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Summary—We consider an alphabet of a letters, used under
the restrictions: 1) messages uniquely decipherable into words by
use of one of the letters as a space mark, and 2) words lmited to
a maximum length of L letters. Although imposing these constraints
simultaneously may cause a large reduction in the channel capacity
of the alphabet, neither by itself causes any reduction. Accordingly,
in the absence of constraints other than 1), an incquality of McMillan
pertaining to uniquely deciyherable messages can be made to be
an cquality.

Defining “semi-optimal” transmission by the condition that the
mean transmission time per word is minimized for a given entropy
per word, we find the attainable rate of information transmission
under semi-optimal conditions. Transmission at full channel ca-
pacity is a special case of semi-optimal transmission. Some general=
izations and analogics to statistical mechanics are discussed.

INTRODUCTION

7 HE purpose of this note is twofold: 1) to give a
Trcsult related to an inequality -of AMcMillan per-

taining to unique decipherability, and 2) to illus-
trate the close relationship between problems of
information transmission and some of the elementary
problems of statistical mechanics by use of notation
borrowed from the latter field. In statistical mechanics
we find that in prineiple all thermodynamic properties of
a system are determined if we can evaluate its partition
function Z; or better still, log Z, in its dependence on the
various constraints representing experimentally imposed
conditions. Similarly, many problems of information
transmission under constraints are, in prineiple, solved
if we can evaluate an appropriate partition function.
For the ecaleulation of channel capacity, this is equivalent
to the method described by Shannon. The same math-
ematical procedure also solves a wider class of problems,
in which we find the transmission rate under what are
termed “‘semi-optimal” conditions.

CraxyeL CaraciTy UNpER CONSTRAINTS

We have an alphabet of a symbols, each of which can
be transmitted in unit time. Let I; be the length (number
of letters) of word w;, and define the partition function®

Z0) = 227 ey

where the sum is over all words in our vocabulary. A
given vocabulary (ie., a specific set of possible words)
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may be regarded as defining a channel. By a thcorem of
Shannon,® the capacity of this channel is the largest’
(actually the only) real root of Z(\) = 1. o

The notion of a “word” is meaningful only if there
exists some rule by which a scquence of letters can be
uniquely deeciphered into words. If no such rule exists,
then effectively each letter is a word. The partition fune-
tion then reduces to Z(\) = «27*, and Shannon’s theorem
gives the well-known channel capacity (all logarithms
are to the base 2) oy

@

A necessary and sufficient condition for unique de-
cipherability into words (UD) is given by Sardinas and
Patterson.’ Mc)Millan* has given two inequalities implied
by UD, which had been noted before®® under more re-
strictive conditions.” The first, which perhaps deserves
to be called the fundamental inequality of noiseless coding
theory, is in our notation

Z{loga) < 1. ;

4-8

C = log a bits/symbol.

3

Although, as several authors have shown, this in-
equality can be derived without any rcference to infor-
mation theory, the concepts introduced by Shannon give
it a simple intuitive meaning.

Any UD coding method is a system of constraints
which In some way restricts our freedom in choosing the
successive letters of a message, and defines a particular
channel. Eq. (3) expresses the fact that imposing these con-
straints can never lead to a channel with greater capacity
than the value (2), which corresponds to complete freedom
of choice. Thus we conjeeture that (3) will be fundamental
not only for UD, but also for coding systems designed for
any other objective. In general, a constraint will reduce
channel capacity, and a reasonable measure of .the ef-
ficiency of a code is the amount of this deerease.

2 C. E. Shannon, “The Mathematical Theory of Communica-
tion,” University of Illinois Press, Urbana, Illinois, p. 8; 1949,

3 A, A Rardinas and G, W. Patterson, “A nocessary and sufficient
condition for unique decomposition of encoded messages’” IRE
Coxvexrion Rrcorp, pt. 8, pp. 104-108; 1953.

4 B. Melillan, “Two inequalities implied by unique decipher-
ability,” TRE Traxs. ox InxrorvarioNn Turory, vol. IT-2, pp.
115-116; December, 1956,
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MeMilan' considers also a strong sufficient condition
for UD), called irredueibility, and shows that for fixed
word lenzths the strong constraint of trredueibility does
not reduce channel capaeity below that set by the general
constraint of UD.

Irredueibility ensures UD only if the entire message is
available. In applications to communication systems and
to geneties,® the most common transmission defect is the
one wherein certain parts of the message are simply Jost,
Although the probability that this would destroy UD for
the entire balance of the message is usually very small,'®
one is led to ask for a stronger condition of UD “in the
small.” Without attempting a precise definition of this
term, we use it in the rough sense that any reasonably
long fragment of a message will still be uniquely decipher-
able, except for possible end-effects.

