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Treatment of the predictive aspect of statistical mechanics as
a form of statistical inference is extended to the density-matrix
formalism and applied to a discussion of the relation between
irreversibility and information loss. A principle of “statistical
complementarity” is pointed out, according to which the empiri-
cally verifiable probabilities of statistical mechanics necessarily
correspond to incomplete predictions. A preliminary discussien is
given of the second law of thermodynamics and of a certain class
of irreversible processes, in an approximation equivalent to that
of the semiclassical theory of radiation.

It is shown that a density matrix does not in general contain

all the information about a system that is relevant for predicting
its behavior. In the case of a system perturbed by random fluctu-
ating fields, the density matrix cannot satisfy any differential
equation because §(¢) does not depend only on p(f), but also on
past conditions The rigorous theory involves stochastic equations
in the type p(1) =G (#,000(0), where the operator § is a functional
of conditions during the entire interval (0—f). Therefore a general
theory of irreversible processes cannot be based on differential
rate equations corresponding to time-proportional transition
probabilities. However, such equations often represent useful
approximations.

INTRODUCTION

N a previous paper! the prediction of equilibrium
thermodynamic properties was developed as a form
of statistical inference, based on the Shannon® concept
of entropy as an information measure, and the sub-
jective interpretation of probabilities. The guiding prin-
cipleis that the probability distribution over microscopic
states which has maximum entropy subject to whatever
is known, provides the most unbiased representation of
our knowledge of the state of the system. The maxi-
mum-entropy distribution is the broadest one com-
patible with the given information; it assigns positive
weight to every possibility that is not ruled out by
the initial data.

This method of inference is extended in the following
sections (numbered consecutively from those of I), to
the density-matrix formalism, which makes possible the
treatment of time-dependent phenomena. It is then
applied to a discussion of the relation of information
loss and irreversibility, and to a treatment of relaxation
processes in an approximation equivalent to that of
the semiclassical theory of radiation. The more rigorous
treatment, corresponding to quantum electrodynamics,
will be taken up in a later paper.

Our picture of a prediction process is as follows. At
the initial time =0 certain measurements are made.
In practice, these will always represent far less than
the maximum observation which would enable us to
determine a definite pure state. Therefore, we must
have recourse to maximume-entropy inference in order
to represent our degree of knowledge about the system
in a way free of arbitrary assumptions with regard to
missing information.® As time goes on, each state of

1E. T. Jaynes, Phys. Rev. 106, 620 (1957). Hereinafter referred
toas .

2. E. Shannon, Bell System Tech. J. 27, 379, 623 (1948).
These papers are reprinted in C. E. Shannon and W. Weaver,
The Mathematical Theory of Communication (University of Illinois
Press, Urbana, 1949).

3 A very interesting quotation from J. W. Gibbs [Collected
Works (Longmans, Green and Company, New York, 1928), Vol.
II, p. 1807 suggests the same basic idea. In discussing the inter-

the maximum-entropy distribution changes due to
perturbations that are in general unknown; thus it
“spreads out’ into several possibilities, and our initial
knowledge as to the state of the system is gradually
lost. In the ‘“‘semiclassical” approximation considered
here, the final state of affairs is usually one in which the
initial information is completely lost, the density matrix
relaxing into a multiple of the unit matrix. The pre-
diction of thermal equilibrium, in which the limiting
form of the density matrix is that of the Boltzmann
distribution with finite temperature, is found only by
using a better approximation which takes into account
the quantum nature of the surroundings.

It is of the greatest importance to recognize that in
all of this semiclassical theory it is possible to maintain
the view that the system is at all times in some definite
but unknown pure state, which changes because of
definite but unknown external forces; the probabilities
represent only our ignorance as to the true state. With
such an interpretation the expression “irreversible
process’ represents a semantic confusion; it is not the
physical process that is irreversible, but rather our
ability to follow it. The second law of thermodynamics
then becomes merely the statement that although our
information as to the state of a system may be lost in a
variety of ways, the only way in which it can be gained
is by carrying out further measurements. Essential for
this is the fact, analogous to Liouville’s theorem, that
in semiclassical approximation the laws of physics do
not provide any tendency for systems initially in
different states to “accumulate’” in certain final states
in preference to others; ie. the time-development
matrix is unitary.

In opposition to the foregoing views, one may assert

action of a body and a heat-bath, he says “The series of phases
through which the whole system runs in the course of time may
not be entirely determined by the energy, but may depend on
the initial phase in other respects. In such cases the ensemble
obtained by the microcanonical distribution of the whole system,
which includes all possible time-ensembles combined in the
proportion which seems least arbitrary, will better represent
than any one time-ensemble the effect of the bath.”

171



172

that irreversibility is not merely a loss of human
information; it is an experimental fact, well recognized
long before the development of statistical mechanics.
Furthermore, the relaxation times calculated below are
not merely measures of the rate at which we lose
information ; they are experimentally measurable quan-
tities expressing the rate at which physical systems
approach equilibrium. Therefore, the probabilities in-
volved in our calculations must be ascribed some
objective meaning independent of human knowledge.

Objections of this type have already been answered
in large part in I, particularly Sec. 4. However, we wish
to indicate briefly how those arguments apply to the
case of time-dependent phenomena. The essential fact
is again the “principle of macroscopic uniformity.” In
the first place, it has been shown that the only quantities
for which maximum-entropy inference makes definite
predictions are those for which we obtain sharp proba-
bility distributions. Since maximum-entropy inference
uses the broadest distribution compatible with the
initial data, the predictable properties must be char-
acteristic of the great majority of those states to which
appreciable weight is assigned. Maximum-entropy in-
ference can never lead us astray, for any quantity
which it is incapable of predicting will betray that fact
by yielding a broad prohability distribution.

We can, however, say much more than this. We take
it as self-evident that the features of Irreversible
processes which are experimentally reproducible are
precisely those characteristic of most of the states
compatible with the conditions of the experiment.
Suppose that maximum-entropy inference based on
knowledge of the experimentally imposed conditions
makes a definite prediction of some phenomenon, and
it is found experimentally that no such phenomenon
exists, ‘Then the predicted property is characteristic of
most of the states appearing in the subjective maximum-
entropy distribution, but it is not characteristic of most
of the states physically allowed by the experimental
conditions. Consider, on the other hand, the possibility
that a phenomenon might be found which is experi-
mentally reproducible but »of predictable by maximum-
entropy inference. This phenomenon must be character-
istic of most of the states allowed by the experimental
conditions, but it Is not characteristic of most of the
states in the maximum-entropy distribution. In either
case, there must exist new physical states, or new con-
sirainis on the physically accessible states, not con-
tained in the presently known laws of physics.

In summary, we assert that if if can be shown that the
class of phenomena predictable by maximum-entropy in-
ference differs in any way from the class of experimentally
reproducible phenomena, that fact would demonsiraie ihe
existence of new laws of physics, not presently known.
Assuming that this occurs, and the new laws of physics
are eventually worked out, then maximum-entropy in-
ference based on the new laws will again have this

property.
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From this we see that adoption of subjective proba-
bilities in no way weakens the theory in its ability to
give reliable and useful results. On the contrary, the
full power of statistical mechanics cannot be seen
until one makes this distinction between its subjective
and objective aspects. Once this is done, its mathe-
matical rules become a methodology for a very general
type of scientific reasoning.

7. REPRESENTATION OF A QUANTUM-
MECHANICAL SYSTEM

We now develop a method of representing any state
of knowledge of a quantum-mechanical system, leaving
aside for the moment any consideration of how this
knowledge might have been obtained. Suppose that on
the basis of the information available we conclude that
the system may be in the “pure state” y; with proba-
bility wy, or it may be in the state ¥, with probability
wg, etc. The various alternative possibilities ¢; are not
necessarily mutually orthogonal, but each may be
expanded in terms of a complete orthonormal set of
functions u:

W= 21 Ui, (7.1

This state of knowledge may be visualized in a geo-
metrical fashion by considering a complex function
space, whose dimensionality may be finite or infinite,
in which the state ¢, is represented by a point P, with
coordinates aw;, £=1, 2, - --. At P;, place a weight w,;
thus the state of knowledge is described by a set (which
may be discrete or continuous) of weighted points;
such a set will be called an erray. Since each of the
possible wave functions is normalized to unity,

Wis) = f iltdr=1,

we have
>oklaw]?=1, (7.2)

and all points P; are at unit “distance” from the origin,
on the surface of the unit hypersphere.

If each of the possible states y; satisfies the same
Schrédinger equation,

ity =Hy,

then as time goes on the function space as a whole is
subjected to a unitary transformation, so that all
“distances” and scalar products

e L

remain invariant, and the entire motion of the array
may be visualized as a “‘rigid rotation” of the hyper-
sphere. An array with this behavior will be called
stmple. A simple array is conceptually somewhat like a
microcanonical ensemble; it consists of points lying on
a closed surface which are subjected, in consequence of
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the equations of motion, to a measure-preserving
transformation which continually unfolds as / increases.

The transformation with time may be of a different
type; much more interesting is the case where the
initial information is of the form: ‘““The system may be
in state y; with probability w;, and in this case the
Hamiltonian will be H,.” Then different parts of the
array are subjected to different rotations, and separa-
tions or interpenetrations occur. Such an array will be
called compound. It arises, for example, when we have
a system consisting of two coupled spins in a strong
magnetic field, and we wish to describe our knowledge
of the state of one of them.

Consider a measurable quantity represented by a
Hermitian operator F; in state ; its expectation value is

<F>1= (\I/i:F‘//i) :an akiani*Fnky (73)

where Foz= (u,,Fu;) are the matrix elements of I in
the u;, representation. The average of (7.3) over the
array is

(Fy=2swdF)i=Tr{pF), (7.4)

(7.5)
is the density matrix. The probability p(f) that a
measurement of F will yield the particular eigenvalue f,
is also expressible as an expectation value; define the
projection operator O by O¢= ()¢, where ¢ is the
corresponding normalized eigenfunction of F: Fe= fo.
Then

where
Pin= 2 i Wilkitni* = (r02™)

p(f)=(0)="Tr(p0). (7.6)

From (7.5) it is seen that in general an infinite
number of different arrays, representing different mix-
tures of pure states, all lead to the same density matrix.
The most general discrete array which leads to a given
density matrix p corresponds to the most general
matrix 4 (not necessarily square) for which

p=AA, (7.7)

the dagger denoting the Hermitian conjugate. An array
is uniquely determined by 4, for from (7.2) and (7.5)
we have

ZklAkiP:wi-

To find another array with the same density matrix,
insert a matrix U:

1
A= QrsE,

p= (AU)(UT4T).

