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INTRODUCTION

This workshop is concerned with two topics, foundations of quantum
theory and of irreversible statistical mechanics, which might appear quite
different. Yet the current problems in both fields are basically the same,
two different aspects of a deep conceptual hangup that permeates not only
physics, but all fields that use probability theory.

A different way of thinking about these problems is expounded, which
has had useful results recently in statistical mechanics and more general
problems of inference, and which we hope may prove useful in quantum theory.
An adequate account of all the technical details alluded to in the writer's
five talks would require a volume in itself, but much of this is now in
print or in the publication pipeline. Therefore we try to explain here the
original motivation in quantum theory, the formalism that evolved from it,
and some recent applications, with references to further details.

QUANTUM THEORY

We think it unlikely that the role of probability in quantum theory
will be understood until it is generally understood in classical theory
and in applications outside of physics. Indeed, our fifty-year-old bemuse-
ment over the notion of state reduction in the quantum-mechanical theory of
measurement need not surprise us when we note that today, inall applications
of probability theory, basically the same controversy rages over whether

our probabilities represent real situations, or only incomplete human
knowledge.

If the wave function of an electron is an "objective" thing, repre-
senting a real physical situation, then it would be mystical--indeed, it
would require a belief in psychokinesis--to suppose that the wave function
can change, in violation of the equations of motion, merely because
information has been perceived by a human mind.
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If the wave function is only "subjective", representing a state of
knowledge about the electron, then this difficulty disappears; of course,
by definition, it will change with every change in our state of knowledge,
whether derived from the equations of motion or from any other source of
information. But then a new difficulty appears; the relative phases of
the wave function at different points have not been determined by our
information; yet they determine how the electron moves.

There is no way quantum theory could have escaped this dilemma, short
of avoiding the use of probability altogether. Not only in Physics, but
also in Statistics, Engineering, Chemistry, Biology, Psychology, and
Economics, the nature of the calculations you make, the information you
allow yourself to use, and the results you get, depend on what stand you
choose to take on this surprisingly divisive issue: are probabilities
"real"?

But in quantum theory the dilemma is more acute because it does not
seen to be merely a choice between two alternatives. The "subjective"
and "objective" aspects are scrambled together in the wave function of an
electron, in such a way that we are faced with a paradox like the classical
paradoxes of logic; whatever stand you take about the meaning of the wave
function, it will lead to unacceptable consequences.

To achieve a rational interpretation we need to disentangle these
aspects of quantum theory so the “subjective" things can change with our
state of knowledge while the "objective" ones remain determined by the
equations of motion. But to date nobody has seen how to do this; it is
more subtle than merely separating into amplitudes and phases.

WHAT IS "“REALITY"?

As many have pointed out, starting with Einstein and Schrodinger fifty
years ago and continuing into several talks at this Workshop, the Copenhagen
interpretation of quantum theory not only denies the existence of causal
mechanisms for physical phenomena; it denies the existence of an "objectively
real" world.

But surely, the existence of that world is the primary experimental
fact of all, without which there would be no point to physics or any other
science; and for which we all receive new evidence every waking minute of
our lives. This direct evidence of our senses is vastly more cogent than
are any of the deviously indirect experiments that are cited as evidence
for the Copenhagen interpretation.

Perhaps our concern should be not with hidden variables, but hidden
assumptions; not only about the theory, but about what we are measuring in
those experiments. Consider a cascade decay experiment. As soon as we say
something 1ike "In this experiment we observe two photons emitted from the
same atom", we have already assumed the correctness of a great deal of the
theory that the experiment was supposed to test. This initial stacking of
the cards then affects how we analyze the data.

Bell's theorem was a great, and startling, advance, because it showed
us that von Neumann's analysis contained hidden assumptions that had
escaped the notice of physicists for over 30 years. But it is not so
startling when we note that relativity theory owes its existence to
Einstein's perception of a hidden assumption “hat nobody had noticed in the
300 years since Kepler. In 1949 he wrote, concerning phenomena in two
reference frames: "Today everyone knows, of course, that all attempts to
resolve this paradox were doomed to failure as long as the axiom of the



absolute character of time, viz., of simultaneity, was anchored unrecognized
in the subconscious. Clearly to recognize this axiom and its arbitrary
character really implies already the solution of the problem."

We hope it will not take another 300 years to locate the hidden as-
sumptions in Bell's analysis. This is unlikely to be accomplished within
the confines of present orthodox thinking; we can hardly expect that a
viewpoint which denies the very existence of causal mechanisms will suggest
the proper experiment to reveal them.

But to escape from the irrationality of present quantum theory, it is
idle merely to complain about its philosophy. The onus is on the dissenter
to move outside its area of thought and offer a constructive, experimentally
testable, alternative.

The writer's neoclassical theory of electrodynamics is one such effort;
but it has not yet been applied to experiments of the type reported here by
Aspect, in a sufficiently careful way to draw any conclusions. In any
event, many more such efforts may be needed before we can ferret out the
crucial hidden assumption, now anchored unrecognized in our subconscious,
which is preventing us from tying the mathematics of quantum theory to a
rational view of the worid.

Do we need more hidden variables? Perhaps eventually, but maybe our
immediate problem is the opposite; first we need to get rid of some. To
define the state of a classical particle we must specify three coordinates
and three velocities. Quantum theory, while denying that even these degrees
of freedom are meaningful and claiming to "remove unobservables", replaces
them with an infinite number of degrees of freedom defining a continuous
wave field. To specify a classical wave field, we need one complex amplitude
for each mode; for a quantized field we need an infinity of complex ampli-
tudes for each mode.

So perhaps quantum theory, far from removing unobservables, has in-
troduced infinitely more mathematical degrees of freedom than are actually
needed to represent physical phenomena. If so, it would not be surprising
if a few infinities leak out into our calculations.

Neoclassical theory was a preliminary attempt to remove the hidden
variables that are not actually used (at least, not up to second order)
in calculation of the Lamb shift, the anomalous moment, and vacuum polariza-
tion. After removing an infinity of irrelevant degrees of freedom, it might
be clearer how to add a few new relevant ones. It is not yet completely
formulated, and can still be modified in many ways.

Distant correlations, so prominent in all these discussions from EPR
to Aspect, are not in themselves difficult conceptually, since a state of
knowledge may well be of the form; "if A, then B; but if C, then D".
Experiments which merely confirm that these correlations exist hardly
surprise us (they would be sensational if they showed that the correlations
do not exist). As EPR emphasized, it is not the experimental facts, but
the claim of the Copenhagen theory that the wave function containing such
correlations is at the same time a complete description of reality, on
which one chokes.

