THE MUSCLE AS AN ENGINE

*
E. T. Jaynes
St. John’s College
Cambridge CB2 1TP, England

Abstract: We speculate on principles governing energy conversion efficiency. It has
appeared to many that muscles achieve higher efficiency than allowed by the Second Law
of Thermodynamies (i.e., by Kelvin's formula for the efficiency of a reversible Carnot
engine). However, when reinterpreted in terms of energy per degree of frecdom rather
than temperature, Kelvin’s formula appears general enough to include heat engines,
muscles, and pure mechanisms. As a result, it may be possible to achieve in man-made
engines higher efficiency than would be supposed from conventional Carnot engine lore.

INTRODUCTION

We sometimes encounter statements of the genre: “Kelvin's formula for the
efficiency of a reversible Carnot engine

e=1—T/T" |, (1)

shows that the efliciency of every type of energy converter has a theoretical upper limit
that cannot be exceeded.” We wish to point out that Kelvin’s result applies, not to
every type of energy converter, but only to heat engines -- i.e., engines which operate by
extracting heat from one reservoir which is at thermal equilibrium at some temperature
T' and delivering heat to a similar reservoir at a lower temperature T .

But there is no reason why (1) should apply to engines that deliver work by a
different mode of operation. Indeed, the world’s most universally available source of
work -- the animal muscle - presents us with a seemingly flagrant violation of that
formula.

Our muscles deliver useful work when there is no cold reservoir at hand (on a hot
day the ambient temperature is at or above body temperature) and a naive application
of (1) would lead us to predict zero, or even negative efficiency. But according to
Lehninger (1965), under these conditions they still deliver an efficiency of about 20%.

According to Alberts, et al. (1983), under favorable conditions the efficiency of a
muscle can be as high as 70%, although a Carnot engine would require an upper
temperature T’ of about 1000 K to achieve this.
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The answer, of course, is that a muscle is not a heat engine. It draws its energy, not
from any heat reservoir, but from the activated molecules produced by a chemical
reaction. That is why we should always stress the word “heat” when discussing Carnot
engines.

Only when we first allow that primary energy to degrade itself into heat at
temperature T’ -- and then extract only that heat for our engine -- does the Kelvin
efficiency formula (1) apply. If we can learn how to capture that primary energy before
it has a chance to degrade, as our muscles have already learned how to do, then we
should be able to achieve higher efficiency than one would suppose from (1) in a man-
made engine. Of course, this would not be a violation of the second law; rather, to
achieve it will require a very clear understanding of what the second law really is.

THE ANTI-CARNOT EFFICIENCY

What efficiency might one hope for in such an anti-Carnot engine? There is no
reason to doubt that, with proper understanding, the performanece of our muscles could
be at least equalled in vitro. Now, whatever the theoretical maximum efficiency, it can
always be written in the form (1) if we wish to do so; the question then becomes: “What
are the effective upper and lower temperatures?”

As a partial answer we imagine that our engine will, like our muscles, eventually
discharge some heat to the outside world; then let us take T as the ambient temperature
-- which is, for our muscles, body temperature. What is the effective upper temperature
T" 1t appears to us that this was answered in a penetrating remark made by J. Willard
Gibbs in a letter to Sir Oliver Lodge, in 1887; it is the highest temperature to which the
activated molecules could deliver heat.

If the molecules with activation energy @ can deliver a fraction fQ of that energy
to a heat reservoir at temperature T”, then we could in turn use it to run a conventional
Carnot engine with upper temperature T”. Thus the theoretical maximum efficiency
must be at least as high as the maximum attainable value of

fA-T/T") . (2)

This little hint from Gibbs is all we need to understand the efficiency of a large class of
energy convertors.

If in the Kelvin formula (1) we replace temperature by what it amounts to -- energy
per degree of freedom W = (1/2)kT, we see before us an explanation and generalization
of (1):

e=1—W/W (3)

which does not look very different at first; but now we have removed the limitation of
thermal equilibrium on our energy source and sink. For “temperature” is defined only
for a system in thermal equilibrium, while “energy per degree of freedom” is meaningful
not only in thermal equilibrium, but for any small part of a system - such as those
activated molecules -- which might be far from thermal equilibrium.



One might then question whether such a nonequilibrium generalization of (1) is
valid. We may, however, reason as follows. Although conventional thermodynamics
defines temperature and entropy only in equilibrium situations, it cannot matter to an
engine whether all parts of its energy source are in equilibrium with each other. Only
those degrees of freedom with which the engine interacts can be involved in its efficiency;
the engine has no way of knowing whether the others are or are not excited to the same
average energy. The same applies to the low temperature heat sink.

Therefore, since (3) is unquestionably valid when both reservoirs are in thermal
equilibrium, it must be correct more generally, if we take W and W' to be the average
energy in those degrees of freedom with which the engine actually interacts. But then (3)
has a simple intuitive meaning.

To see this, note that at room temperature T the average thermal energy per
degree of freedom W = (1/2)kT is about 1/80 ev. A chemical reaction might leave a
product molecule in an excited state with perhaps E = 0.5 ev of excitation energy. If
this is concentrated in, say, N = 2 vibrational degrees of freedom, it thus represents a
tiny “hot spot” with energy E /N per degree*of freedom. The activated molecules would
have, as a class, an effective temperature T = 2W [Nk, of the order of 20 times room
temperature.