This has the form BBY with B=AU if and only if U
is unitary; thus the group of transformations from one
array of n states to another of » states is isomorphic
with the group of unitary transformations in # dimen-
sions. These are not, however, transformations of the
wave functions ¥, but of the probability-normalized
wave functions

N PEVETER (7.8)
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If we carry out the unitary transformation

®;=2 Uy, (7.9)
and write

D= ¢ipt,

where ¢; is normalized to unity, then the array in
which state ¢; has probability p; leads to the same
density matrix as the original array {;w,}. Evidently
an array is determined uniquely by specifying a set
{¥,} of probability-normalized states.

From an array {\W,} of n states we can construct new
arrays of (n+1) states. Define ¥,;1=0; then new
transformations of the form (7.9) are possible, in which
U is a unitary matrix of dimensionality (»+1). These
generate an infinite number of new arrays for which,
in general, all (n+1) states ®; are different from each
other and from zero. The inverse process of confracting
an array to one of fewer states is possible if any linear
combination of the Y vanishes.

An array of = states will be called minimal with
respect to its density matrix p if no array exists which
leads to p with fewer than # states. The states of an
array are linearly independent if and only if the array
is minimal.

In general, a given density matrix can be represented
in only one way as a mixture of orthogonal states.
Since p is Hermitian, there always exists a unitary
matrix U/ which diagonalizes it;

d=UpU™, (7.10)

with dmn=dnbmn. 1f the eigenvalues d,, of p are non-
degenerate, only one such matrix U exists. The basis
functions of the new representation in which p Is
diagonal,

'Z)mzzk M}cbrk,,fl, (711)

are the orthogonal states which, when mixed with
probabilities d,,, lead to the given density matrix.

Suppose we have a density matrix p and a state ¢
which is considered a ‘“candidate” for inclusion in a
minimal array which will lead to p. What is the proba-
bility p4(¢) which should be assigned to ¢ m such an
array? To answer this, we first construct the orthogonal
array {vm,dn}, and expand

=2 m UmCom.

If this is to be equivalent to one of the columns of
(7.9), it is necessary that

ey (7.12)

This is uniquely determined by the density matrix and
the state ¢, regardless of which other states ¢; might
also appear in the array. The array probability pa is
in general different from the measurement probability
(7.6), which is equal to

pM(‘P):Zm dm|lez (713)
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It 1s readily shown that pu 2 pa, with equality if and
only if ¢ is an eigenstate of p.

The representation in terms of orthogonal states is
important in connection with the entropy which meas-
ures our knowledge of the system. It might be thought
that for an array {{,w;} we could define an entropy by

Sa=—2_;w; Inw;. (7.14)

This, however, would not be satisfactory because the
w; are not in general the probabilities of mutually
exclusive events. According to quantum mechanics, if
the state is known to be y;, then the probability of
finding it upon measurement to be ¢;, is | (Y, ¥:) |2
Thus, the probabilities w, refer to independent, mutu-
ally exclusive events only when the states ., of the
array are orthogonal to each other, and only in this
case is the expression (7.14) for entropy satisfactory.
This array of orthogonal states has another important
property; consider the totality of all possible arrays
which lead to a given density matrix, and the corre-
sponding expressions (7.14). The array for which (7.14)
attains its minimum value is the orthogonal one, which
therefore provides, in the sense of information content,
the most economical description of the freedom of
choice implied by a density matrix (Appendix A).

For the orthogonal array, the w; in (7.14) are
identical with the eigenvalues d; of the density matrix,
so for numerical calculation of entropy given p, one
would find the eigenvalues and use the formula

S:‘*Zidi lndi. (715)
In general discussions it is convenient to express this
S=—Tr(p Inp). (7.16)

Since this could also be written as S=—{Inp), it is
the natural extension to quantum mechanics of the
Gibbs definition of entropy.

Equation (7.16) assigns zero entropy to any pure
state, whether stationary or not. It has been criticized
on the grounds that according to the Schrédinger
equation of motion it would be constant in time, and
thus one could not account for the second law of
thermodynamics; this has led some authors*® to propose
instead the expression

S= =2k pix o, (7.17)

which involves only diagonal elements of p in the
energy representation, for which a “quantum-mechan-
ical spreading” phenomenon can be demonstrated. It
will be shown in detail below how the objections to
(7.16) may be answered. With regard to (7.17), we
note that it does not assign the same entropy to all
pure states; but von Neumann® has shown that any

+R. C. Tolman, The Principles of Statistical Mechanies (Claren-
don Press, Oxford, 1938).

8 D. ter Haar, Elements of Staiistical Mechanics (Rinehart and
Company, Inc., New York, 1954).

¢ J. von Neumann, JMathematische Grundlagen der Quanien-
mechanik (Dover Publications, New York, 1943), Chap. V.
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pure state may be converted reversibly and adiabati-
cally into any other pure state.

Since, according to (7.4), knowledge of p enables one
to calculate the expectation value of any Hermitian
operator, it is tempting to conclude that the density
matrix contains all of our information as to the objective
state of the system. Thus, although many different
arrays would all lead to the same density matrix, the
differences between them would be considered physi-
cally meaningless, only their second moments (7.5)
corresponding to any physical predictions. The concept
of any array as something separate and distinct from a
density matrix might then appear superfluous. That
this is not the case, however, will be seen in Sec. 13
below, where it is shown that the resolution of a
compound array into independent simple arrays may
represent useful information which cannot be expressed
in terms of the resultant density matrix.

8. SUFFICIENCY AND COMPLETENESS OF
THE DENSITY MATRIX

If a density matrix provides a definite probability
assignment for each possible outcome of a certain
experiment, in a way that makes full use of all of the
available relevant information, we shall say that p is
sufficient for that experiment. A density matrix that is
sufficient for all conceivable experiments on a system
will be called complete for that system. Strictly speaking,
we should always describe a density matrix as sufficient
or complete relative to certain initial information.

The assertion that complete density matrices exist
involves several assumptions, in particular that all
measurable quantities may be represented by Hermitian
operators, and that all experimental measurements may
be expressed in terms of expectation values. We do not
wish to go into these questions, but only to note the
following. Even if it be granted that it is always possible
in principle to operate with a complete density matrix,
it would often be extremely awkward and inconvenient
to do so in practice, because it would require us to
consider the density matrix and dynamical quantities
as operators in a much larger function space than we
wish to use.

To see this by a simple example, consider a “molecular
beam” experiment in which particles of spin 4 are
prepared by apparatus 4, then sent into a detection
system B which determines whether the spin is up or
down with respect to some chosen z axis. Assume, for
simplicity, that only one particle at a time is processed
in this way. A particle thus has, for our purposes, two
possible states 2, and #_; our knowledge of the nature
of the apparatus 4 could be incorporated into an array
and its corresponding (2X2) density matrix, from
which we can calculate the probability of finding the
spin aligned in any particular direction. Thus, the
(2X2) density matrix adequately represents our state
of knowledge as to the outcome of any spin measure-
ment made on a single particle; i.e., it is a sufficient
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statistic for any such measurement. The question is,
does it also adequately represent our knowledge of the
ensemble of particles (assuming that the apparatus 4 is
“stationary,” so that each particle, considered by itself,
would be represented by the same density matrix).
More specifically, is it possible for apparatus A to
produce a physical sttuation which can be measured in
our detection apparatus, but for which the {2X2)
density matrix gives no probability assignment? One
such property is easily found; the detecting apparatus
tells us not only the fraction of spins aligned along the
=z axis, but also the order in which spin up and spin
down occurred, so that correlations between spin states
of successive particles can be observed. Now all possible
such correlations can be described only by considering
the entire ensemble of ¥V particles as a single quantum-
mechanical system with 2% possible states, and therefore
a density matrix which is a sufficient statistic for all
conceivable measurements on the spin system must
have 2¥ rows and columns.” This, however, would
completely destroy the simplicity of the theory, and
in practice we would probably prefer to retain the
original (2X2) density matrix for predicting the results
of measurements on single particles, while recognizing
its insufficiency for other measurements which the same
apparatus could perform.

9. SUBJECTIVE AND OBJECTIVE
INTERPRETATIONS

The topic of Sec. 8 is closely related to some of the
most fundamental questions in physics. According to
quantumn mechanics, if a system is known to be in state
¥;, then the probability that measurement of the
quantity £ will result in the particular eigenvalue f, is
{0):, where O is the projection operator of Eq. (7.6).
Are we to interpret this probability in the objective or
subjective sense; l.e., are the probability statements of
quantum mechanics expressions of empirically verifiable
laws of physics or merely expressions of our incomplete
ability to predict, whether due to a defect in the theory
or to incomplete initial information? The current
interpretation of quantum mechanics favors the first
view, but it is important to note that the whole content
of the theory depends critically on just what we mean
by “probability.” In calling a probability objective,
we do not mean that it is necessarily “correct,” but
only that a conceivable experiment exists by which its
correctness or incorrectness could be empirically deter-
mined. In calling a probability assignment subjective,
we mean that it is not a physical property of any
system, but only a means of describing our information
about the system; therefore it is meaningless to speak
of verifying it empirically,

Is there any operational meaning to the statement

"This is a verv conservative statement. It would be more
realistic to assume that all the coordinates of apparatus 4 must
also be included in the space upon which this complete density
matrix operates.
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that the probabilities of quantum mechanics are objec-
tive? If so, we should be able to devise an experiment
which will measure these probabilities, for example the
probability that a measurement of the quantity F will
give the result f. In order to do this, we will need to
repeat a measurement of F an indefinitely large number
N of times, with systems that have all been prepared
in exactly the same way, and record the fraction of
cases in which the particular result f was obtained.
Which density matrix should we use to predict the result
of this experiment? In principle, we should always use
the one which contains the greatest amount of infor-
mation about the ensemble of N systems; i.e., which is
complete. The apparatus which prepares them may be
producing correlations; thus the ensemble of NV systems
should be considered as a single large quantum-
mechanical system. The probabiiity statements which
come from the theory are then of the form, “the
probability that system 1 will yield the result f;, and
system 2 will yield the value fs, -+, is p(f1--- fw).”
But then measurement of F in each of the N small
systems is not N repetitions of an experiment; it is
only a single experiment from the standpoint of the
total system. Clearly, no probability assignment can
be verified by a single measurement. Note that the
question whether correlations were in fact present
between different systems is irrelevant to the question
of principle involved; even if the distribution factors

plfi ) =p(fp(fo) - pn(fv)  (9.1)

it remains a joint distribution, not one for a single
system. We can, of course, alwavs obtain the single-
system probabilities by summation:

nlf)=2."" }Z, pffe - T v),

2

(9.2)

but p1(f1) now refers specifically to system 1, and the
results of measurements on the other systems are
irrelevant to the question whether p1(f1) was verified.
We cannot avoid the difficulty by repeating all this M
times, because for that experiment the complete density
matrix would refer to all VM systems, and we would be
in exactly the same situation. Thus, the probability
statements obtained from a complete density matrix
cannot be verified.