Part of Bohr's defense of his position was on the grounds that EPR
did not show that his theory contradicts any experimental fact; but that
was not the point. Indeed, the difficulty with the Copenhagen theory 1s
most acute just when the experimental facts agree exactly with its predic-
tions; for then we are in the following situation. Since the experimenter
can decide, after the interaction with a system S has ceased, which of two .



non-commuting quantities (x,p) in S he will be able to predict with cer-
tainty, we are again in the realm of psychokinesis if we deny reality to
either of them before his decision. Then, since the wave function does
not determine either x or p we do not see, any more than did EPR, how it
can be called a complete description of reality.

The word "reality" must have had a different meaning to Niels Bohr
than it has to others. On this topic, we note a quotation from Heisenberg
(1958) which will surprise many: "The conception of objective reality--has
thus evaporated--into the transparent clarity of a mathematics that repre-
sents no longer the behavior of elementary particles, but rather our
knowledge of this behavior."

OUR MIND-BOGGLING PROBLEM

The difficulty in finding a rational interpretation of quantum theory
can be illustrated a Tittle more specifically as follows. If one wishes
to do so, the amplitudes |a(t)| of stationary states in a wave function

b(x,t) = Ya (t)u (x)

can be interpreted, with at least some success, as "subjective" probability
amplitudes expressing human information; but they are combined with phases
which seem to have no such interpretation. Yet the relative phases strongly
affect our predictions in ways that are necessary for agreement with experi-
ment (for example, they determine the polarization of resonance radiation).
We seem obliged to consider the relative phases as "objectively real" things.

But then those same phases cause conceptual difficulties; in Schrédinger's
paradox, if we observe whether the cat is alive or dead, quantum theory
gives reasonable probability statements. But if we choose to measure some-
thing that does not commute with "1iveness", our predictions will depend on
the relative phase with which the live cat and dead cat are superposed in
the wave function.

There must be some 1imit on how far the superposition principle can
be applied; at the atomic level we must have it, but at the macroscopic
level we would 1ike to get rid of it. Even at the molecular level, it is
puzzling; if we take it literally, what prevents us from having a new kind
of air in which each molecule is neither nitrogen nor oxygen, but a linear
combination of them?

As noted, a mere separation into amplitudes and phases is not enough;
further thought convinces us that the amplitudes must also be in part
"objective", reviving the difficulty with state reduction. What seems
mind-boggling at present is: how can we find a separation into "subjective”
and "objective" parts that is invariant under changes in the representation--
or at least under a sufficiently wide group of transformations to make
physical sense? We do not have a clue about how to do this.

Yet we are optimistic, think that it will surely be solved eventually,
and the answer will be simple and obvious (although it may require us to
renounce our linear Hilbert space). As Seneca wrote long ago, "Posterity
will be astonished that truths so clear had escaped us."

But for the present, to paraphrase Gibbs: difficulties of this kind
have deterred the writer from trying to explain the mysteries of quantum
theory, and forced him to be content with a more modest goal.



WHAT WAS BOHR TRYING TO DO?

Now let's Took at that mind-boggling problem from a different side.
A single mathematical quantity y cannot, in our view, represent incomplete
human knowledge and be at the same time a complete description of reality.
But it might be possible to accomplish Bohr's objective in a different way.
What he really wanted to do, we conjecture, is only to develop a theory
which takes into account the fact that the necessary disturbance of a
system by the act of measurement limits the information we can acquire,
and therefore the predictions we can make. This was the point always
stressed in his semipopular expositions. Also, in his reply to EPR he
noted that, while there is no physical influence on S, there is still an
influence on the kinds of predictions we can make about S.

With all of this, we can agree entirely. The fact of disturbance of
one measurement by another was equally true in classical physics (for
example, one cannot use a voltmeter and ammeter to measure the current and
voltage of a resistor simultaneously, because of this "complementarity":
however you connect them, either the voltmeter reads the potential drop
across the ammeter or the ammeter reads the current through the voltmeter).

But in classical physics such limitations on our knowledge could be
recognized and taken into account in our predictions without losing our
hold on reality; for the separation into what was "objective" and what
was "subjective" was never in doubt. The coordinates and velocities
remained "objective", while the "subjective" human information resided
entirely in the probability distributions over them. The probabilities
could vary in any way as our state of knowledge changed for whatever
reason; while the coordinates and velocities continued to obey the equations
of motion.

Furthermore, the limitations on our ability to make measurements at
the microscopic level did not prevent us from discovering the microscopic
equations of motion, or from checking them accurately enough to discover
their failure in quantum effects. There are lessons in this for the present.

Could we make a theory of microscopic phenomena more like this which,
while keeping a firm hold on what is "objective", also recognizes and
represents explicitly the role of Timited human information in the predic-
tions it can make? Such a theory need not, we think, contradict the suc-
cessful parts of Bohr's theory; rather it would remove the contradictions
that still mar it, thus fully realizing Bohr's goal (indeed, Bohr himself
may have had such thoughts; it is known that toward the end of his 1ife he
showed an interest in information theory).

Not knowing how to make this separation in quantum theory, we sought
first a simpler model in the hope that it might be useful in its own right,
and also give some clues for the big problem. The first hope is now fully
realized; the second is still in too delicate a condition to be put on
public view. _ :

We want to reformulate statistical mechanics in a way that reflects
Bohr's thinking by introducing explicitly the role of human information
in determining the kind of predictions we can make. This is also closely
related to Einstein's thinking; for he regarded present quantum theory as
incomplete, related to a complete microscopic theory in much the same way
that classical statistical mechanics is related to classical mechanics.

Thus, to enter into pure conjecture (whistling in the dark, some will
say); if we could eventually see the predictions of present quantum ;heoyy
as resulting from the "statistical mechanics" of a deeper theory, this might



realize both Bohr's goal and Einstein's. Of course, in view of Bell's
theorem we do not expect this to be possible exactly, in terms of the same
variables used in present quantum theory.

NATURE OF PROBABILITY THEORY

In trying to use probability theory for this purpose, we note that
one can find very different views as to what probability theory is. It
has been termed:

“the theory of additive measure" (Kolmogorov)

"the theory of rational belief" (Jeffreys, Good, Savage)

"the theory of frequencies in random experiments" (Fisher)

"the calculus of inductive reasoning" (de Morgan)

"common sense reduced to calculation" (Laplace)

“the art of conjecture" (Jacob Bernoulld)

"the exact science of mass phenomena and repetitive events" (von Mises)

For over a Century, controversy has raged between those who want us to adopt
one of these views and reject others. Clearly, however, each of the above
definitions merely reflects the particular problems that the author was
concerned with; to insist that we reject all views that are not helpful

in his problems is to insist that we work only on his problems.