Golomb, Gordon, and Weleh® consider channels with
fived word length %, and a structure constraint much
stronger than UD, which ensures UD in the small. Among
their results, they show (theorems 6 and 7) that for given
k, in the limit of large alphabets even their strong con-
straint does not reduce capacity below the value (2).

Suppose we achieve UD by the usual method of choos-
ing one of the letters, which we call the “space,” and
using it only as the terminating letter of each word; eall
this “‘spacing.” Spacing is a stronger constraint than
AMeMillan'’s  irreducibility, but weaker than that of
Golomb, Gordon, and Welch (although it still accomplishes
the aim of UD in the small). We wish to find how much
the channel capacity is reduced by spacing, and to show
that this reduetion is in fact zero, independently of the size
of the alphabet, if spacing is the only constraint.

Due to the spacing constraint, the maximum number of
different words of length [ is not a’, but only

(@ — 1!,

Fvidently, any failure to include all of the short words
in our vocabulary will have a further adverse effect on
channel eapacity, in addition to that imposed by spacing.
Thercfore we use all possible words of total length I < L,
and the partition function (1) becomes

S (0 — g = L= = D72
t=1 2 —a+1

M\ = (4)

Noting that for all real A, Z() is a decreasing function,
and that Z(\) — L/(a — 1) asA = log (@ — 1), it follows
that if L = (a — 1), the exact channel capacity is C = log
(@ — 1).I{L > (a— 1), we find from (1) the inequalities

logla — 1) < C < log a. (5)

The latter inequality in (5) is identical to (3), and it goes
into an cquality in the limit . — . But since log a is

s 8. \\ Colomb, Busil Gordon, and I.. R. Weleh, “Comma-free
codes,” Canadian Jour. Math., vol. 10, no. 2, pp. 202-209; 1Y38.
< WAL P, Se hiitzenberger, “On an application of semi-group
methods to some problems in coding,” TR1S Trans. ox Inronrua-
t1oN Thponry, vol. IT-2) pp. 47-60; Scptember, 1956,
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just the channel capaeity we would have with an alphabet

of a letters without any construints, our assertion is
proved. Stated differently, sinee (3) must hold for any
method of achieving U I_), in the abscuce of other con-

straints, wo mclhod of ackiveing UD can be more «ficient,
as measured by channel capacity, than spacing.
If L < {a — 1), then (1) Jeads to the inequalities

(1 _1') <7 log (aC ) <

the equality sign holding in the limit @ — .

Numerical values of € obtained from (4) are given in
Fig. 1. The trend for different @ may seem disconeerting;
one might argue that we are merely tying up one of the
letters for special use, and so the loss in channel eapacity
could never exceed that due to removal of a single letter
from the alphabet. However, the loss in capacity is in
fact greatest for the large alphabets. )

(6)
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Fig. 1-—Reduction in channel capacity due to restriction on maxi-
mum word length, for various alphabet sizes.

This situation may be understood as follows. Under no
restrictions on word length, L — «, we show in the next
section that operation at full channel capacity requires
a mean word length (I) = a. The space then oceurs with
the same relative frequency, (1/a), that it would have if
it were not assigned any special function.” This is the
reason why UD, by itself, need not restrict transmission
rate; the space is being used just as cfficiently as any
other symbol. However, when a becomes large, the
effeet of fixed L is to force (I) < a. It is this tying up of
channel time by too frequent repetition of the space
which actually causes all the decrease in channel eapacity,
and explaing the lower position, in Fig. 1, of the curves
for large a.

SEMI-OPTIMAL TRANSMISSION
If the word w,; occurs with probability,

-
27 -

Pe= 0 @)

the rate of transmission (entropy per word} is maximized
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for w given mewn Jength of word; equivadently, the average
per word 3s minimized for a given
The average length and entropy per

trsmission  time
entropy per word,

word, under these samd-optimal conditions, are given
by"
(= =5 log 20 ®)
aA
S = log Z(A) + M), 9

which are parametrie equations conneeting the quantities
of interest. I'rom them we can construct the “operating
characteristie” of the channel, in which we plot the time
rate of transmission,
I =

bits,'symbol, (10)

S
&
as a function of the average word length (). A family of
operating characteristics, computed from (4) in the case
of no restriction on maximum word length, <.c., from the
partition function

Z0) = (2> —a+ 17, (11)

is given in Fig. 2 for various alphabet sizes. The range of
attainable operating conditions econsists of all pomts
lying below the curve.
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Fig. 2——Maximum attainable {ransmission rate as a function of

average word length, for various alphabet sizes. For cach curve,
operation at full ch: mnel capacity occurs at the interscetion with
the dotted line.