In practice, of course, one will never hother with
such considerations, but will find a density matrix
which operates only on the space of a single system and
Incorporates as much information as possible subject
to that limitation. The probability p(f) computed from
this density matrix is presumably equal to p.(f) in
(9.2). If the result fis obtained approximately Np(f)
times, one says that the predictions have been verified,
and p(f) is correct in an objective sense. This result is
obtained, however, only by renouncing the possibility
of predicting any mutual properties of different systems,
and the record of the experiment contains some infor-
mation about those mutual properties.
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Thus, we enunciate as a general principle: Empirical
verifiability of a probability assignment, and completeness
of the density malrix from which the probabilities were
obtained, are tncompatible conditions. Whenever we use
a density matrix whose probabilities are verifiable by
certain measurements, we necessarily renounce the
possibility of predicting the results of other measure-
ments which can he made on the same apparatus.

This principle of “statistical complementarity” is not
restricted to quantum mechanics, but holds in any
application of probability theory; in a very funda-
mental sense no experiment can ever be repeated, and
the most comprehensive probability assignments are
necessarily incapable of verification.

If an operational viewpoint™¥ is to be upheld con-
sistently, it appears that the probabilities computed
from a complete density matrix must be interpreted in
the subjective sense. Since this complete density matrix
might be a projection operator corresponding to a pure
state, one is led very close to the views of Einstein!!
and Bohm'" as to the Interpretation of quantum
mechanics.

Entirely different considerations suggest the same
conclusion. A density matrix represents a fusion of two
different statistical aspects; those inherent in a pure
state and those representing our uncertainty as to
which pure state is present. If the former probabilities
are interpreted in the objective sense, while the latter
are clearly subjective, we have a very puzzling situation.
Many different arrays, representing different combi-
nations of subjective and objective aspects, all lead to
the same density matrix, and thus to the same predic-
tions. However, if the statement, “‘only certain specific
aspects of the probabilities are objective,” is to have
any operational meaning, we must demand that some
experiment be produced which will distinguish between
these arrays.

10. MAXIMUM-ENTROPY INFERENCE

The methods of maximum-entropy inference de-
scribed in I may be generalized immediately to the
density-matrix forimalism. Suppose we are given the
expectation values of the operators Fy---I,; then the
density matrix which represents the most unbiased
picture of the state of the system on the basis of this
much information is the one which maximizes the
entropy subject to these constraints. As before, this is
accomplished by finding the density matrix which

8P, W, Bridgman, The Logic of Iedern Plysics (The Mac-
Millan Company, New York, 1927).

*P.A. M. Dirac, T'e Princi/:les of Quanéum Mechanics (Claren-
don Press, Oxford, 1935), second edition, Chap. L

% Jfans Reichenbach, Philosoplic Foundations of Quantum
A echanics (University of California Press, Berkeley, 1940).

W Albert Einstein Philosopher-Scientist, edited by P. A. Schilpp
(Library of Living Philosophers, Inc., Evanston, 1949), pp.
665-684.

12 1), Bohm, Phys. Rev. 85, 166, 180 (1952); 89, 458 (1933).
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unconditionally maximizes
S—=MFiy= - =Nl P, (10.1)

in which the A; are Lagrangian multipliers. The result
may be described in terms of the partition function

Z(N Xy =TTrlexp(—MF1— - =\, F,) ], (10.2)
with the A, determined by
a
(Fpy=—— InZ. (10.3)
dAx
The maximum-entropy density matrix is then
p=expl — Aol —AFy— - =N, F ] (10.4)
which is correctly normalized (Trp=1} by setting
Ae=InZ, (10.5)
and the corresponding entropy becomes
S=XoHAlF )+ Aa(F ). (10.6)
Use of (10.5) and (10.6) enables us to solve (10.3) for
the Ax:
Ap=S/0(F). (10.7)

If the operator Iy contains parameters o;, we find as
before that the maximum-entropy estimates of the
derivatives are given by

alf A>
da;
For an infinitesimal change in the problem, \j is the

integrating factor for the kth analog of infinitesimal
heat;

—— —nZ.
Ar Oo;

(10.8)

BS:Zk }\kéQ}U (109)
with

0L =0(F ) — (5F). (10.10)

All of these relations except (10.2) and (10.4) are
formally identical with those found in I, the £, now
being interpreted as matrices instead of functions of a
discrete variable .

The definitions of heat bath and thermometer given
in I remain applicable, and the discussion of experi-
mental measurement of temperature proceeds as before
with the difference that maximization of entropy of the
combined system now automatically takes care of the
question of phase relations. We have two systems oy
and ¢, with complete orthonormal basis functions
1, (1), v:(2), respectively. A state ¥; of the combined
system o=¢1X o3 is then some linear combination

L2y =3 wa(D)ex(2)anrs.

M

If y; occurs with probability w;, the density matrix is

(nk|p|n'k') =2 wiltnki@n i = (@ar@np™).
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An operator §(1,2) has matrix elements
(k| G|k = f f (D0 (2) 61,2t (e (2)dradra

and its expectation value is

(G)=Tr(pG)= 2, (nk

nn'kk’

pl' Y (W' E'| Gl uk).

An operator F; which operates only on the coordinates
of system 1 is represented in the space of the combined
system by a direct product matrix,® §;=F1X1, with
matrix elements

(nkl %l ’ W,k/) = ("' Fy ’ %I)ﬁkw.

Similarly, for an operator F» of system 2, we obtain
%2: 1><F2, B.Ild

(nk| Fa|n'k) =6, (k| F2| k).

Consider, as before, the system of interest o;, and a
thermometer oj. Let their Hamiltonians be Hi, Ho,
respectively. In the function space of the combined
system o, these Hamiltonians are represented by

S=IX1, $y=1XH,. (10.11)

The available information now consists of a given
(measured) value of (Hy), and the knowledge that
energy may be transferred between o1 and o2 in such a
way that the total amount is conserved. In practice
we never have detailed knowledge of the weak-inter-
action Hamiltonian $1s of a type that would tell us
which transitions may in fact take place and which
will not. Therefore we have no rational basis for
excluding the possibility of any transition between
states of ¢ with a given total energy, and the most
unbiased representation of our state of knowledge must
treat all such states as equivalent, in their dependence
on energy. Any other procedure would amount to
arbitrarily favoring some states at the expense of others,
in a way not warranted by any of the available infor-
mation. Therefore only the total energy may appear in
our density matrix, and we have to find that matrix
which maximizes

S=MD1+ D0,
subject to the observed value of (Hs. The matrix

involved in (10.2) and (10.4) now factors into a direct
product:

(10.12)

exp[ —A(Dr+D2) = (¢ X (), (10.13)
so that the partition function reduces to
ZIN=Z,(N)Z(N), (10.14)
with
Zi(\)="Trexp(--AH ), (10.15)

Zs(M)=Trexp(—AH,).

3P, R. Halnos, Finile Dimensional Vector Spaces (Princeton
University Press, Princeton, 1948), Appendix I1.
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Similarly, the density matrix (10.4) is the direct product

exp(—AH ) exp(—MNH>)
A M
Zi(\) Za(N)

} =pXpy. (10.16)

Because of the absence of correlations between the two
systems, it is true once again that the function of the
thermometer is merely to tell us the value of the
parameter A in p1, and the properties of the thermometer
need not be considered in detail when incorporating
temperature measurements into our theory.

An important feature of this theory is that measure-
ment of averages of several noncommuting quantities
may be treated simultaneously without interference.
Consider, for example, three interacting systems o=a;
X ayX o3, where o, is the system of interest, and o2 is a
thermometer. Some physical quantity £, represented
in the space of oy by the operator Iy, and in a3 by Iy,
can be transferred between o1 and o3 in such a way that
the total amount is conserved. F, could stand for
angular momentum, volume, etc., and need not com-
mute with H;. In addition suppose that a quantity
(Gy) 1s measured directly in o1, where G does not
necessarily commute with either Hy or I's. Now the
available information consists of the measured values
of (G1), {H3), and (F3), plus the conservation laws of F
and H. The various operators are now represented in
the space o by direct product matrices as follows:

Di=HX1X1, §i=FX1X]1,
De=1XH,X1, Fz=1X1XF;
©y=GiX1X1,

and the density matrix that provides the most unbiased

picture of the state of the total system is the one that
maximizes

S—MO1H Do) —pu(Frt+ G —»(Gy).  (10.17)
We now find the factorization property
exp[ —A (D1 Do) = (Gt Fa) — v ]
= [ M FrrGU N (e M e rfs] (10.18)

so that once again the partition function and density
matrix factor into independent parts for the three
systems:

Z()\,M,V) = ZIO\)#:V)ZZO\>Z3<#):

and the pieces of information obtained from o9, o3 are
transferred into p; without interference.

p=p1Xp2Xp3,

11. INFORMATION LOSS AND IRREVERSIBILITY

In classical statistical mechanics the appearance of
irreversibility can always be traced either to the
replacement of a fine-grained probability distribution
by a coarse-grained one, or to a projection of a joint
probability distribution of two systems onto the sub-
space of one of them. Both processes amount to a loss,
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whether voluntary or not, of some of the information
which is in principle available. The former is often
justified by the very persuasive argument that the
mathematics would otherwise be too complicated. But
mathematical difficulties, however great, have no
bearing on matters of principle, and this way of looking
at it causes one to lose sight of a much more important
positive reason for discarding information. After suffi-
clent “stirring” has occurred, two different fine-grained
distributions will lead to predictions that are macro-
scopically the same, differing only in microscopic
details. Thus, even if we were good enough mathema-
ticians to deal with a fine-grained distribution, its
replacement by a coarse-grained one would still be the
elegant method of treating the prediction of macro-
scopic properties, because in this way one eliminates
irrclevant details at an early stage of the calculation.

In guantum mechanics, as in classical theory, the
increase in entropy characteristic of Irreversibility
always signifies, and is identical with, a loss of infor-
mation. It is important to realize that the tendency of
entropy to increase is not a consequence of the laws of
physics as such, for the motion of points of an array is
a unitary transformation prescribed by the Schrodinger
equation in a manner just as “deterministic’” as is the
motion of phase points in classical theory. An entropy
increase may occur unavoidably, due to our incomplete
knowledge of the forces acting on a system, or it may
be an entirely voluntary act on our part. In the latter
case, an entropy increase is the means by which we
simplify a prediction problem by discarding parts of
the available information which are irrelevant, or nearly
so, for the particular predictions desired. It is very
similar to the statistician’s practice of “finding a suffi-
clent statistic.” The price we must pay for this simplifi-
cation is that the possibility of predicting other proper-
ties with the resulting equations is thereby lost.