Here we take the view that all of the above are valid and useful in
different contexts, and we are free to choose whichever seems appropriate
in ours. But some views are more general than others. Consider, for
example, that of von Mises. It is true that probability theory is used
successfully in dealing with mass phenomena and repetitive events; but if
we insist that it may be used only for that purpose we shall be prohibited
from using it for our purpose of representing human information.

On the other hand, the probability theory of Jeffreys (1961) in which
probability expresses basically a state of knowledge, applies to a much
wider range of problems, automatically including those of von Mises and
Fisher; for a state of knowledge may refer to any context. If our problem
of interest happens to involve random experiments or mass phenomena, then
Jeffreys' theory applies in a natural way, yielding the same or domonstrably
better results than those of Fisher and von Mises. For Jeffreys' approach
deals easily with technical problems (nuisance parameters, nonexistence of
sufficient or ancillary statistics, rectangular 1ikelihood functions, cogent
prior information) on which narrower views fail (Jaynes, 1976).

Therefore, while we should not consider it "wrong" to adopt a narrow
view if it happens to be adequate for our problem, we-have nothing to lose,
and may avoid unnecessary technical difficulties, if we always adopt the
broadest view of Jeffreys. 1In our present problem it is necessary to do
this, for our explicit purpose is to represent human information of any
kind, whether or not it happens to refer to random experiments or mass
phenomena.

This choice will avoid not only technical difficulties, but even more
disturbing conceptual ones, if our long-range goal is to clarify quantum
theory. 1In our discussions here we have heard such questions as:

"Does the measurement create the state?"

"Does the act of human perception do it?"

"What is the role of consciousness and free will?"
“"Are objects real?"



But astonishingly, we have heard also:
"What is the true nonequilibrium ensemble?"

At this point, it is clear that theoretical physics has gone berserk. In
quantum theory we have got ourselves into a situation where the objects have
become unreal, but the probabilities have become real!

But this too is not peculiar to quantum theory. On deep thought, it
will be seen that whenever we allow probabilities to become “physically
real" things, logical consistency will force us, eventually, to regard the
objects as "unreal". If we are to reach Bohr's goal while at the same
time keeping our objects real we must recognize, with Laplace, Maxwell,
and Jeffreys, that whenever we use probability it must be as a description
of incomplete human knowledge, as it was in classical statistical mechanics.

Therefore, we must go back much further in first principles than
merely re-hashing EPR and the QM theory of measurement. We need a basically
different way of thinking than scientists are now taught. The conventional
attitude asks the question: “How does Nature behave, as determined by the
laws of mechanics?" Or, as we heard it put more dramatically here: "I
don't like thermo--let's solve the n-body problem and see if all this stuff
is really true."

Here we want to ask a different question: "How shall we best think
about Nature and most efficiently predict her behavior, given only our
incomplete knowledge?" Of course, although it would be impossibly difficult,
it would not be "wrong" to solve the n-body problem; the point is that it
is unnecessary and would contribute almost nothing to understanding thermo.

To understand and 1ike thermo we need to see it, not as an example of
the n-body equations of motion, but as an example of the logic of scientific
inference, which by-passes all the detail by going directly from our macro-
scopic information to the best macroscopic predictions that can be made
from that information; a model of what we would 1ike to do in quantum theory.

That this must be possible, at least for thermo, is seen as follows.
The fact that thermodynamic and other macroscopic experiments are repro-
ducible shows that most details of those initial microscopic conditions
are irrelevant. If control of a small number of macroscopic quantities is
sufficient, in the laboratory, to yield a reproducible result, then informa-
tion about those quantities must suffice for theoretical prediction of that
result; there must be an algorithm that goes directly from one to the other.

Predictive Statistical Mechanics is not a physical theory, but a method
of reasoning that accomplishes this by finding, not the particular things
that the equations of motion say in any particular case, but the general
things that they say, in "almost all" cases consistent with our information;
for those are the reproducible things.

We are not, however, throwing away the conventional methods or results.
Quite the contrary, the statistical mechanics of Gibbs and conventional
quantum statistics are contained in it as special cases for certain
particular kinds of information, just as the probability theory of von
Mises is contained in that of Jeffreys for particular kinds of information.

This concludes our lengthy sermon; the technical problem now before us
is: how shall we use probability theory to help us do plausible reasoning
in situations where, because of incomplete information, we cannot use
deductive reasoning?



BAYESIAN INFERENCE

A fairly complete treatment of these questions, with extensive physical
applications, is given by Jeffreys (1961); we sketch a few of the details.
The propositions about which we reason are denoted by letters A, B, C, etc.
For example, we might choose

A = "The pressuré of the gas is in the range (P, P +dP)"
B = "Its kinetic energy is E"
I = "It has N molecules in a volume V"

As in the usual Boolean algebra, we may construct new propositions by con-
junction, disjunction, and negation:

AB = "Both A and B are true"
A+B = "At least one of the propositions A, B is true"
A ="Ais false"

"

The symbol p(A|B) stands for "the probability that A is true, given that

B is true", and is a real number in O0<p<1. Thus p(A+B|CD) is the
probability that at least one of the propositions A, B, is true, given
that both C, D are true, and so on. Since in this system probabilities
are a means of representing incomplete information, all probabilities are
of necessity conditional on some information; there is no such thing as an
"absolute" probability.

The rules for plausible reasoning are simply the familiar product and
sum rules:

p(AB|I) = p(A|I)p(B|AI) = p(B|I)p(A|BI) , (1)
p(A|B) + p(A|B) =1 . (2)

A1l other relations can be deduced from these. In particular, if p(B|I) #0,
we have from (1)

p(A[BI) = p(A|I)p(B|AI)/p(B|I) (3)

where, since “I" occurs as a condition in all terms, we shall call it the
"prior information". Equation (3), usually called Bayes' theorem, represents
the process of learning from experience. We start with the prior probability

of A, p(A|I) when we know only the prior information, and (3) shows how this
is converted into the posterior probability p(A|BC) as a result of acquiring
new information B.

Bayes' theorem is undoubtedly the most fundamental principle of scien-
tific inference; by its repeated use we can incorporate long chains of
evidence into our reasoning, the posterior probability for one application
becoming the prior probability for the next. We readily verify its con-
sistency for this; the final result is independent of the order in which
different pieces of information were taken into account. But there has
been long controversy about it also, so it is important to dwell a moment
on the status of these rules and others derived from them.