The equation represented in Fig. 2 is found by eliminat-
ing X from the above cquations:
loe [ a— |1 ]
C Ty |
LD -1

nECT, Juvnes, “Information theory
Phys. Rer., vol. 106, pp. 620-630,
171-100, October 15, 14957,

H = (l) (12)

and statistical mechanies,”
May 15, 1937; vol. 108, pp.

TRANSACTIONS ON INFORMATION THEORY

September

Teis i the Tiniit (0 — = that we ave offeetively removing
one Jetter from the alphabet; and g0 I - log (@ — 1).

From (8), (4), and (10) the condition for maximum
transmi=sion rate is

dH log 7

o= =T = 0, (13

T T ")
or log Z(\) = 0. Under these conditions, we find

I = X = €, the chamnel capucity; thus (8) and (9)
provide a simple alternative derivation of Shannon's rule
for caleulating channel capacity.?

In the case of the partition funetion (11), operation at
full channel eapacity ocenrs when H = A = ¢ = log a;
and (8) then gives (I) = a, as previously noted.

The case a = 32 corresponds to the English language,
if we consider the space and any five punctuation marks as
mmcluded in the alphabet. The avernge word length in
English is far less than 32 symbols, and varies with the
source. One thousand consceutive words from Shannon’s
fundamental paper® had a mean length (including the’
space) of 5.9 symbols; while a similar analysis of James
AMichener’s “qavomm” gave a mean length of only 5.4,
From Fig. 2, we find that because of Michener’s tendeney
to use shoxt words, unique decipherability by spacing
costs him 0.3 bit per symbol in information content,
while Shannon’s loss was only 0.25.

The many additional constraints in English cause the
actual transmission rate to fall considerably below the
semi-optimal rate. Taking Shannon’s estimate’® of the
redundancy of English as about 50 per cent, the actual
operating region of English text would be given roughly
by the circle in I'ig. 2. From this we see that 1) only about
15 per cent of the redundancy is due to use of short words,
and 2) the same rate of information transmission and the
same mean word length fo whieh we are accustomed could
be achieved with an alphabet of only 6 symbols (5 letters
and a space), if used at maximum ecfficiency,

GENERALIZATION

The above relations are easily generalized to the case
where the transmission time is different for different
symbols, and where we have other types of constraints.

2 Shannon, loc., cit., p. 26. Sce alzo C. E. Shannon, “Prediction
and Entropy of Printed Faglish,” Bell Sys. Tech J, vol. 30, pp.
50-64; January, 1931 Here the estimuted  re lndaney i in-
cressed to about 753 per cent, from experime nt\ in which human
subjeets attempted to restore missing purts of Fnglish text. How-
ever, the ability to do this may depend on semantic as well as purely
statistical factors; and in any event the only properties which could
be utilized for omodm" efficiently into @ =maller alphabet, are
known frequencies. Estimates based on measured letter and word
frequencies remuin not much greater then 50 per ecnt, the value
used ahove. Even these mensurements suffer from fundamental
ambignitios, some of which were pointed out by G, A, Burnard,
“Rtatistical calenlation of waord entropics for four western lan-
gunges,” TR Traxs ox Invorvarion Turory, vol. FE-1, pp.
19— .)3 Aareh, 1959, Fundamentally, uf eonrse, it is mmnnwk« to
cav that (here exists mx( and only one Prue’ xuhm(]qm\ for 12 ng-
lish text; one ean speak only of the redundaniey carresponding to
certain \l)(\]h( d statistical information,
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For example, let the Mth letter of the alphabet have trans-
niis-ton tine £, and denote the space by the «'th letter
howin (1 we Interpret 1 axs the total transimission time
of word @, and its evaduation = again clementary, with
the result

2~X!,
Z(N) = T 00 (1)
where
a-1.
Q(/\) = Z 2—)(1».
k=1

From this the channel capacity and transmission rate
under semi-optimal conditions may be found. Constraints
of the form that certain combinations of letters do not
occur may lead to involved mathematical problems, but
not to any new difficulties of principle. Shannon’s Theorem
1 shows® that one common type of constraint is included
if we generalize the partition function to a “partition
matrix,” operation at full ehannel capacity then occurring
when the greatest eigenvalue of this matrix is unity.

Of course, the quantity ¢, above need not be interpreted
as a time. It can equally well stand for the “cost,” as
measured on any basis, of transmitting the L'th symbol.
The theory then gives us the method of transmitting
which is most economical with respeet to this cost assign-
ment; semi-optimal transmission minimizes the average
cost per word for a given entropy per word.

RELATION TO STATISTICAL MECHANICS

The partition function (11}, with the number 2 replaced
by e, is almost identical to the one arising in quantum
statistical mechanics, describing a harmonie oscillator.
The operating characteristic in Fig. 2, for the case @ = 2,
represents nothing more than an unconventional way of
plotting the Finstein specific heat function of a harmonic
oscillator.