The natural way of classifying theories of irreversible
processes 1s according to the mechanism by which
information is lost or discarded. In most of the existing
theories we find that this consists of the repetition, at
regular intervals, of one of the following procedures.
Suppose we wish to find the expectation value of the
quantity [7;in the representation in which F is diagonal
it reduces to

<F>:TI(PF):Zn puntnn. (1]1)

Since only the diagonal elements of p contribute, (F)
can be calculated as well by using the density matrix
o', where

(11.2)

pnk/:pnngnk-

The process of replacing p by p’ will be called removing
coherences, and is clearly permissible whenever all the
quantities which we wish to calculate are diagonal
simultaneously. It is readily verified that removal of
coherences represents loss of information: .S(p")>.5(p),
with equality if and only if p=p’.

JAYNES

The second procedure by which information may be
discarded is an invariant operation, exactly analogous
to its classical counterpart. Consider two interacting
systems ¢, and oo. As already noted, an operator Fy
which operates only on the variables of o, is represented
in the space of the combined system s=01Xgs by the
direct product matrix {F;=F;X1. The expectation
value of any such operator reduces to a trace involving
only the space of o;:

(F)=Tr(pF) =Tr(pF), (11.3)

where p; is the “projection” of the complete density
matrix p onto the subspace o1, with matrix elements

(nlpi|n'y =2 u(nk|p|n'k). (11.4)
Similarly, we can project p onto a3, with the result
(k|pa| K) =3 s (nk|p|nk')

and for any operator F'» of system 2 we can define
Se=1XF,, whereupon (Fy)="Tr(pFe)=Tr(psF2).

In the projection onto ¢, the parts of p that are
summed out contain information about the state of
system ¢ and about correlations between possible
states of oy and og, both of which are irrelevant for
predicting the average of /'y,

The operation of removing correlations consists of
replacing p by the direct product p1Xps, with matrix
elements

(nk|prXpe| W'k)= (n|p1|n') (k] p2] &), (11.5)

and the expectation value of any operator composed
additively of terms which operate on ¢; alone or on o
alone, is found as well from (p1Xp2) as from p. The
removal of correlations also involves a loss of informa-
tion; the entropy after removal of correlations is addi-
tive and never less than the original entropy:

S{p1Xp2)=S(py)+S(p2) > S{p),

with equality if and only if p=p1Xps.

These remarks generalize in an obvious way to the
case of any number of subsystems; to remove correla-
tions from a density matrix p operating on the space of
three systems o= 01X a2 X o3, project it onto each of the
oy, and replace p by the direct product of the projections:

(11.6)

p—rp1X peX ps.

If an operator F'y operates only on the space of oy, its
matrix representation in the o space and expectation
value are given by

§=1XFX1, (F=Tr(pF)=Tr(p:F").

Most treatments of irreversible processes in the past
have been based on the removal of coherences in the
energy representation, and the resulting concept of
“occupation numbers’” Ny, proportional to the diagonal
elements py; in this representation. One then introduces

a transition probability per unit time Ay, which usually,
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but not always*!5 conforms to the assumption of
“microscopic reversibility” Ag,=MAnr, and equations of
the form

de/dtzZm()\kmNm—)\mka) (117)

are the starting point of the theory. The existence of
time-proportional transition probabilities is not, how-
ever, a general consequence of quantum mechanics, but
involves assumptions about the type of perturbing
forces responsible for the transitions, and mathematical
approximations which represent a loss of information.
That information is lost somewhere is seen from the fact
the entropy, as calculated from (11.7), is in general an
increasing function of the time, while that obtained from
rigorous integration of a Schrodinger equation is neces-
sarily constant. The nature of the information-discard-
ing process in (11.7), as well as a clear statement of the
type of physical problems to which equations of this
form are applicable, can be appreciated only by starting
from a more fundamental viewpoint.

12. SUBJECTIVE H THEGREM

In the remainder of this paper, we consider a certain
approximation, which might be called the “semi-
classical theory of irreversible processes,” since it is
related to a complete theory in the same way that the
semiclassical theory of radiation® is related to quantum
electrodynamics. The system of interest ¢ is treated as
a quantum-mechanical system, but outside influences
are treated classically, their effect on o being represented
by perturbing terms in the Hamiltonian which are
considered definite if unknown functions of the time.
It is of interest to see which aspects of irreversible
processes are found in this approximation, and which
ones depend essentially on the quantum nature of the
surroundings.

Let the Hamiltonian of the system be

O=H+ V), (12.1)

where H, is stationary and defines the “energy levels”
of the system, and V (¢) represents the perturbing effect
of the environment. Suppose that at time ¢ we are
given information which leads (by maximum-entropy
inference, if needed) to the density matrix p(#'). At
other times, the effect of the Hamiltonian (12.1) is to
carry out a unitary transformation

pO=UW YU L)
=ULpHU (L, (12.2)

where the time-development matrix U(4,l) is deter-
mined from the Schrédinger equation (with #=1)

z';U(t,t’) —H()UWLL), (12.3)
¢

14 J. S, Thomsen, Phys. Rev. 91, 1263 (1953).

18 R.T. Cox, Statistical Mechanics of Frreversible Change (Johns
Hopkins Press, Baitimore, 1955).

W1, I. Schiff, Quanium Mechanics (McGraw-Hill Book Com-
pany, Inc., New York, 1949).
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with U (¢t)=1. The entropy
S(8)=—Trlp(0) Inp () ] (12.4)

is unchanged by a unitary transformation, and therefore
remains constant regardless of the magnitude or time
variations of ¥ (f). Consider, however, the circumstance
that V(#) may not be known with certainty; during
the time interval ({—¢) it may have been the operator
V@ (¢) with probability Py, or it may have been V¥ (¢)
with probability Py, - - -, etc. Then our state of knowl-
edge of the system must be represented by a compound
array, which is a fusion of several simple arrays corre-
sponding to the different V(@ (#), and which are subject
to different rotations. At time {, the density matrix
will be the average of the matrices that would result
from each of the possible interactions:

pO)=2a PUD(ENp(NU@ (Y,  (12.5)

and the transformation p(')—p(¢) is no longer unitary.
We might also have a continuous distribution of
unknown interactions, and therefore an integration
over «, or more generally there might be several
parameters (a1 -a,) in V(£), with probability distri-
bution Pla:- - an)das- - -do,. We will understand the
notation in (12.3) to include such possibilities. Our
uncertainty as to V({) will be reflected in increased
uncertainty, as measured by the entropy, in our
knowledge of the state of system o. It is shown in
Appendix A that, in case « is discrete, there is an upper
limit to this increase, given by the following inequality :

SKSOHSSE) S5 (P, (12.6)
where
S(Py)=~2 o PsInP,. (12.7)

Equation (12.6) has an evident intuitive content;
the entropy of a system 1s a measure of our uncertainty
as to its true state, and by applying an unknown signal
to it, this uncertainty will increase, but not by more
than our uncertainty as to the signal. The maximum
increase in entropy can occur only in the following
rather exceptional circumstances. The totality of all
possible states of the system forms a function space 8.
Suppose that our initial state of knowledge 1s that the
system 1s in a certain subspace & of & If the pertur-
bation Vi« (¢) is applied, this is transformed into some
other subspace

So= U S,

and the maximum increase of entropy can occur
only if the different subspaces $, are disjoint; i.e.,
every state in 8, must be orthogonal to every state
in 8g if a#p. From this we see two reasons why the
increase is usually less than the maximum possible
amount; (a) it may be that even though V®(¢) and
VB (1) are different functions, they nevertheless produce
the same, or nearly the same, net transformation U in
time ({—¢), so that our knowledge of the final state
does not suffer from the uncertainty in the perturbation,
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16, 1. Dllustration of the subjective H theorem.
(a) The array. (b) The resulting entropy curve.

and (b) our initial uncertainty may be so great that no
such disjoint subspaces exist regardless of the nature
of the V) (#}. The extreme case is that of complete
initial ignorance; p(¢') is a multiple of the unit matrix.
Then, no matter what is done to the system we cannot
acquire any additional uncertalnty, and the entropy
does not change at all.

iquation {12.6) corresponds closely to relations that
have heen used to demonsirate the second law of
thermodynamics in the past, and it will be called the
“subjective [ theorem.” The inequalities hold for all
times, positive or negative; given the density matrix at
time /=0, our uncertainty as to the perturbing signal
V{t) affects our knowledge of the past state of the
system just as much as it does the future state. We
cannot conclude from (12.6) that ‘“entropy always
increases.” It may fluctuate up and down In any way
as long as it remains within the prescribed bounds. On
the other hand, 1t is true without exception that the
entropy can at no time be less than its value at the
instant ¢ for which the density matrix was given.

Figure 1 represents an attempt to illustrate several
of the foregoing remarks by picturing the array. The
diagram represents a portion of the surface of the unit
hypersphere upon which all points of the array lie."”
The interior of a circle represents a certain subspace
$:(f) which moves in accordance with the Schrédinger
equation. Separated circles represent disjoint subspaces,
while if two circles overlap, the subspaces have a
certain linear manifold of states in common. The infor-
mation given to us at time ¢=0 locates the system
somewhere in the subspace 8q. The two possible inter-
actions V& (), V(1) would induce rigid rotations of
the hypersphere which would carry $o along two differ-
ent trajectories as shown. The lower part of the diagram
represents the resulting entropy curve S(f). If the
subspaces 8, $» coincide at some time #;, then S(4)

17 The representation is necessarily very crude, since a con-
tinuous 1:1 mapping of a region of high dimensionality onto a
region of lower dimensionality is topologically impossible. Never-
theless such diagrams represent enough of the truth to be very
helpful, and there seems to be little danger of drawing funda-
mentally incorrect conclusions from thesm.
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=5(0). At times when they are completely separated,
we have S(§)=S5(0)+S(P.), and in case of partial
overlapping the entropy assumes intermediate values.