Historically, they were given by Laplace in the 18'th Century, on
intuitive grounds, and applied by him in many problems of data analysis
in astronomy, geodesy, meteorology, population statistics, etc. He had
great success with them, using Bayes' theorem to help him decide which
astronomical problems were worth working on. That is, are the discrepancies




between calculation and telescopic observation so small that they might
well be accounted for by measurement errors; or are they so large that

they indicate, with high probability, the existence of some unknown
systematic cause not included in the calculations? If so, Laplace would
undertake to find that cause. This process (what would be called today a
"significance test" by statisticians) led him to some of the most important
discoveries in celestial mechanics.

In spite of this success, a reaction set in after Laplace's death as
others questioned the validity and uniqueness of the above rules. However,
they would be true trivially if we interpret p as an "objective" frequency
in a random experiment instead of a mere "subjective" measure of plausibility.
So for over a Century probability theory went off into the Fisher/von Mises
views that only the frequency interpretation was respectable. In fact, this
view succeeded rather well for many years because there were actually many
scientific problems where it was adequate; the information available and
the questions of interest could be expressed solely in terms of frequencies,
and there was no other cogent information.

But as scientific problems became more sophisticated, it became in-
creasingly difficult to adapt frequency interpretations to them. Eventually
one had to resort to inventing imaginary universes of repetitions of experi-
ments that could in fact be performed only once, in order to maintain the
illusion of a frequency interpretation. More serious, anomalous results
began to appear, which could be traced to the failure to take into account
cogent information that common sense could see was relevant to the inference,
but which the frequency theory could not use because it did not consist of
frequency data.

In 1946, R. T. Cox cut through the confusion by a marvelous argument.
He had the good sense to ask a constructive question; whether or not
Laplace's methods were sound, would it be possible today to make a consistent
“calculus of plausible reasoning" along those 1ines? Cox found that the
conditions for consistency of such a theory could be stated in the form of
functional equations, whose general solutions could be found. The result
was: any method of plausible reasoning in which we represent degrees of
plausibility by real numbers is necessarily either equivalent to Laplace's,
or inconsistent (in the sense that two methods of calculation, each per-
mitted by the rules, would yield different results). Since 1946, there
has been no excuse for anyone to reject the use of equations (1)-(3) as
valid scientific inferences. For the details of beautiful applications,
see Jeffreys (1961).

THE MASS OF SATURN

Many of these points are illustrated by the famous example of Laplace's
analysis of the accuracy with which the mass of Saturn was known at the end
of the 18'th Century. Let A stand for the proposition: "the mass of Saturn
is in M, M+dM", and denote by D a set of observational data to be taken
into account, while I stands for whatever prior information Laplace had
about M before the data D were known. Then we may define prior and posterior
probability density functions:

p(A|I) = f(M)dM ; p(A|DI) = F(M)dM . (4)

Before the data, one did not know much about M, so f(M) was a very broadly
spread out function. But Laplace knew at least that M was not zero, else
Saturn would not hold its rings and moons or perturb Jupiter; and there
would be no data to analyze. Also, he knew that M could not be an appre-
ciable fraction of the solar mass, else Saturn would totally disrupt the
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solar system. So f(M) must go to zero at extreme values; but this left an
intermediate range of several orders of magnitude, within which f(M) could
be taken to be essentially constant.

Of course, f(M) represents only Laplace's state of prior knowledge
about M; it can be regarded as a frequency only in a grotesque collection
of imaginary universes in which the mass of Saturn takes on all conceivable
values. So frequency views of probability would not allow us to do this
calculation at all. ~

In its dependence of M the term L(M) =p(D|MI) in Bayes' theorem is
called the 1ikelihood function, proportional to the probability that the
data D would be observed if M was the true mass of Saturn. All the evidence
from the data resides in this factor, which represents our knowledge of the
likely errors in the data due to the imperfection of telescopes and clocks.

This term is worth dwelling on a bit, because it shows both the use-
fulness and the shortcomings of the (probability = frequency) view. On
that view, p(D{MI) means the limiting frequency with which the data set D
would be obtained in infinitely many repetitions of the measurement, if
the mass of Saturn were held constant at the particular value M. But
obviously, if one could actually measure that frequency directly, we would
be far beyond any need to estimate M; so how do we, in practice, choose
the function L(M)?

For this it is necessary to:do a Tittle sub-problem of plausible
inference, within the original problem. We suppose that the errors in
angles depend only on properties of the telescope, and would be the same
whatever the true mass of Saturn and whatever object we are observing.
So we shall find the telescope errors by making repeated measurements on
some more fixed object 1ike Sirius. The frequency distribution that we
find for Sirius is inferred to hold also for Saturn.

This is an inference that common sense leads us to accept at once
(although logically it is just the kind of inference that the frequency
theory holds to be invalid; frequentists are masters of the art of con-
cealing this). So, in practice we do indeed usually choose the 1ikelihood
factor on the basis of frequencies of errors; and the frequentist's pro-
cedure does indeed serve our purpose.

But this is so only because the feasible source of information about
errors usually happens to come from repeated measurements. What is
fundamentally required in (3) is the probability of various errors in the
specific case of Saturn now before us. This may or may not be the same as
the frequency of various errors in other cases that we are not reasoning
about.

Indeed, strictly speaking, the specific case at hand is always in
some ways unique and not comparable to others. There may be other cogent
information pertaining to the errors in the specific case before us, in
addition to frequencies. Then the frequentist's procedure is incomplete,
allowing us to take into account only part of the information relevant to
our problem. So attempts to uphold frequentist views in all cases can
lead to anomalous results, which have become increasingly troublesome in
recent applications. The only way to deal with the full problem is to use
the Laplace-Jeffreys method, which can in principle take any kind of in-
formation into account, because it interprets the concept of probability
more broadly.
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Likewise, if there is cogent prior information in addition to the
data, the Laplace-Jdeffreys methods have the means of taking it into account
by use of a "informative" prior density f(M) that is not flat, but specifies
what values of M are already indicated or contra-indicated by the prior
information. Again, frequentist methods which do not admit the existence
of a prior probability are helpless to take such information into account.

In recent applications these shortcomings of frequentist methods of
inference have become more and more serious. With the advent of the
"Generalized Inverse" problem frequentist methods have become totally
unusable; yet the Laplace-Jeffreys methods continue to deal with them
without any difficulty of principle but with a new technical problem whose
solution Teads us into predictive statistical mechanics.

GENERALIZED INVERSE PROBLEM

If the likelihood function L(M) =p(D|MI) does not peak sharply at any
definite value of M but has a very broad maximum, the frequentist maximum
likelihood principle becomes unstable, a small change in the data leading
to a large change in the estimate, which common sense rejects as unreason-
able. This makes the determination of the prior probabilities a more
exacting task; the prior information is no longer overwhelmed by the data,
and so it must be considered more carefully than Laplace needed to.