Each of the soluble problems of statistical mechanics
also provides the solution to a certain problem of infor-
mation transmission under constraints, and the math-
ematical analogy may be set up in other ways than the
one indicated here. In the above type of analogy, noted
before by AMandelbrot,® the mean word length corre-
sponds to the thermodynamic energy function, the param-
eter A to the reciprocal temperature. Thus the transmission
rate [T corresponds, not to the thermodynamic entropy
function, but to the ratio (entropy),(cnergy).

It is interesting that such a fundamental notion as
channel capacity has no thermodynamic analog. In
thermodynamies the absolute value of the entropy has
no meaning; only entropy differences can be measured in
experiments. Consequently the condition that [ s
maximized, equivalent to the statenient that the ITelmholz
free encrgy function vanishes (A = — 7'S = 0), corre-
sponds to no condition which could be deteeted experi-
mentally.

Jagres: Note on Usidgue Deetplicrability
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Generalization of the above analysis to the case where
the difierent words are no Tonger statisticadly independent
1= also straichtforward, and corresponds to the transition
I stadistieal from  the
“molecular’” viewpoint, 1o the Gibbsian “global” view-
point.! We mention two examples of the correspondence

mechinies Aaxwell-Boltzman

which then exists,

The partition function of the linear Ising chain,” with an
easy generalization, provides also an explicit solution to
the problem of encoding a message into binary digits, in
a way which is optimal from the standpoint of a person
who knows the digram frequencies of the source, but has
no other statistical mmformation. The corresponding
solution for trigrams would be of considerable interest
in conneetion with the theory of ferromagnetism.

The two-dimensional Tsing model of ferromagnetism,™
the partition function of which was first obtained by
Onsager, gives the =olution to a problem in which a mes-
sage in binary digits has strong correlations between ad-
jacent symbols, and also bhetween the n’th and the
(n 4 M)’th, where I/ iz a large fixed number. Its most
striking feature is a logarithmic singularity, signifying
physically a phase transition (ferromagnetic Curie point).
Translated into communication theory, it ean be said that
at a certain eritieal strength of the intersymbol correla-
tions, as measured by the parameter A, there occurs a
sudden collupse of transmission rate to a very low value,
dH /dX becoming infinite at a single point.™

CoxcLrsioN -~

Aluch of what we have said has already been pointed
out by others.®™ However, the basic mathematical
identity of these two fields has had, thus far, very little
influence on the development of either. There is an
inevitable difference in detail, because the applications
are so different; but we should at least develop a certain
area of common language, so that a worker in one field
can decide quickly whether work in the other has a bear-
ing on his problems.

We suggest that one way of doing this is to recognize
that the partition function, for many decades the standard
avenue through which ealculations in statistieal mechanies
are “channeled,” is equally fundamental to communi-
cation theory. Even within communication theory, there
are advantages to be had by adopting this terminology

13G. F. Newell and E. W, Montroll, “On the theory of the Ising
moadel of ferromagnetism,” Rev. Mod. Phys., voll 23, pp. 353:-389;
April, 1953,

1 This type of message structure strongly resemibles that occurr-
ing in certain stvles of muxic, where strong eorrelations appear
after an interval of 20 bars, n being asmadlinteger, This phenomenon
of eollapse in transzmission vate then hus some amusing implications,
which we leave for the reader to develop,

38 A peferee kindly informs me that the following reference also
contains material along the lines dizenzsed heres Apostel, Mandel-
brot, and Morf, “FLingulstic stutistique macroscopigue’” in “Logique,
Langage ot Theorie de 1Jinformation,” Presses Universitaires de

Franee, Pavis) | e LTS 1O5T,
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and notation as standard. FFor example, expressions of the
form 2 D™, which oceur repeatedly in coding theary,
are really partition functions, The “rather alzebraie”
pature of this theory derives in part from the faet that
often only one value of D ix considered. If we generalize
by setting D = 2%, with X a continuonsly variable param-
eter, we have a true partition funection, which has
analytical properties useful in deriving theorems; indeed,
this iz just what MeMillan® has doune. A partition funetion
Z(\) is, of course, the same as a generating function of
the variable ¢ = 27 ITowever, from a general standpoint
the partition function 1z a more powerful analytieal tool
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beeruse it remains single-valued wnder conditiongs where
the generating funetion would develop an infinite number
of Ricmann surfaces.

The way in which the partition function yvaries for
different values of X often tells ome the offeet of =ome
departure from ideal conditions. Thus, in the problen
treated above, we see from inspection of Fie, 2 that in
the caze of small alphabets it iz essontind (‘() enende in
such a wayv that the mean word length is held elose to
the optimal value; while in a large alphabet the mean
word length ean vary widely with very little effeet on
attainable transmission rate.