13. INFORMATION GAME

A typical process by which the subjective H theorem
can lead to a continual increase of entropy, and which
illustrates the essential nature of irreversibility, may
be described in terms of a game. We have a sequence of
observers Oy, 0y, O3, ---, who play as follows. At the
beginning of the game they are given the possible
Hamiltonians H,=Ho+ V() and the corresponding
probabilities P,. At time #, observer O; is given a
density matrix pi(t). He computes from (12.5) the
density matrix p;(#) which represents his state of
knowledge at all other times on this basis, and the
corresponding entropy curve S:(¢). He then tells ob-
server O, the value which the density matrix pi(fs)
assumes at time /s, and gives no other information,

Oy now computes a density matrix ps(¢f) which
represents kis state of knowledge at all times, on the
basis of the information given him, and a corresponding
entropy curve Sp(f). He will, of course, have ps(ty)
=p1(lz), but in general there will be no other time at
which these density matrices are equal. The reason for
this is seen in Fig. 2, in which we assume that there are
only two possible perturbations VU, V&, The infor-
mation given to O; locates the system somewhere in
the subspace $g at time #. At a different time /y, this
will be separated into two subspaces $:(t) and 8,(fp),
corresponding to the two possible perturbations. For
simplicity of the diagram, we assume that they are
disjoint. At any other time f;, the array of 0, is still
represented by two possible subspaces 8i(/5), Sa(fs).
Observer 0., however, is not in as advantageous a
position as O;; although he is given the same density
matrix at time #5, and therefore can locate the subspaces
$1(1s) and 8,{ty), he does nol know that 8,(¢,) is associ-
ated only with the perturbation V®, §,(4,) only with
V', Therefore, he can only assume that either pertur-
bation may be associated with either subspace, and the
array representing the state of knowledge of Oy for
general times consists of four subspaces.

Fic. 2. The informa-
tion game. The array
of observer 1 at times
ty, ta, £51s represented by
solid circles. The array
of observer 2 includes
also the portion in
dashed lines,
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The game continues; O tells 0; what the density
matrix pq(fs) is, and O3 calculates kis density matrix
ps(f) (which, at general times other than #;, must be
represented by eight possible subspaces), and the
entropy curve Ss(f), - - -, and so on.

The subjective H theorem applied to the nth observer
gives

Su(tn) SS2 () SSu(tn)+S(Pa), (13.1)
while from the rules of the game,
Sne1(tn) = Sulln). (13.2)
Therefore, we have
S1{t) S (t) £S5l < - - - (13.3)
Note that no such inequality as 1< <#;< -+ - need

be assumed, since the subjective H theorem works as
well backwards as forwards; the order of increasing
eniropy is the order in which information was transferred,
and has nothing to do with any temporal order.

An important conclusion from this game is that a
density matrix does not in general contain all of the
information about a system which is relevant for pre-
dicting its behavior; even though 0; and 0, had the
same knowledge about possible perturbations, and
represented the system by the same density matrix at
time £y, they were nevertheless in very different positions
as regards the ability to predict its behavior at other
times. The information which was lost when ©; com-
municated with Oy consisted of correlations between
possible perturbing forces and the different simple
arrays which are contained in the total compound
array. The effect of this information loss on an ob-
server’s knowledge of the system was not immediate,
but required time to “develop.” Thus, it is not only
the entire density matrix, but also the particular
resolution (12.5) into parts arising from different simple
arrays, that is relevant for the prediction problem.

For these and other reasons, an array must be
considered as a more fundamental and meaningful
concept than the density matrix; even though many
different arrays lead to the same density matrix, they
are not equivalent in all respects. In problems where
the entropy varies with time, the array which at each
instant represents the density matrix as a mixture of
orthogonal states is difficult to obtain, and without
any particular significance. The one which is resolved
into simple arrays, each representing the unfolding of
a possible unitary transformation, provides a clearer
picture of what is happening, and may contain more
information relevant to predictions.

The density matrices p,(f) determined by the succes-
sive observers in the information game may he repre-
sented in a compact way as follows. Consider first the
case where there is only a single possible perturbation,
and therefore p undergoes a unitary transformation

p(O)=U@)p)U (1) (13.4)
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This could also be written in another kind of matrix
notation as

prw () =2_(nn” |G (L) | REYpri (1), (13.5)
kk’
or,
p(D=C(t)p(l), (13.6)
where
O’ |G (L) | BE Y= U (04 U * (0,4 (13.7)
is the direct product matrix
G=UXU* (13.8)

In (13.4) p is considered as an (N XN) matrix, while in
(13.6) it is a vector with N?* components, and G is an
(N*X N?) matrix. Tt is readily verified that G has the

group property

CUOGU =G {13.9)

in consequence of the same property posscssed by U,
The advantage of writing the transformation law in
the form (13.6) is that, in the case where there are
several possible perturbations V@ (¢), the transforma-
tion with time (12.5) cannot be written as a similarity
transformation with any “averaged I/ matrix,” but it
is expressible by a G matrix averaged over the distri-
bution P,:
o ()= G(L)n(1), (13.10)

G =20 Pala O (1,1).

where
(13.11)

The essential feature of the irreversibility found in the
information game is that G(£¢) does no! possess the
group property (13.9):

GG #= G,

for on one side we have the product of two averages,
on the other the average of a product. If (13.12) were
an equality valid for all times, it would imply that G
has an inverse §7'(£t)=¢G(¢t), whercupon (13.10)
could be solved for p(#),

p()= G 0e(0).
But then, the subjective H theorem would give

SO>S, from (13.10);
S >S5, from (13.13).

(13.12)

(13.13)

In the general case G(4,¢') may be singular.
The density matrices of the successive observers are
now given by
p1(D)=G(tt)e(h),
p2(t) = G(t,i2) G2 1) ps (1),
pa(t)=G(413) GUs,02) G (13, 11)p1 (1),

in which the information game is exhibited as a Markov

(13.14)
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chain,'®!? the ordering index giving the sequence of
information transfer rather than a time sequence.

14. STEP-RELAXATION PROCESS

In the preceding section, the information game was
interpreted in the ‘“passive” sense; i.e., we assumed
that a certain one of the perturbations V(@ (¢) was the
one in fact present, and this same one persisted for all
time. The different observers then represent different
ways of looking at what is in reality only one physical
situation, their increasing uncertainty as to the true
state being due only to the incomplete transmission of
information from one observer to the next.

The game may equally well be interpreted in the
“active’’ sense, in which there is only one observer,
but at each of the times &, #3, 3, - - -, the perturbation
is interrupted and a new choice of one of the V(@ (f)
made in accordance with the probability distribution
P.. Although it is not required by the equations, it is
perhaps best at this point, merely to avoid certain
teleological distractions, to assume that

h<ta<tfg<e e (14.1)

At each of these times the observer loses exactly the
same Information that was lost in the communication
process of the passive interpretation, and his knowledge
of the state of the system progressively deteriorates
according to the same Fgs. (13.14) as before. The
density matrix which represents the best physical
predictions he is able to make is then

Jpl(t), h<t<t,
p(f)= p2(?), fzS t<ty
[pn@), 1Lt b,
This iIs a continuous function of time, since
pultn)=pu-1(ts).

In the following we consider only the case where p
operates on a function space ¢ of finite dimensionality
N. The maximum possible entropy of such a system is

Smax=IN, (14.3)

(14.2)

which is attained if and only if p is a multiple of the
unit matrix:

pri= N1, (14.4)

From this fact and (13.3), it follows that the sequence
of values S(i,) must converge to some definite fnal

entropy: .
Iim S(tn> :SwSSmax‘

n—0

(14.5)

To investigate the limiting form of the density matrix
as i— o, some spectral properties of the transformation
matrices are needed. Let G stand for any one of the

18 7. L. Doob, Ann. Math. 43, 351 (1942).
W, Feller, 4n Introduction to Probability Theory amd ils
A pplications (John Wiley and Sons, Inc., New York, 1950}.
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(N?X N?) step transformations G(f,,t,_1) operating in
the direct product space o¢Xo=¢? and x,y be any
vectors of N? components upon which § can operate.
Instead of denoting the components of %, vy by a single
index running from 1 to V?, we use two indices each
running from 1 to ¥, so that x, y may also be interpreted
as (NXN) matrices operating in the space . We
define inner products in the usual way by

AT
(x’y>: Z xnk*ynk:Tr(xTy)- (146)

n, k=l

Since G is not a normal matrix (i.e., it does not com-
mute with its Hermitian conjugate), we may not assume
the orthogonality, or even the existence of a complete
set, of its eigenvectors. However, every square matrix
has at least one eigenvector belonging to each eigen-
value, so that as x varies over all possible directions,
the set of numbers

g(x)=(x,G%)/ (x,2)
includes all the eigenvalues of G. Writing
Xo=U@g @t

it is readily shown that (x4%.)={(x,%). From (12.5)
we have

gx:za P o,
and therefore

[ (xagx” = 12 Pa(x1xa) 1 <2 —Pal (x>xc=){
<Y Pl (%) (Wasita) 1= (%),

where the Schwarz inequality has been used. We
conclude that for all #,

lg(x) <1, (14.7)

with equality if and only if x.=x for all a. This is
evidently the case if x is a multiple of the unit matrix;
thus (14.4) is always an eigenvector of G with the
eigenvalue unity. Only in exceptional circumstances
could G have any other eigenvalue of magnitude unity;
this would require that some x other than (14.4) must
exist which is invariant under all the unitary transfor-
mations U@,

By a similar argument, one can derive a slightly
weaker inequality than (14.7):

(Gx,62) < (x,%), (14.8)

which shows that Tr[ p*(f,) }is a non-increasing function
of », which must converge to some definite final value.

From these relations several features of the long-time
behavior may be inferred. First consider G to be
brought, by similarity transformations, to the canonical
form

As
As

TQT-1= - , (14.9)
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where each A, contains all those, and only those, terms
which arise from the eigenvalue A,. If A; is nondegener-
ate, 4, is simply the number ;. If X\; is an m-fold
multiple root of |G—A1|=0, then A, may be the
(mXm) diagonal matrix A\, or it may have one or
more “superdiagonal”’ terms?®

A1 000 l
o1 o0 . ,
=15 o 0 J (14.10)

i
L
The simplest type of step-relaxation process to describe
is the one in which all of the matrices G(¢,,,_1) are
equal; ie, f»=nr, and each of the possible pertur-
bations V@ ({) is periodic with period . The general

conclusions will be the same regardless of whether this
is the case. We now have

p(lx)=G"(0), (14.11)

and those parts of the canonical form 7G»7T ! arising
from the eigenvalue A=0 are annihilated in a finite
number of steps, while the sections A;* for which
0<[As] <1 are exponentially attenuated. Thus, the
situation as n—c depends only on those 4 ;" for which
|\:| =1. There are two possibilities:

(a) The ergodic case. If G has only one eigenvalue
with |A;|=1 [which must therefore correspond to the
eigenvector (14.4)7, the sequence {G"} converges to the
projection onto (14.4}; i.e,,

lim p(¢,)=N"1,

=00

(14.12)

independently of p(0). The information contained in
the initial distribution becomes completely lost, and
the limiting entropy is the maximum possible value
(14.3). In practice, this would be the usual situation.