In the 1imit when the likelihood function develops a flat top, fre-
quentist methods break down entirely; only an informative prior probability
can locate a definite estimate somewhere within that flat region. This
means that we are faced with a new technical problem: how do we translate
verbally stated prior information into a quantitative prior probability
assignment?

A typical kind of problem where this occurs is that where we are
trying to invert a singular matrix; our data are

n
dk = ;g%Aki X; T<k<m<n (5)

where the {xj} represent the "state of Nature" that we are trying to
estimate, and A is a known matrix with rank less than n, so there is no
inversion of the form x =A~'d. Then the likelihood function L(x) =p(d|xI)
is rectangular; the data merely partition the set of all x into subsets of
possible and impossible values, with nothing to choose within the possible
subset. L(x) is only the indicator function of the set of possible states
of Nature. So we shall call any problem with a flat-topped 1ikelihood a
'generalized inverse problem".

Such problems have proved to be very common in recent applications;
after a talk in 1983 the writer was approached by a statistician in
Government who said "I suddenly realized that every problem my agency is
trying to solve is a generalized inverse problem."

On further reflection it is seen that, from the standpoint of principle,
this technical problem is present in every application of probability theory.
For, as Cox's derivation showed clearly, the rules (1), (2) express only the
consistency of our reasoning, telling us how probabilities of different
propositions are related to each other. That is, given some probabilities,
they tell us how to calculate others consistent with them. They do not
tell us what initial probabilities should be assigned so the calculation
can get started. :
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But for decades probability theory has concerned itself only with

building upward from (1), (2), deducing their consequences in the large
body of mathematics that fills our libraries. The problem of assigning
the initial probabilities represents fully half of probability theory as
it is needed for applications; yet its very existence remains unrecognized
in most of those books. So we have a great deal of catching up to do; it
will require decades to bring this neglected bottom half of probability
theory up to the level of power and generality of the top half. But we
have made enough progress to date so that the range of useful applications
of probability theory is already extended far beyond the confines of the
frequentist viewpoint.

ASSIGNING PRIOR PROBABILITIES

Today a number of principles are known by which prior information
can be translated, or encoded, into prior probabilities. The simplest
and most obvious is symmetry; from the earliest pre-mathematical gropings
toward a set of rules for plausible reasoning it was clear to gamblers
that if coins, dice, playing cards, roulette wheels, etc. were made with
perfect symmetry there was no known cause tending to produce one outcome
more than any other; so we had no reason to consider one more likely than
another. The only honest way to express this state of knowledge is to
assign equal probabilities to all of them.

We hasten to add that this is not to assert that all outcomes must
occur equally often, as frequentists invariably accuse us of doing; for
of course there may be unknown symmetry-breaking causes (very skillful
tossing, shuffling, spinning, etc.). It does, however, mean according
to the rules (1), (2) that if we are obliged to predict the frequencies
from the incomplete information we have, our "best" estimates, by almost
any criterion of "best", will be uniform.

If we have no information about the specific kind of symmetry-
breaking influence at work, neither we nor the frequentist can make use
of it to alter our predictions. Even if we know that some symmetry
breaking is present but do not know which outcome it favors, this informa-
tion cannot change our estimates, but only increases their probable error.

This again shows the two basically different attitudes noted above;
we are not asking how Nature must behave, but only what are the best pre-
dictions we can make on our incomplete information. But this is always
the real problem before the scientist, as Niels Bohr saw.

The idea of symmetry became more abstract, and more general, in the
work of Jacob Bernoulli (1713). He envisaged an underlying population of
N inherent possibilities from which we draw (the famous “urn" of elementary
probability theory, with its N labelled but otherwise identical balls).
If M of the balls are labelled "A" and we draw from the urn blindfolded,
the probability that we shall draw an "A" is p(A) = M/N, the basic defini-
tion of probability used by Laplace. Note that Bernoulli's definition -is
just the frequency with which we would find "A" if we sampled the entire
population without replacement.

But it was recognized already by Bernoulli that in many real problems
we do not see how to analyze the situation into ultimate "equally likely"
cases. As he put it, "What mortal will ever determine the number of
diseases?" A principle was still needed for dealing with cases where we
have prior information that makes the known possibilities not equally
Tikely. It is surprising that Laplace did not find this principle, since
he saw the problem so clearly.
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Now the scene shifts to Boltzman (1877). To determine how gas
molecules distribute themselves in a conservative force field such as
gravitation, he divided the accessible 6-dimensional phase space of a
single molecule into equal cells, with N molecules in the i'th cell.
Noting that the number of ways this distribution can be realized is the
multinomial coefficient

W= N!/N]!N !...Nn! (6)

2
he concluded that the "most probable" distribution is the one that
maximizes W subject to the known constraints of his prior knowledge; in
this case the total number of particles and total energy:

N = §:N1 = const. , E = Z:Ni E; =const. (7)

where E is the energy of a molecule in.the i'th cell. If the number are
large, Stirling's approximation gives asymptotically

T log W — - T (N:/N)Tog (N, /N) (8)

today usually called the "Shannon entropy", although it was in use by
von Neumann before Shannon entered the field and by Boltzmann and Gibbs
before Shannon was born. This argument, repeated in every statistical
mechanics textbook, led to the famous Boltzmann distribution law: our
best estimate of Ni is

N

A~

N, = W27 exp(-gE.) (9)
where Z is a normalizing factor, and the Lagrange multiplier is found to
have the meaning 8 = (kT)~!. This is the distribution that can be realized
in more ways than can any other that agrees with the information (7).

Gibbs generalized this result to the continuous phase space of N inter-
acting molecules, leading to his canonical and grand canonical ensembles,
later extended easily to quantum statistics.

At this point, then, (1902) the Principle of Maximum Entropy (PME)
was fully in hand and operational, and it has been the de facto foundation
tool of statistical mechanics ever since. So why did it take another fifty
years to recognize it, ten more to generalize it to nonequilibrium cases,
and yet another five to apply it to a problem of inference outside thermo-
dynamics?

The barrier that has held up progress throughout this Century is just
that philosophical position that tries to make probabilities "physically
real" things. Not until the work of Shannon (1948), which showed that the
quantity Boltzmann and Gibbs had maximized is at the same time a unique
measure of "amount of uncertainty" in a probability distribution, could
the general rationale underlying their procedure be seen. As should be
obvious by now, Boltzmann and Gibbs had been, unwittingly, solving the
prior probability problem of Bernoulli and Laplace, the principle of
symmetry generalized to the principle of maximum entropy.

