion, later given by Mori. If the important
relaxation times are short compared to the time over which one can
trust second-order perturbation theory, then one reaches a “plateau” at
which transport coefficients may be calculated, as was indeed shown by
Green and Kubo in the 1950s. Robertson’s recent review (21) gives an
extensive list of the many works to 1978 based on this approach.

But there is a more elegant and general way of incorporating memory
effects into this theory. Let the 4.(x) now become time-dependent
operators in the Heisenberg representation, and suppose we add infor-
mation about their values at various times ;. Each of these will now
acquire its Lagrange multiplier A, (x), and again in the limit of dense ¢,
we have an integral over time. The dot product now goes into

A-A_Q,.f d3xdiN (x,1)A,(x, 1) 23,
R,

in which R, is the space-time region in which we have information
about A4/(x, ). The new entropy functional S[A4;(x, )] is over all the
known thermokinetic history of the system, and it measures the number
of microstates consistent with that specific history.
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Analogous to the world-lines of relativity theory, the evolution of a
microstate may be visualized as a world-line in “phase space-time,” and
S is the cross-section of a tube formed of all world-lines by which the
given history could have been realized. Let us then call S for any
particular history the caliber of that history.

We have indicated recently (19) some of the technical details and
results of this space-time theory, and applications to hydrodynamics are
given by Grandy (22). If the specified history {4;(x,?), x,¢ in R}
includes all that is relevant in the laboratory for determining reproduci-
ble behavior, then the new ensemble based on Eq. 23 automatically
includes all memory effects; the plateau phenomenon is eliminated and
one now obtains transport coefficients by direct quadratures over the
initial ensemble; they are the full “renormalized” ones.

The theory is freed from previous limitations to the quasi-stationary,
long-wavelength case; when all memory effects are included, there is no
longer any limitation on time scale or space scale. Thus, as shown in
(19), a single equation for the predicted space-time dependence of
particle density encompasses both static diffusion and ultrasonic disper-
sion and attenuation.

An important addition to the technique of applying this theory was
added in 1967 by Mitchell (23) in his theory of macroscopic sources,
which was identical in philosophy with Schwinger’s source theory for
quantum fields. From Mitchell’s viewpoint, the acoustic Green’s func-
tion formula Eq. 16 appears as an obvious triviality. He went on to
some elegant theorems showing how variational properties of the caliber
S of a process determine the conditions for migrational equilibrium in
nonequilibrium states, and reciprocity-response theorems about the
effect of imposing a new constraint, by which any “renormalization”
effects may be analyzed. In the course of this, he formulated what is
now called “mode-mode coupling theory.” We hope to present elsewhere
a detailed account of the kind of results that may be obtained by
Mitchell’s methods.

The caliber S of a space-time history determines by its variational
properties most of the relevant physical information one would like to
have. Its first variations determine the conditions of migrational
equilibrium, while its second variations generate the “equations of
motion.” To see why this is so, suppose we have information 7, from
one space-time region R ,, which determines a caliber S,; and we wish
to predict—or retrodict—events in some other region R,. Now we
could imagine that someone had given to us a conjectured answer I, to
this, so that we had the total information 7=1,+ I,. What would be the
caliber S of the combined process? Since S is the result of maximization
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subject to a further constraint 7,, we shall have S< S, with equality if
and only if the new information is redundant; i.e. if it is what the theory
would have predicted from the old information /,. Thus the theory
always predicts those events in R, for which the total thermokinetic
process will have maximum caliber—an obvious generalization of Gibbs’
variational principle.

Although the principle itself evidently holds far from equilibrium, the
explicit form of the equations of motion i1s easily found close to
equilibrium where we expect them to be linear. Let S, be the caliber
corresponding to thermal equilibrium (it is just K~ 'Sg); and let 64 =
{8A47(x,t)...84,(x, t)} be some small departures from equilibrium con-
ditions in R, while we wish to predict the similar departures 6B of
some quantities B (which may be the same as the As) in Ry. Then the
caliber determined by I, will be given by an expansion S,=§,—
(1/2)84-G, ,-8A, generalizing Onsager’s Eq. 4. However, this is com-
pact notation; we remind ourselves that 4-G, ,-84 actually stands for

Ef d3xat [ d3 diSA)(x,1)G(x, 13 x', )84 (%", 1'). 24.
Ry

ik " R;

Now if we add a small variation 8B, the caliber acquires more terms:
S=8,—(1/2)8B-Gzp-8B—06B -Gy, 64, where we have used G, ;=G ,.
For fixed 84, the caliber is maximum when

Gup8B+G,, 84=0 25.

which is a set of simultaneous linear integral equations determining the
8B. Had we been given 88 and predicted 84, the result would have been
G,4-84+G,5-8B=0, and G, =G, implies a mass of reciprocal rela-
tions. Thus the Gs generated by second variations of § are the kernels
of the equations of motion.

S usually possesses a convexity property expressed by the inequality
of any two neighboring ensembles: dA-84" <0. This is a generalization
of the condition given by Gibbs (Reference (2), Eq. 171) from which he
deduced all his stability conditions, and leads in the present theory to
the positive definite character of G. Then G can be inverted, and the
inverse kernels K=G ! are the set of space-time covariance functions
generalizing Onsager’s Eq. 10, of which the acoustic Green’s function
Eg. 16 is an example. When the convexity fails, the theory predicts
bifurcations or other instabilities, a generalization of Gibbs’ condition
for phase transitions.
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CONCLUSION

As the reader will have sensed, our title is a play on words; logical
cconomy minimizes the principles, not the entropy production. We
started by secking an exact variational property characterizing the
nonequilibrium steady state. One such is now apparent, although there
may be others more useful. Consider a system evolving according to its
equations of motion. Because the caliber § of its history up to time ¢
embodies further constraints beyond those defining the local equilibrium
§;» we have §<§,, with equality if and only if that history is the one
retrodicted from p,. Now at each instant ¢ <t there is an Sy, defined as
was S, by maximizing S;, but subject to the retrodicted values 4(x, ¢").
For reasons explained before (13), a retrodicted history could not be
reproduced in the laboratory unless S, < §; but it is a theorem (invari-
ance of §; under unitary transformations) that S, > S,.

These inequalities yield the theorem: Of all reproducible histories
terminating at a given state, that one which corresponds to constant S,
throughout the past has the greatest caliber: S=S5,. At present it is not
known whether this is a pragmatically useful principle in applications; it
is, however, of some theoretical importance. ‘

Readers of Truesdell’s fresh and fascinating new approach to thermo-
dynamics (16) will resonate at once to this statement. It is a paraphrase
of what he calls a “major assertion” in need of proof, from which many
other desired results will follow [Reference (16), pp. 22,43]. There is,
evidently a close correspondence between these approaches; but to
understand it fully and combine them into a single unified theory is a
task for the future.
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