(b) If G has more than one eigenvalue with |\;| =1,
the density matrix does not necessarily approach any
fixed limit. Nevertheless, the entropy S(#,) must do so.
Therefore, by an argument like that of Appendix A,
the ultimate behavior must be one in which a certain
similarity transformation is repeated indefinitely. For
example, this ultimate transformation could consist of
a permutation of the rows and columns of p. In this
case, traces of the initial information are never lost,
and the limiting entropy is less than InV.

These results correspond closely to those of the theory
of long-range order in crystals, 2 in which one intro-
duces a stochastic matrix which relates the probability
distribution of one crystal layer to that of an adjacent
one. The existence or mnonexistence of probability
influences over arbitrarily long distances depends on
the degeneracy (in magnitude) of the greatest eigen-
value of this matrix.

5. Lefschetz, Lectures on Differential Eguations (Princeton
University Press, Princeton, 1946), Chap. I.

# J. Ashkin and W. E. Lamb, Jr., Phys, Rev. 64, 159 (1943).

% G. F. Newell and E. W. Montroll, Revs. Modern Phys. 25,
333 (1953),
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15. PERTURBATION BY A STATIONARY
STOCHASTIC PROCESS

We now investigate the change in our knowledge of
the state of a system for which the perturbing Hamil-
tonian }'(4) is a stationary random function of time.
Certain aspects of irreversible processes may be de-
scribed in terms of such a model, although we will find
that other essential features, such as the mechanism by
which thermal equilibrium is established, require better
approximations in which the quantum nature of the
perturbing forces is taken into account.

In classical statistical mechanics an ergodic hypoth-
esis facilitated the mathematics by allowing one to
replace time averages by ensemble averages. We now
find the reverse situation; that calculution of G(4,¢) is
facilitated by an ergodic principle that enables us (o
replace the “ensemble average” (13.11) by a time
average, and then to make use of correlation func-
tions and the Wiener-Khintchine theorem. In Iiq.
(13.10), G (£') may be regarded as a certain func-
tonal F[V@ (0] of V@), which depends on the
values assumed by this operator in the time interval
(f'—t). The statement that 17(/) is a stationary slo-
chastic process implies that the average of this func-
tional

For=3 0 PV ()]
is not affected by which particular sample of the
function V@ (1) is involved in (13.1); i.e., if we were Lo
insert instead the values assumed by V(@ (4) in some
other equal time interval (/'+7—t+7), the average

Foa=3, PV (14 7)] (15.2)
would be independent of 7. Conversely, if

]7'T<>c: ]7’()&

(15.1)

for all functionals and all values of 7, this implies that
V(t) has exactly the same stalistical properties after
any time translation, so that 1(¢) must be a stationary
stochastic process. Under these conditions the expres-
sion (15.1) will not be affected by averaging it over all
time translations;

L L op”
Frews rar— lim — f S PV () Y. (15.3)
T—w 2T 7

Our ergodic assumption is that in this formula the
averaging over P, is redundant; i.c.,

_ et
fla=fr=lim —
T—w 2T

FLV(i47)],

--T

(15.4)

in which the parameter « may be dropped.

The preceding paragraph was written in a conven-
tional kind of language which made it appear that a
substantial assumption has been introduced ; one whose
correctness should be demonstrated if the resulting
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theory is to be valid. Such conventional modes of
expression, however, do not do full justice to the
situation as it is presented to us in practice. To see this,
we need only ask, “What do we really mean by the
functions V®(f) and the probabilities P,?”’ In most
cases there is only one function V (f). Knowledge of the
statistical properties of ¥ cannot then be obtained by
observing the frequency with which the particular
function V(«(¢) appears in an ensemble of similar
situations, because no such ensemble exists. By the
probability P, we could mean only the average fre-
quency, over long periods of time, with which a con-
figuration locally like V(@ occurs in the single function
V(). The means by which the probabilities P, are defined
already involve a time-averaging procedure. Thercfore
(15.4) is not an assumption at all; it is merely the
natural way of stating a fact which is expressed only
awkwardly by (15.1). Equation (15.4) carries out in a
single step both the averaging procedure in (15.1) and
the process by which the V' and P, are determined.

The problem is thus reduced toa calculation of
Gt )y=g{t—1t"), where

1 p7
HOE ;{I}o—zﬁ%f (U7, 1) XU+, 1)]dr.  (15.5)
—r

The exact evaluation of G(i) would require a rigorous
solution of the Schrodinger equation (12.3) for arbitrary
V(£). In practice one must resort to approximate solu-
tions at this point, and it is fortunate that in many
practical situations G(/) is determined to a good
approximation by the use of second-order perturbation
theory. The characteristic feature of such problems is
found by noting that although G(4¢) does not in
general possess the group property (13.12), an equality
of this form may be approximately correct for certain
choices of times, provided the perturbation is weak
and has a short correlation time. Thus, suppose that
1< <) and we try to represent G(4,t) by a product

G =G ) S, (15.6)

The approximation involved in (15.6) consists of the
discarding, at time ¢, of mutual correlations which
were built up in the time interval (¢"—t) between
possible functions V (¢) and the corresponding simple
arrays. If V(0 is a weak perturbation, it can change
the state of the system only slowly, and a long time is
required for any strong correlations to develop. How-
ever, if the time 7. over which appreciable autocorre-
lations persist in §"(¢) is very short compared to ('),
the mutual correlations discarded were actually accumu-
lated only during an interval 7, just prior to #, and will
be relatively unimportant; thus (15.6) may be a very
good approximation. On the other hand, it will never
be an exact equality, because the values of V(f) just
prior to ¢ will necessarily have some influence on its
behavior just after ¢/, whose effect is Jost in the approxi-
mation,
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These considerations lead to a means for approximate
calculation of G(({—¢). Divide the time interval (¢'—t)
into » equal intervals: ({—¢")=nr, and set

Gl—)~[ g1 (15.7)

If >r,, thisis a good approximation, and if in addition
it is possible to choose 7 short enough so that the change
of state during time 7 is given adequately by second-
order perturbation theory, this leads to a feasible
method of calculation. With this approximation, the
theory is reduced in its essentials to that of the step-
relaxation process of the preceding section.

The most important feature of the final solution can
be seen directly from (15.7). The change of state with
time has a simple “stroboscopic” property: if we
observe the density matrix only at the instants £, =mr,
we see the approach to equilibrium take place in a
stepwise exponential fashion, describable hy relaxation
times. This result is already guaranteed by the nature
of the approximation in (15.7) quite independently of
any further details, and in particular independently of
any assumptions concerning the level spacings of the
system. However, the level spacings are important in
determining the appropriate form of the solution. For
example, if the correlation time . is extremely short
compared to all characteristic times of the system, we
may, while satisfying the condition 7>, still have
|wpi| <1 for all transitions frequencies wi. In this
case, the change in p during time r is very small, and
(15.7) may be replaced by a linear differential equation
with constant coefficients. Thus, defining Ky by

Ky=[§(r)—1]/7, (15.8)

we have approximately

dp/di~K p. (15.9)

K, has A2 eigenvalues A;, one of which must be zero
since K; annihilates (14.4). By an argument like that
leading to (14.7) one shows that Re(\;)<0. Thus each
element of p will relax to a final stafe according to a
superposition of exponentials exp(h#), with several
different relaxation times in general.

The right-hand side of (15.9) is generally a poor
approximation to the instantaneous time derivative of
p, but gives only the average rate of change over the
period 7. Similarly, the matrix K, resembles a time
derivative of ¢; in the following section we present
reasons for expecting that a slightly different definition
of K will render (15.9) more accurate as far as giving
the long-term drift is concerned.

16. EXACTLY SOLUBLE CASE

In the case where the perturbation V(f) commutes
with H\, it is possible to evaluate (15.5) exactly without
use of perturbation theory. This case is a very special
one, since the perturbation causes no transitions but
only a loss of coherences; nevertheless it has found some
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applications in the theory of pressure-broadening of
spectral lines®®* and exchange narrowing® in para-
magnetic resonance,

The perturbing forces represented by V(1) often
arise as a superposition of many small independent
effects, and in this case the central limit theorem of
probability theory shows that the distribution of ¥ (/)
will be Gaussian. Furthermore, in most applications
one will not have enough information about V(1) to
determine any unique objective probability distribu-
tion; we may know, for example, only the average
energy density, therefore the mean-square value, of the
perturbing fields, plus a few features of their spectral
density. Maximum-entropy inference would then be
needed in order to represent our knowledge of 7 (f) in
a way free of arbitrary assumptions. Since a Gaussian
distribution has maximum entropy for a given variance,
one should always use a Gaussian distribution if the
available information consists only of the first and
second moments. In the following we consider only the
Gausslan case.

The Hamiltonian has matrix elements

f],ﬂ(f) = I:w/;-l‘- Vi (l’)]@kl.

The solution of (12.3) for the time-development matrix
ts substituted into (15.4) to give

(kR G )

¢ N
:51\-15151'6“‘“'“‘“')<Cxp[if fk'k(t”)(l’t”}>, (16.2)
tl

where wir = wp —wy, and
FereO =V () =1 (D) {16.3)

15 a real Gaussian random function with mean value
zcro (by definition, since any constant part of ¥V may
be included in Hy). So also, therefore, is the function

(16.1)

g@:ffww, (16.4)

where we have dropped the subscripts for brevity.
The probability distribution of g(¢) is determined by
its second moment

mhwmﬁfwjdwmww»

:fow%M%% (16.5)
where ! ‘
1 T
()= Jim — { SEEfOR (169

%P, W. Anderson, Phys. Rev. 76, 647 (1949). Earlier references
arc given in this paper.

35, Bloom and H. Margenau, Phys. Rev. 90, 791 (1933).

» P W. Anderson and P. R. Weiss, Revs. Modern Phys. 25,
269 (1933).
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Fi1G. 3. Region of inte-
gration in Eq. (16.5).
Appreciable  contribu-
tions to the integral
come only from shaded
part.

is the autocorrelation function of [(f). A short calcu-
lation shows that for a Gaussian function with variance
o (t), the average required in (16.2) is

<6i0>:6750(3),

(16.7)

and thus the exact solution (13.10) of the relaxation

problem is
prr (£} = ek Etp . (0)etorstt)

Since o4, =0, the diagonal elements of p are unchanged,
but the off-diagonal elements relax to zero in a manner
described by (16.5).26

We assume that there exists a corrclation time r,
such that the correlation function (16.6) is essentially
zero whenever |r|> 7. The region of integration in
(16.5) may be represented by a square as in [lig. 3,
and 1t 1s seen that although #(#) necessarily slarts out
proportional to # for small ¢, it approximates a linear
function of time when 1> r,. The function o (¢) therefore
has the form of Iig. 4, and for £> 7, it reduces to

(16.8)

o (2220 (0)[ 1= 1], (16.9)
The quantity
1 w
f@):-‘f (Dot (16.10)
2mv
N S—

F1s. 4. The {unction
a{t).