THE MAXIMUM ENTROPY PRINCIPLE

But for all this time writers on statistical mechanics had interpreted
the work of Boltzmann and Gibbs in an entirely different frequentist
context, which sought to justify the canonical ensemble as a physical
fact, a provable consequence of the equations of motion--that n-body
problem--via ergodic theorems.
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In the case of a body in equilibrium with a heat bath or isolated,
such theorems might conceivably be true in many cases, although one can
easily invent counter-examples in which the Hamiltonian is too "simple"
for ergodic behavior to be possible in an isolated body. But even when
ergodicity can be proved, it cannot ensure that ensemble averages are
equal to experimental values, for reasons that were pointed out already
by Boltzmann, and discussed in some detail in Jaynes (1967).

When we try to extend the theory to irreversible processes, ergodic
theorems are worse than useless, for if the theory is successful the
ensemble averages must still be equal to experimental values; but the
very phenomena to be predicted express the fact that these are not equal
to time averages. The probabilities we use to predict irreversible
processes are necessarily only descriptions of human information; i.e.,
the probability is spread smoothly over the range of possible microstates,
compatible with our information.

If a process is reproducible, it cannot be because the probabilities
are "real", but only because most of those possible microstates would all
lead to the same macroscopic behavior. The maximum-entropy distribution
is the safest, most "conservative" distribution to use for prediction,
because it spreads the probability out over all the states consistent
with our information; and not some arbitrary subset of them. Thus it
takes the fullest possible "majority vote", and prevents us from making
arbitrary assumptions not justified by our information.

In this sense the maximum-entropy principle expresses nothing more
than intellectual honesty; it frankly acknowledges the full extent of our
ignorance. Indeed, it measures that ignorance, since the "physical
entropy" S of Clausius, which is the "Shannon information entropy" (8)
after maximization, is essentially the logarithm of the number of micro-
states consistent with our information (as Boltzmann, Einstein, and Planck
had all noted before 1907).

But in fact the microstates leading to the reproducible behavior are
such an overwhelming majority of the possible set that in practice "almost
any" probability distribution that concentrates its probability on some
subset of them, will lead to substantially the same macroscopic predictions.
And any probability distribution--whatever its high-probability domain of
microstates--that gives the same covariance functions for the macroscopic
quantities of interest, will lead to exactly the same predictions. The
maximum-entropy ensemble is sufficient, but very far from necessary, to
make correct predictions. Yet some still ask: "What is the true non-
equilibrium ensemble?"

But the question can be construed as meaningful in a different sense.
If PME predictions are successful, that does not prove its ensemble is
"correct" since many other algorithms might also be successful. But if
PME fails, the ensemble must have been, in some sense, "wrong". Supposing
the data used as constraints were not in error, there seem to be two
possibilities: (A) There may be further constraints, essential to deter-
mine the phenomena, which we failed to take into account; or (B) Our
enumeration of the physically possible microstates (the place where our
knowledge of the laws of physics comes in) was wrong; Nature actually uses
more states, or fewer, than we supposed.

On possibility (A), if we have included as constraints all the macro-
scopic conditions that are found, in the laboratory, to be sufficient to
determine a reproducible outcome, then there seems to remain only the
possibility that the equations of motion have new constants of the motion
that we didn't know about. The nature of the error gives us a clue as to



what these new constants might be. This happened in the case of ortho-
and para-hydrogen, where an approximate constant of the motion prevented
the system from reaching the equilibrium predicted by the canonical
ensemble in the time of experimental measurements; and the in existence

of allotropic forms like red and white phosphorus, which are stable over
many years.

On possibility (B), the fajlure of PME based on a particular state
enumeration would give us a clue to new laws of physics. This, too, has
happened more than once. First, the failure ofGibbs' classical statistical
mechanics to predict specific heats correctly was the first clue pointing
to the discrete energy levels of quantum theory; Nature did not use all
the energy values permitted by classical mechanics. There remained a
failure to predict vapor pressures and equilibrium constants correctly;
this clue was found to indicate that Nature does not use all the mathematical
solutions of the Schriodinger equation, only those that are synmetric or
antisymmetric under permuations of identical particles.

We point this out to emphasize the completely different way of thinking
about the relation of statistical theory to the real world, that is being
expounded here. Repeatedly, conventional thinking has led to attacks on
the PME viewpoint on the grounds that we make no appeal to ergodic theorems;
ergo, there might be unknown constants of the motion which prevent a system
from getting to the macroscopic state that PME predicts. Therefore, our
prediction might be wrong; and this is seen as a terrible calamity that
invalidates our approach.

This point of logic is discussed in more detail in Jaynes (1985),
where we note that this conventional thinking is Tike that of a chess
player who thinks ahead only one move. If we think ahead two moves we
see that, while the usual success of PME predictions makes them useful
in an "engineering" sense, an occasional failure is far from being a
calamity.

If we see the formalism of statistical mechanics as a physical theory,
then we worry about whether it is "right" or "wrong". If we recognize it
instead as a method of reasoning which makes the best predictions possible
from the information we put into it, its range of application is seen as
vastly greater, not 1imited to thermodynamics or to physics; and its
"failures" are seen to be even more valuable than its "successes", because
they point the way to basic advances in science. My colleague Steve Gull
has termed this change inattitude, "The Leap" in our understanding of the
role of statistical inference inscience. Instead of fearing "failure",
we look eagerly for it.

This change in attitude is so great that it seemed misleading to use
the same term "statistical mechanics" for both viewpoints. To avoid
confusion we coined the name "Predictive Statistical Mechanics" to dis-
tinguish our line of thought from others.

For some time, this issue could not progress beyond being a mere
philosophical difference, because to find a difference in pragmatic results
one had to go beyond equilibrium thermodynamics; but the nonequilibrium
PME calculations proved to be just as difficult, differing only in details,
as the equilibrium ones. Indeed, most current work in statistical

mechanics is still struggling with equilibrium calculations, which are
hard enough.

It required the advent of the computer before the merit of PME as a
predictive tool outside equilibrium theory could be demonstrated; and the
impressive recent successes have been in applications outside of -thermo-
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dynamics. These are quite different from the thermodynamic applications,
where it would be impractical to do pencil-and-paper calculations with
more than afew simultaneous constraints.

With computers it is possible to locate maximum entropy points with
almost any number of simultaneous constraints; spectrum analyses with
dozens of constraints have been produced routinely for some fifteen years,
and image reconstructions with over a million constraints (i.e., generalized
canonical distributions with over a million Lagrange multipliers) have
been produced routinely for three years now.

Finally, thanks to these developments, the real powers of the PME
method could be seen in a way that transcended all philosophical arguments
about the "meaning of probability". It is the computer printouts, not the
philosophy or theorems, that is making the converts.