This, we conjecture, is the T’ that we should use in Kelvin’s formula (1) for the
maximum theoretical efficiency of a muscle. It is not a real temperature, but only the
effective temperature of those degrees of freedom that are supplying the energy. In effect,
we are using the activated molecules themselves as the heat reservoir of (2), so f =1
and T!' = T" = T*, and we recover just Gibbs' statement.

If T'/T = 20 and we convert the little bubble of concentrated energy from a single
molecule into useful work before it has a chance to thermalize by spreading out over 20
vibrational degrees of freedom, we should in principle be able to realize something like
95% conversion efficiency. Thus the values actually achieved by our muscles cease to be
puzzling.

From this viewpoint, the basic reason for the “second law” limitation on efficiency
is that we are trying to recapture energy that has spread in an uncontrolled way over
many degrees of freedom, and concentrate it back into a single degree of freedom, the
motion of a piston or tendon. But the engine must be able to do this reproducibly; i.e.,
whatever the details of excitation of all those molecular degrees of freedom.

It is then Liouville’s theorem -- conservation of microscopic phase volume -- that
places the limitation (3) on how much concentration of energy into a small phase volume
is possible. As we have noted before (Jaynes, 1965), if we interpret entropy as
S = klogV, where V is the phase volume compatible with any macrostate, equilibrium
or nonequilibrium, then the second law

S(final) > S(initial)

follows immediately from Liouville’s theorem, as a necessary condition for any process to
be reproducible. But in a fast process, that happens in a time so short that thermal



equilibrium of the whole system is never reached, only the phase volume of those degrees
of freedom actually involved in the interactions needs to be considered.

Indeed, if the primary energy is concentrated in a single degree of freedom and we
can extract it before it spreads at all, then our engine is in effect a “pure mechanism”
like a lever and W'is the work delivered to it. The generalized efficiency (3) then reduces
tol — kT /2W' or

(Work out) = (Work in) — (1/2)kT . (4)

The work we can expect to get out of a lever is not quite all that we had put in!

It may seem strange to see a pure mechanical formula thus amended by
thermodynamics. But a little further thought makes it clear that (4) is indeed correct;
the last term is just the mean thermal energy of the lever itself, which cannot be
extracted reproducibly. At least, if anyone should succeed in doing this, then he would
need only to wait a short time until the lever has absorbed another (1/2)kT from its
surroundings, extract that, and repeat -- and we would have the perpetual motion
machine that the Second Law holds to be impossible.

The simple generalization (3) of Kelvin's formula thus appears to have a rather wide
range of application.

TENTATIVE CONCLUSIONS

What do the known facts of biology tell us about these questions? The currently
popular myosin bridge mechanism for striated muscle contraction (Alberts, et al., 1983)
fits in quite nicely with these speculations; the bending of that bridge is a degree of
freedom that seems well adapted to transferring its energy, while resisting rapid
thermalization.

Of course, we are not pretending to make any new contribution to biology by these
remarks; rather we are speculating about the possibility of advancing the technology of
energy convertors by taking hints from how Nature has managed it in biology.

Having seen this biological mechanism, it is easy to believe that many other kinds of
macromolecules could be “designed” to do similar things, perhaps more easily. In time
the design of useful anti-Carnot molecular engines (artificial muscles) might become
about as systematic and well understood as the design of dyes, drugs, and antibiotics is
now. However, a prerequisite to this is a clear understanding of the physical principles
that must govern energy conversion in any system, biological or otherwise.

In the attempts of L. A. Blumenfeld (1983) to relate efficiency of biological energy
conversion to physical principles, he states that (A) high efficiency requires the energy
conversion process to be reversible; and (B) reversible behavior is fundamentally
impossible in a system of molecular size, because of the uncertainty principle. In some
similar remarks (C), Elsasser (1966) invokes the uncertainty principle to place
fundamental limits on mechanistic analysis in biology. Our thinking has led us to just
the opposite conclusions:



(A) The Carnot principle and low “second law” efficiency of present engines are
only consequences of the thermalization process (the primary chemical energy is allowed
to degrade into heat before being used). If we can avoid the thermalization, Carnot
engine lore must be modified as noted above. It is satisfying that the same formula
holds, only reinterpreted.

(B) For efficient conversion of chemical energy into mechanical energy the
conversion must proceed directly and quickly. Far from being impossible in systems of
molecular size, this almost requires that the moving parts receiving the primary energy
be of molecular size, because the useful output energy must be delivered to a single
degree of freedom. We speculate that this is just the reason why biological systems have
accomplished it, and human engineers have not.

(C) Instead of present quantum theory placing limits on the possibilities of
mechanistic analysis in biology, the continued success of mechanistic analysis in biology
may some day show us the limits of validity of quantum theory.

Thus it appears to us that the second law and the uncertainty principle place
virtually no limitations on what can be done in conversion of chemical energy to
mechanical work; the field is wide open for clever inventors, who may at any time do
what we have all been taught is impossible.
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