% In some cases it may be possible to evaluate (16.7) directly
even though (g% does not exist. For example, we may have
()= constant, with probability distribution p(f)d/. Then (16.7)

is a Tourier transform, and with Lorentzian p(f) we obtain a
decay law exactly exponential for all times.
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/ Fic. 5. Slip effect
/ caused by discarding
olt) / correlations. The ap-

/ proximate solution is
/ represented by the
/ solid line, while the
; dashed line is the
/ exact solution.

is the spectral density of f(¢) for frequency w, and 71 is
a short time somewhat less than r, indicated on Fig. 4.
Thus when ¢> 7., the relaxation process goes into an
exponential damping, the element pg having a relax-
ation time T, where

I/Tk;c/=1r[k:k(0). <1611)

Note that although the final formulas involve only the
spectral density at zero frequency, the condition that
o(t) should be very small for |{]|>7, implies certain
conditions on /(w) at other frequencies. It Is required
not only that /{(w) be large over a band width ~7,7!
of frequencies, but also that it be a sufficiently smooth
function of frequency. Discontinuities in 7{w) produce
oscillations in ¢(f) and ¢ (f) which may persist for long
periods, rendering (16.9) inaccurate.

Tt is of interest to compare the exact solution (16.8)
with the one which would be obtained using the
approximation of (15.7). Here we stop the integration
process of (10.3) after each interval r, throw away
mutual correlations between p and V(f), and use the
density matrix thus obtained as the initial condition
for the next period. The resulting ¢(2) 13 illustrated in
Iig. 5. It 1s seen that the approximation “‘slips behind”
the exact solution by a time delay 7y each time the
mutual correlations are discarded.

There 1s an apparent paradox in this result. It seems
natural to suppose that any mathematical approxima-
tion must “lose information,” and therefore increase
the entropy. However, we find the relaxation process
taking place more rapidly in the exact treatment than
in the approximate one: Sexaet (£)2> Sapprox (). Thus, the
approximation has not ‘“lost information,” but has
“Injected false information.” The reason for this can be
visualized as follows. Suppose that at time =0 the
array consisled of a single point, 1.e., a pure state. At
later times 1t will consist of a continuous distribution of
points filling a certain volume, which continoally
expands as { increases. [t is very much like an expanding
sphere of gas, where strong correlations will develop
between position and wvelocity; a molecule near the
edge of the sphere is very likely to be moving away
from the center. This corresponds roughly to the
correlations between different states of the array and
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different possible perturbing signals V (f). Now suppose
that in an expanding gas sphere these correlations are
suddenly lost; the set of velocities existing at time = is
suddenly redistributed among the molecules at random.
Then a molecule near the edge is equally likely to be
moving toward or away from the center. The general
expansion is momentarily interrupted, but soon resumes
its former rate.

This paradox shows that “information” is an unfortu-
nate choice of word to describe entropy expressions.
Furthermore, one can easily invent situations where
acquisition of a new piece of information (that an
event previously considered improbable had in fact
occurred) can cause an increase in the entropy. The
terms ‘‘uncertainty” or “apparent uncertainty” come
closer to carrying the right connotations.

Note that, if we were to use the slope of the approxi-
mate curve in Fig. 5 just before time r, instead of the
average drift over period 7, to calculate the relaxation
time, we would obtain a more accurate value whenever
T> Te.

17, PERTURBATION THEORY APPROXIMATION

Returning to the general case, we conjecture that a
similar situation to that just found will occur: L.e., that
the differential equation

dp/dt=Kp,

d
(if A

will give a slightly more accurate long-term solution
than will (15.9). The evaluation of G(7) using pertur-
bation theory is in essence identical with the treatments
of nuclear spin relaxation given by Wangsness and
Bloch,* Fano,?, Ayant,? and Bloch.??:3 Only a brief
sketch of the calculations is given here, although we
wish to point out certain limitations on the applica-
bility of previous treatments.

One solves the equation of motion (12.3) by use of
time-dependent perturbation theory, retaining terms
through the second order. The result of substituting
this solution into (15.5) is expressed compactly as
follows. Define a matrix ¢{f) whose elements consist of
all correlation functions of Vi, Vip:

(RE' | (=) 1) =V ia(t)Vii® (1)),  (17.3)

in which the average is taken over all time translations.
¢(1) has the symmetry properties

RE N oD = Q' LoD REY =t o (— 1) | £'h). (17.4)

We assume again that there exists a correlation {ime
g

(17.1)
where

(17.2)

27 R, K. Wangsness and F. Bloch, Phys. Rev. 89, 728 (1953).
28 1], Fano, Phys. Rev. 96, 869 (1954).

¥Y. Ayant, J. phys. radium 16, 411 (1935).

# F. Bloch, Phys. Rev. 102, 104 (1956).

8t F. Bloch, Phys. Rev. 105, 1206 {1957).
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7. such that all components of ¢(f) are essentially zero
whenever >7, In this case the “partial Fourler
transforms™ of ¢, defined by

B(w)= f it (D)l (17.5)
0

are independent of 7. Finally, we introduce the symbols

(R |nn) = (kE' | B (wnri) | oY= (nn’ | EE'Y*. (17.6)

In terms of these quantities, we obtain
(BE' | G(7) | mn') = e 7rk 758,00
”‘5kn(](wn’k’)z:o(\pp k/”l>_ak’n'g(wkn>2p(k”‘1pp)
Fglwrn—wirn ) (R |00 )+ ('n| B E) Ty, (17.7)

where

glw)=(e™"=1)/10.

In the case of extremely short correlation time, so that
lwgnr| K1, as assumed in (15.9) and (17.1), glw) =7
for all transition frequencies wg,, and (17.7) leads to
the differential equation

Prwtiwreprir= 2, {L (kR |nn")+ (n'n|k'k) Jpun:

— (| k'n" Yo — (k| W0 Ypur}.  (17.8)
This case of perturbation by exiremely wide-band
“white noise” applies to many cases of nuclear spin
relaxation in liquids,® its condition of wvalidity being
that the correlation time (roughly, period of molecular
rotation) is short compared to the Larmor precession
periods.

In the approximation of (17.8) the quantities
(k% |nn') are real if ¢(2) is real, as will usually be the

case:
®

(kR |[mn' )2 | cos(wnit) (BR'| @(8) |mn)dt.  (17.9)

[}

The neglected term is small, since by hypothesis ¢(¢)
1s very small before sin(wn-:¢) attains an appreciable
magnitude. Equation (17.9) is = times the “mixed
spectral density,” at frequency wpe, of Via(t) and
View(t). To interpret (17.8) we transfer all terms
containing pg to the left-hand side

1
pkk/+(T +iwkk’)pkkr:“driving forces.” (17.10)
bkt

The relaxation times 7' are given by

1/‘/T}Gk':7k+’}’k""7kk’1 (1711)

'ch:z:fz(kk i PP):
Yire=(EE | kE)+ (KR E'E).
If the correlation time 7, is not short compared to
the periods (w;,) 7%, then the time of integration 7 must
% Bloembergen, Purcell, and Pound, Phys. Rev. 73, 679 (1948).

where

(17.12)
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be chosen so long that the formulation (17.8) in terms
of a differential equation breaks down. In this case a
different approach, used by Wangsness and Bloch,”
may be attempted. Here one removes the rapid time
variations of p due to o by transforming to the inter-
action representation, in which the density matrix is

pl)=eHoip(t)eitior, (17.13)

and attempts to describe the relaxation process by a
linear differential equation with constant coefthcients,
satisfied by the slowly varying p(#). This is not always
possible, however, for Eqs. (15.5) and (15.7) hold only
m the original Schrodinger representation. If Hy is
diagonal, the matrix G; which gives the change of state
in the interaction representation,

pl)=Gr(6t)a(l), (17.14)
is related to the previous G by
(kE'| Gr(t4-7, &)y | nen)
= gk tgiwikr (RR' G () nn'),  (17.15)

so that although ¢ is a function only of ({—¢'), this is
not m general {rue of G;. Consequently an approxi-
mation of the form (13.7) cannot be valid in general
for G;. However, it is seen that those elements of ¢y
for which

(17.16)

Whn ™ W

depend only on (i—¢). Therefore, if by any means
one can justify discarding elements of G; not salisfying
(17.16), this method will work. Referring to (17.7), it
1s seen that the elements which satisfy (17.16) are just
the “secular terms” which increase proportional to 7,
while the unwanted terms are the oscillating ones.
Therefore if the time 7 is sufficiently long, and the
level spacings are such, that the quantities

H I
[ W™ We'n/ | T

are either large compared to unity, or zero, for all
combinations of levels, the secular terms will be much
larger than the oscillating ones and we obtain the
approximate differential equation

O Prre

o¢

= Z,{ts(wkn*wkfn')[(kk’ [nn')

A (/1) B ER) Jpn — 6 (wprnr) (| B/ 1) prme
—8(win) (kw0 ) o}, (17.17)

If there is no degeneracy and the density matrix is
initially diagonal, (17.17) reduces to

Oprir /= 2m8 1k 2 m Lien(wnr) (Pun—pri), (17.18)
where
1 @0
Ton() = — f e bk o (D) mydl (17.19)
T
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is the spectral density, at frequency w, of Vi.(f).
Fquation (17.18) is to be compared to (11.7); we have
a time-proportional transition probability satisfying the
condition of microscopic reversibility. Note, however,
that this result depends entirely on the assumptions as
to spectral properties of V' (f) and the various approxi-
mations made, which ensured that off-diagonal elements
of p would not appear. From the definition (15.5) of G
it follows that, in the case that p(0} is diagonal, the
rigorous expression for diagonal elements at time ¢ is

pri{t) =2 n{| Ukn(£,0) | H)pnn (0)
=2 Men(Dpnn(0), (17.20)

so that in general the transition probabilities Az, (f) are
neither time proportional nor symmetric.¥®* On the
other hand, the so-called N\-hypothesis,!* if stated in the
form

YA =22 M) =1,

I1s always satished in this semiclassical theory,
consequence of the unitary character of U.#

In (17.17) we may again transfer all terms containing
pix to the left-hand side®®:

aﬁ/{li’ 1 .
——t |-+ (Swp—dwyr) ]ﬁ/;k'

ot Ikt

=“driving forces,” (17.21)

where (17.11) holds, but in place of (17.12) we now have

Vikibwr=2_, (kk| pp). (17.22)

The quantities v, and Swy are defined to be real. We
interpret these relations as follows. In consequence of
the random perturbations, the energy of state £ Is
uncertain by an amount v, (Iin frequency units), and
in addition its average position is shifted by an amount
Sws. Because of this uncertainty in energy, different
possible states of the array drift out of phase with each
other, and the off-diagonal element pre tends to relax
to zero with a relaxation time 7. The term

o= (BE | BR) A (BB B'B)
_ f ) Ve (O (17.23)

corrects for the fact that there may be correlations
between the “instantaneous level shifts” Vi, (£), Ve (2)

3 A trivial exception occurs if the system has only two linearly
independent states, for a (2X2) unitary matrix necessarily
satisfics [ {72 [*=] /21 |2 This Is not true in any higher dimension-
ality.