Lacking the space to present all the technical details now in print,
in the following we survey the main new applications and results, with
references. The field is presently in a phase of rapid growth, spreading
into new fields with the number of workers appearing to double every year;
and it is no longer possible for one person to keep up with all that is
being done. Therefore the following is only a partial 1ist, of applications
known to the writer. A

SPECTRUM ANALYSIS

The first breakthrough occurred in 1967, when John Parker Burg produced
power spectrum estimates from incomplete geophysical data, by maximizing
the entropy of the underlying time series {y,,y,, ... yn} defined at dis-
crete times t=1,2,..., subject to the constraints of the data. More
specifically, one has measured values of the autocovariance

-1
R=n E:ytyt+k (10)
t
for m+1 lags, O<k<m<n. The true power spectrum is

n
P(F) = ¥ R, cos 2mkf (11)
k=-n

but there is nothing "random" about this. The problem is that m<n; our
data are incomplete. On frequentist views, one would not see how probability
theory is applicable to such a problem; but from our viewpoint we see that
this is a classic example of the generalized inverse problem discussed
above; the class C of possible spectra is given by (11) in which the Ry

are taken equal to the data when |k|<m, and are arbitrary but for the
nonnegativity requirement P(f) 20 when |k|>m. Picking out a particular
"best" estimate P(f) from class C thus amounts to finding the "best"
extrapolation of {Ry} beyond the data.

Previous to this, power spectra had been estimated by the Blackman-
Tukey (1958) method, which led to an estimate, for this problem, of:
m
[P(f)1gr = k;_m R, W cos(2mkf) (12)

where Wy is a "taper" or "window" function, typically chosen as

W, =

K (1 +cosmk/m) (13)

N~
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which avoids spurious "side-lobes" in P(f) by tapering the data smoothly
to zero at k=m, which would otherwise be an abrupt discontinuity. But
it is at once evident that (12) does not lie in the class C of possible
solutions; for (12) disagrees with the data at every data point where
Wg#1. Furthermore, (12) is not in general nonnegative. Therefore we
know. not as a plausible inference, but as a demonstrated fact, that a
time series with the spectrum (12) cou]d not have produced our data' In
addition, the estimate (12) failed to resolve sharp spectrum lines satis-
factorily; the window function, in removing the side lobes, threw away
half the resolution that we would have had without it.

Burg pointed out these shortcomings of (12) and proceeded to find a
spectrum estimate by a totally different argument. Find the probability
distribution p(y],...,yn):=p(y) that has maximum entropy

S = -‘fp(y) log p(y)d"y (14)

subject to the constraints that the expectations of the Rk agree with the
data (10). The resulting generalized canonical distribution

p(y) = exp[-Z\ R, ] (15)

is, in view of of (10), a multivariate gaussian for which one can show
that the entropy is also, to within an additive constant,

=‘fdf log P(f) (16)

which is coming to be called the "Burg entropy" although they are sub-
stantially the same thing, only expressed in different variables. One
could say equally well that he is maximizing (16). By a curious algebraic
twist, the power spectrum estimate obtained as an expectation over (15)
turns to have the form

-1
= [z cos 2mkf) . (17)

Burg used a computation algorithm given in the 1940's by N. Levinson to
find the Lagrange multipliers Ag in (15), (17) that agree with the data.

The resulting computer printouts were a revelation. The maximum-
entropy spectra were clean and sharp; spurious artifacts like sidelobes
were eliminated, but at the same time the resolution was greatly increased
rather than sacrificed. No linear processing of the data could have
produced such results.

The field then grew rapidly; to cite a few of the key references,
the thorough mathematical analysis in the review article of Smylie, Clarke,
and Ulrych (1973) and in the thesis of John Parker Burg (1975) are still
required reading. By 1978 the literature had grown to the point where
the IEEE issued a special volume of reprints on PME spectrum analysis
(Childers, 1978) and Haykin (1979) edited another volume. Currie (1981)
demonstrated its application to detection of small geophysical/meteoro-
logical effects. Haykin (1982) is a Special Issue of the IEEE Proceedings
devoted to spectrum analysis, with numerous articles on the theory and
practice of PME methods. Many more are in the Proceedings of the Laramie
and Calgary Workshops on Bayesian/Maximum Entropy methods (Smith and
Grandy, 1985; Justice, 1985).

IMAGE RECONSTRUCTION

The writer does not know exactly when the first attempt to use PME
in image reconstruction occurred. Early discussions by Frieden et al.
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(1972) and Ables (1974) gave some theory and computer simulations. Perhaps
the major landmark is the article of Gull and Daniell (1978), which has
real results supported by a very clear, simple rationale. Image reconstruc-
tion was seen as another generalized inverse problem based on (5) as follows.
Since anything we can actually compute is digitized, we break the true
scene into n picture elements, or “pixels" and imagine that scene generated
by distributing N small "quanta" of intensity, the i'th pixel receiving Nj
of them. Let xj=Nj/N be the fraction in the i'th pixel, and denote the
resulting scene by X=1{x;,X,, ... Xp}. It has an entropy S(X) given by (8).

But we do not know these numbers; we have available only a blurred
scene consisting of m<n pixels, with intensities dg given by (5) in which
the matrix A is the digitized point-spread function that describes the
imperfections of our telescope (we are still not far, in either topic or
basic rationale, from Laplace's problem of the mass of Saturn). Given the
data D={d;, ... dp} of the blurred image, the reconstructed estimate of
the true scene X that can be realized in the greatest number of ways is
the one that maximizes the entropy S(X) subject to the constraints (5).
This is a pure generalized inverse problem; the 1ikelihood L(X) is constant
on the set of possible scenes consistent with (5), zero elsewhere.

Gull and Daniell gave the resulting computer printouts for some real
problems in radio and x-ray astronomy. They were just as impressive as
were those of Burg's spectrum analysis. Again, the spurious artifacts of
previous linear data analysis methods disappeared, while the resolution
and dynamic range improved. This beautifully concise article is also
required reading; it can be read and comprehended fully in an hour,

Frieden (1980) gave an equally impressive reconstruction of a galaxy
so distant that the original optical photograph appears to the eye as a
featureless blob; yet the maximum entropy reconstruction reveals five
clearly resolved spiral arms. Having seen this reconstruction, one can
go back and look at the original blurred image and see that there was,
indeed, evidence for those arms in the data. The variational principle
that generates it ensures that the maximum entropy reconstruction cannot
show any detail for which there is no evidence in the data that were used
as constraints.