# The possibility that X, is not proportional to { may lead in
some cases to a differential equaticn for 5 with time-dependent
coeflicients, analogous to Eq. (2.24) of reference 31.

3 If there is no degeneracy and the level spacing is the most
general type for which there is no relation of the form wi, =wprp
for k&', the right-hand side of (17.21) is zero for all off-diagonal
elements pra.
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so that the contributions of the level widths vy, i to
the rate of relaxation are not independent. Due to the
terms v the uncertainty in energy v is different from
the reciprocal of the mean lifetime of state £ against
transitions. The predicted line widths are, of course,
the reciprocals of the relaxation times 7 'gy.

The symbols (kk|pp) may be expressed in terms of
the spectral density of Vi,(#). Inverting the Fourier
transform (17.19) and substituting the result into
(17.5), (17.6), we obtain

© [ rp(w)da
(kk ' PP) :Wlkp(wpk) +iP ) —

— W Wpk

(17.24)

where P stands for the Cauchy principal value. Thus
the level widths depend on the spectral density at the
transition frequencies, while the level shifts depend
mainly on the manner in which the spectral density
varies near the transition frequencies. This can be
stated in simpler form in the usual case where V;,(7)
=0, f (), where Qy, is constant, and f(f) is a real
random function. Let (¢) be the autocorrelation func-
tion of f(#); then the level widths and level shifts are
proportional to the cosine and sine transforms of ¢(2):

ve= 2] Qipl 2f cos{wr,l) o (H)dl,
’ ’ (17.25)

=]

=106l [ sin(ont) o0

0

From this we see that the level shifts will be small
compared to the level widths if ¢(f) becomes vanish-
ingly small before sin(wy,¢) reaches its first maximum.
This, however, is just the condition for wvalidity of
(17.8). Thus, whenever the correlation time 7. is so
long that (17.17) is required instead of (17.8} one may
expect appreciable level shifts.

If the quantities wy,r are of order unity, neither of
the differential Eqs. (17.17), (17.8) is applicable. In
fact, it is clear already from the rigorous expression
o(H)=g(,")p(¢) that in general a relaxation process
cannot be described by any differential equation, for
the rate of change of p does not depend only on its
momentary value, but is a functional of past conditions
during the entire interval (#—7}. Thus, the formulation
in terms of differential equations is fundamentally
inappropriate. It is convenient in those special cases
where it can be justified, because of the easy interpre-
tation in terms of relaxation times and level shifts.
However, the quantities necessary for comparison with
experiment can always be inferred directly from (17.7),
the validity of which does not depend on the magni-
tudes of the quantities wyn7.%

The symmetry of the transition probabilities given
by (17.18) arises only because the V,,(f) are here
considered numbers. If in better approximation one
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takes into account the quantum nature of the sur-
roundings, they must be considered as operators which
operate on the state vector of the perturbing system o
(the “heat bath”). Then, as shown by Ayant?® the
definition of correlation functions (17.5) remains valid,
provided the brackets are now interpreted as standing
for the expectation value taken over the system oy,
and the differential Eq. (17.8) or (17.17) then repre-
sents an approximation in which mutual correlations
between the two systems are discarded at intervals 7,
in the manner of (11.5). One now finds that the proba-
bilities of upward and downward transitions are no
longer equal. In the treatment of Ayant, the question
of equality of these transition probabilities is reduced
to the question whether the spectral density of the
perturbing forces is the same at frequencies (+w) and
(—w). This is correct provided one always defines the
perturbing terms to be real, as in (17.25); note, how-
ever, that the symmetry of transition probabilities in
(17.18) does not require that the spectral density of
Via(f) be an even function of frequency. It is sufficient
if the spectral density of Vi, at frequency (+w) is
equal to that of ¥V, at (—w), and this is always the
case if V' is Hermitian.

If one assumes a Boltzmann distribution for the heat
bath and neglects the effect of the system of interest oy
in modifying this distribution, the solution of (17.17)
tends to another Boltzmann distribution corresponding
to the same temperature.’3® Treatment of this case
and that of “secular equilibrium” from the subjective
point of view will be considered in a later paper.

18. CONCLUSION

The foregoing represents the first stage of an attempt
to provide a new foundation for the predictive aspect
of statistical mechanics, in which a single basic principle
and method applies toall cases, equilibrium or otherwise.

The phenomenon of nuclear spin relaxation is a
particularly good one to serve as a guide to a general
theory of irreversible processes. It is complicated enough
to require most of the techniques of a general theory,
but at the same time it is simple enough so that in
many cases the calculations can be carried out explicitly.
Nuclear induction experiments, in which the predictions
of the Bloch-Wangsness theory? 3% are verified down
to fine details,*® provide a good illustration of many of
the above remarks. Here the experiments are performed
on samples containing of the order of 10?° nuclei, and
one measures the time dependence of their total mag-
netic moment when subject to various applied fields.
In the theory, however, one usually calculates a density
matrix p((f) which operates only in the function space
of a single spin, or of some small aggregate of spins such
as those attached to a single molecule. The possibility
of predicting mutual properties of different spin units
is therefore lost.

3 J. T. Arnold, Phys. Rev. 102, 136 (1956); W. A. Anderson,
Phys. Rev. 102, 151 (1956).
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It would, however, always be better in principle to
adopt the “global” view in which the entire assemblage
of spins in the sample 1s the system treated. To the
extent that different molecular units behave independ-
ently, the complete density matrix p thus obtained
would be a direct product of a very large number of
matrices. However, this would hardly ever be true
because some correlations between different spin units
would be expected. Thus, the question is raised whether,
and to what extent, predictions made only from p;
can be trusted. At first glance it seems that they could
not be, for in most cases the densily matrix p () differs
only very slightly from a multiple of the unit matrix,
and thus represents a very “broad” probability distri-
bution. According to the discussions of maximum-
entropy inference in I and the introduction to the
present paper, it would appear that this is a case where
the theory fails "o make any definite predictions, so
that unless the probabilities in p; could be established
in the objective sense, the calculations of Sec. 17 would
be devoid of physical content.

The thing which rescues us from this situation is, of
course, the fact that the experiments refer not to a single
spin unit, but to a very large number of them. We must
not, however, jump to the obvious conclusion that the
“law of large numbers,” or the central imit theorem,
automatically restores reliability to our predictions.
To do so would be to make the logical error of the
experimenter who thought that he could add three
significant figures to his measurements merely by
repeating them a million times. The correctness of the
usual calculations can be demonstrated without explicit
reference to the laws of Jarge numbers, by application
of the principles of Sec. 11. This is, in fact, the example
par excellence of how much a prediction problem can he
simplified by discarding irrelevant information.

Suppose that we had solved the problem from the
global viewpoint, obtained the complete density matrix
p(1), and demonstrated that it gave a sharp distribution,
and therefore reliable predictions, for the total magnetic
moment M=M;+M;y+4---+-My. Then the only thing
of further interest would be the value of (M). According
to Sec. 11, this can be calculated as well from the direct
product matrix

piXpeX - Xpw,

where p; is the projection of p onto the space of the kth
system. If the small sysiems are equivalent, the (M,)
are all equal, and thus we obtain

(My=Tr(oM) =N Tr(p;M,).

This equation is exact regardless of whether correlations
exist. Thus, if pi embodies all of the available information
about a single spin system, the predictions of total moment
of N systems obtained from il ave just as reliable as are
those obtained from the global denstty matrix p. We cannot
estimate this reliability from p; alone; loss of that
information is part of the price we had to pay for
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simplification of the problem. If correlations between
different spin units are strong, it will of course be very
difficult to obtain p; without first solving a larger
problem. Thus, in practice one will obtain only an
approximate value of p:; however, a one percent error
in the calculated value of (M;) leads only to a one
percent error in (M).

APPENDIX A. SUBJECTIVE H THECGREM

Consider the density matrix (12.5) with '=0; at
any particular time there exists a unitary matrix V(1)
which diagonalizes p(f), so that (12.5) may be written
in terms of the diagonal matrices,

() =2 a PW AW, (A1)

where

W o=V (U@ (L,0)V-1(0) (A.2)

is a unitary matrix. The eigenvalues d,.(£) of p(f) are
thus related to the eigenvalues of p(0) by

() =2 2 Brnda(0), (A.3)

where the quantities B, form a doubly stochastic
matrix:
The first of the inequalities (12.6) is then proved as
follows:

S —S0)=22n dn(0) Ind,(0) =25 () Indon (1)
=2 mn Brundn(0) In[d(0)/d(8) ]
>3 Bunl da(0)—du(t)]=0. (A.S5)
Here use has been made of the fact that Inx> (1—a71),

with equality if and only if x=1. Thus, the equality
sign in {A.5) holds if and only if B,.=0 for each
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combination of m, » for which &,(0)7d,(¢f). If p(0) is
nondegenerate, this means that the eigenvalues d,,(f)
must be a permutation of the 4,(0).

The second of the inequalities (12.6) follows from
the fact that for any given density matrix p, the “array
entropy” Sa of Eq. (7.14) attains its minimum value,
equal to S=—Tr(p Inp) for the orthogonal array. To
prove this, let the orthogonal array be the one with &
states, where the state v, has probability d,, and let
{0} be any other array with M states, where
M> N, which leads to the same density matrix. The
two arrays are related by a transformation of the form

(7.9)
kbmwm%: Z n vndn%Unm)

where U ,,, is an (M X M) unitary matrix, and we define
d,=0, N<n<M. From this and the orthogonality of
the v, it follows that

where Crp=|U,..|? is a doubly stochastic matrix, and

thus by the previous argument (A.5),
S<Sa. (A.T)

Now in the case considered here, let p(0) be represented
by its orthogonal array {v,(0),d,(0)}. At time ¢, the
density matrix (12.5) is represented by the array in
which the state

Van ()= U™ (£,0)v,(0)
has probability we.= P«d,(0). The array entropy is thus
Sa(8)= =23 an Wan INwa,=S0)+S5(P,) =const, (A.8)
which, together with (A.7), proves the theorem.