In image reconstruction, maximum entropy is doing something much like
what a skilled x-ray diagnostician learns to do. Knowing just what to
look for, he can perceive details in a blurred picture that are quite
invisible to the untrained eye. But at present most maximum entropy
algorithms are doing this without being told in advance what to look for.
If we can put the kind of prior knowledge that the x-ray diagnostician
is using, into the underlying "hypothesis space" on which our entropy
is defined, maximum entropy reconstructions will become still better.

Two examples, for astronomical scenes about which we already know some
features in advance, are given by Horne (1982) and Skilling (1983); we
do not yet know how to do this in general.

Again the method spread rapidly to other applications. Gull and
Skilling (1984) give many more examples, including reconstruction of a
blurred image of an auto license plate for the London Police (whom we
understand now have their own in-house maximum entropy facilities, with
program supplied by Gull and Skilling).

NOISY DATA

A new feature forced itself upon us in these practical implementations
of PME. ~The "pure PME formalism" illustrated in Eas. (7)-(9) above has -



19
assumed that data used as constraints are noiseless. With noisy data,
pure PME or any other method must inevitably start showing spurious detail
which is only an artifact of the noise, but which is fundamentally impos-
sible to remove entirely (since the information needed to distinguish
signal from noise is not there). But one can remove most of this by
making allowance for noise in the same way that Laplace did; by using the
full Bayes' theorem (3) for inference, in which we take the prior proba-
bility proportional to the multiplicity factor W in (6). The prior proba-
bility of a scene X becomes proportional to exp[NS(X)]. Then the scene
with the highest posterior probability is the one that maximizes not S(X)
but

NS(X) + log L(X) (18)

where L(X) is its likelihood, no longer rectangular, in the 1ight of the
probable errors in the data. If the blurred image data (5) have independent
gaussian errors of RMS value h, then

L(X) = exP{’%;(dk"mk)z/th} (19)

where {mg} are the "mock data", RHS of (5), that we would have obtained
if X were the true scene but the noise were absent.

Maximizing (18) replaces the "hard" constraints of pure PME with
soft" constraints determined by the shape of the likelihood function.
The reconstruction moves up a little higher on the entropy hill, giving
us a slightly smoother picture. In effect, fine details in the data below
the noise level, that we would have to accept as real if we knew there was
no noise, are reinterpreted as more likely due to noise and ignored. A
higher noise level makes softer constraints and a reconstruction showing
less detail. Strongly represented features are those for which the
details in the data rise above the noise and give strong evidence for a
real thing; just Laplace's original significance test, now applied to
every pixel.

The question of the proper choice of N has given rise to a great deal
of discussion, into which we cannot go here. Some of this--and a great
deal more--will appear in Justice (1985).

OTHER APPLICATIONS

After the success of the one-dimensional PME spectrum analysis and
two-dimensional image reconstructions, one was encouraged to try recon-
structing three-dimensional objects from incomplete data. Medical
tomography (Minerbo, 1979) seems to be the first example. But the
classical three-dimensional generalized inverse problem, crystallographic
structure analysis from x-ray scattering data, had been calling out for
such a method for decades.

Here the data are notoriously incomplete, consisting of magnitudes,
but not phases, of only a few of the Fourier coefficients of the electron
density function d(x). The analogy to Burg's original problem is clear;
one must extrapolate the data to higher wavenumbers. But it is more
complicated because one must also estimate phases; this is discussed in
some detail by Bricogne (1982,1984) and Wilkins et al. (1983,1984). The
Proceedings of the recent Orsay workshop (Bricogne, 1985) will have many
more articles on it, including one by Skilling on the computation problem.



A PME structure analysis of biological macromolecules is given by
Bryan et al. (1983). It appears that this is to become one of the major
areas of application in view of the number of biological structures in
need of analysis, and the resulting large efforts going into it at several
places.

It seems that every success of PME in one area points to a new
application in a related area. Sibisi et al. (1983,1984) apply it to
estimation of line frequency and decay rate from free decay NMR signals,
Livesey et al. (1984) to analysis of EXAFS data, Gburski et al. (1984)
to inferring Tine shapes from a few calculated moments. Mead and
Papanicolaou (1984) show that it has advantages over previous methods for
estimating mathematical functions from incomplete information, such as the
first few terms of a series expansion. Applications in econometrics are
beginning to appear.

CONCLUSION

We have tried to present a general survey, rather than the technical
details, of a line of thought that has been evolving slowly and painfully,
impeded by philosophical differences, for some thirty years. But, as will
be apparent from the above, we are now far beyond the stage of philosophical
debate. Wherever it has been applied in a competent way to computationally
feasible problems, PME has not only succeeded, but led to substantive
improvements over previous methods of inference from incomplete information.
To acknowledge and represent explicitly the incompleteness of our informa-
tion is just what these problems had needed.

We are thus encouraged to renew our efforts in the applications
originally envisaged in irreversible statistical mechanics and, eventually,
to try to see Bohr's and Einstein's views of quantum theory finally unified
as an example of the same kind of reasoning. We have as yet no new results
on explicit experimental numbers but there are many results of a more
general nature (Jaynes, 1978,1980).

It is easy to show that Predictive Statistical Mechanics leads auto-
matically to such known correct results as the Onsager reciprocities, the
Kubo formulas for transport coefficients, the Wiener prediction algorithm,
and in a short-memory approximation, to Fokker-Planck equations. But these
always appear in more generally applicable form; the reciprocities require
no assumptions about short memory or regression of spontaneous fluctuations,
the Kubo formulas are no longer 1imited to the quasi-stationary, long-
wavelength regime, Fokker-Planck equations hold not only in momentum space,
but in any thermodynamic state space, whose coordinates are the macroscopic
quantities of interest.

Einstein's view of fluctuations as providing the "driving force" that
makes an irreversible process go, and Onsager's view of the entropy gradient
in thermodynamic state space as providing the "steering" telling it in
which direction to go, appear automatically, but no longer restricted to
situations close to equilibrium. A generalized "Bubble Dynamics" shows
how a bubble of probability moves up the entropy hill far from equilibrium,
at a velocity proportional to

(mean square fluctuation) x (local entropy gradient)

while constantly readjusting its size and shape to the local curvature of
the entropy function. At a local loss of entropy convexity, the stabilizing
forces are lost and the bubble stretches out leading to a bifurcation or
other instability correspondina to a phase chanae: a time denendent version

29
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of what Gibbs showed in 1873 for static conditions. The various
"catastrophes" of Rene Thom appear as consequences of different kinds of
local loss of entropy convexity.

Indeed, such results have been appearing in such quantity that we
have fallen far behind in getting them written up for publication. But
with the new applications outside thermodynamics off to a good start,
we can now return to the original goal, with strenuous efforts to correct
this.
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