Lecture 7

QUEER USES FOR BAYES' THEOREM

I. J. Good {(Good, 1950} has shown how we can use Bayves' theorem backwards
Lo measure our own strengths of belief about propozsiticns. For example,

how strongly do you believe in extrasensory perception?

7.1. Extrasensory Perception.

What preobability would you assign to the proposition that Mr. Smith
has perfect extrasensory perception? He can guess right every time which
number you are thinking of. Well now, to say zero--that, of course, 1is
dogmatic, According to our theory, if yvou start out at -« db, this means
that you are never going to allow your mind to be changed by any amount
of evidence, and you don't really mean that. But where is our strength
of belief in a propocsition like this? Our brains work pretty much the way
this robot werks, but we have an intuitive feeling for plausibility only
when it's not too far from 0 db. We feel that something is more than likely
to be so or less than likely to be so. We get fairly definite feelings
about that. So the trick is to imagine an experiment. How much evidence
would it take to bring my state of belief up to the place where T felt
very perplexed and unsure about it? Not to the place where I believed it--
that weuld overshoot the mark, and again we'd lose our resolving power.

How much evidence would it take to bring vou just up to the peint where

you were keginning to consider the possibility seriously?
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We take this man who says he has extrasensory perception, and we will
write down some numbers from 1 to 10 on a piece of paper and ask him to
guess which numbers we've written down. We'll take the usual precautions
to make sure against other ways of finding out. All right, if he guesses
the first number correctly, of course we'll say "vou're a very lucky person,
but I don't believe it." And if he guesses two numbers correctly, we'll
say "vou're a very lucky person, but I don't believe it." By the time he's
guegsed four numbers correctly--well, T still wouldn't believe it. So my
state of belief is certainly lower than -40 db. How many numbers would he
have to guess correctly before you would really seriously consider the
hypothesis that he has extrasensory perception? In my own case, I think
gsomewhere around l0. My personal state of belief is, therefore, about
-100 @b, You could talk me into a +10 change fairly easily, and perhaps

+20; but not much more than that.

7.2. Bayesian Juxisprudence.

It is interesting also to apply Bayes' theorem to various situations
in which we can't really reduce it to numbers very well, but still it shows
avtomatically what kind of information weuld be relevant to help us do
plausible reasoning. Suppose somecne in New York City has committed a wmurder,
and vou don't know at first who it is. Suppose there are 10 million people
in New York City. On the basis of no knowledge but this, e(Guilty]X) = =70 db
is the plausibility that any particular perscn is the guilty one.

How much positive evidence is necessary before we decide some man should
be put away? Maybe +40 db, although your first reaction may be that this
is not safe encugh, and the figure ought to be higher. If we raise this
figure, we give increased protection to the innocent, but at the cost of

making it more difficult to convict the guilty; and at some point the
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interests of society as a whole must take precedence over sentiment.

For example, if a thousand guilty men are set free, we know from only
too much experience that two or three hundred of them will immediately
proceed to inflict still more crimes upon society, and their escaping justice
will encourage a hundred more to take up crime. So, I think it is clear
that the damage done to society as a whole by allowing a thousand guilty
men to go free, is far greater than that caused by falsely convicting one
innocent man. If you have a sentimental reaction against this statement,

I ask you to think: if you were a judge, would vou rather face one man
whom you had convicted falsely; or a hundred Victims of crimes resulting
from your lenience? Setting the threshold at +40 db will mean, crudely,
that on the average not more than one conviction in ten thousand will be

in error; a judge following this rule will probably not make one false
conviction in a working lifetime on the bench. It seems to me that this

is a reascnable figure that we can accept. Obviously, however, this matter
ought to be researched much more carefully than we can do here.

So, i1f we took +40 db starting out from -70, this means that in order
to get conviction you would have to produce about 110 @b of evidence in
favor of the guilt of this particular person.

Suppose now we learn that this person had a motive., What does that do
to the plausibility of his guilt? Well, Bayes' theorem says

{Motive|Guilty)
(Motive|Not Guilty)

e(Guilty|Motive) = e(Guilty|X) + 10 logy 4 (7-1)

12

- 70 - 10 log (Motive [Not Guilty)
10

12

since (Motive|Guilty) 1; i.e., we consider it gquite unlikely that the
crime had no motive at all. Thus, the significance of learning that the

person had a motive depends almost entirely on the prcobability (Motive|Not

Guilty) that an innocent person would alsc have a motive. This evidently
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agrees exactly with our common sense; if the deceased were kind and loved

by all, hardly anyone would have had@ a motive to do him in. Learning that,
nevertheless, our suspect did have a motive, would then be very significant
information. If the victim had been an unsavory character, who took great
delight in all sorts of foul deeds, then a great many people would have a
motive, and learning that our suspect was one of them, is not so significant.
The point of thig is that we don't really know what to make of the information
that our suspect had a motive, unless we also know something about the
character of the deceased. But how many members of juries would realize

that, unless it was specifically peinted out to them?

Suppose that a very enlightened judge, with powers not given to judges
under present law, had perceived this fact and, when testimony about the
motive was introduced, he directed his assistants to obtain for the jury
the most reliable data possible on the number of people in New York City
who had a motive. This number was N . Then

N, - 1 ;
(Motive|Not Guilty) = = 1077 (N - 1)

(number of people in New Yoxrk) - 1 m

and equation (7-1) reduces, for all practical purposes, to

e(Guilty|Motive) * - 70 + 10 log {107/(N, - 1}] = - 10 log (Ny-1). (7-2)
You see that the population of New York has cancelled out of the eguation;
as soon as we know the number of people who had a motive, then it doesn’'t
matter any more how large the city was.

Well, you can go on this way for a long time, and I think you will find
it both enlightening and entertaining to do so. PFor example, we now learn
that the suspect had bought a gun the day before the crime. Or that he
was seen at the scene of the crime shortly before. If you have ever been
teld not to trust Bayes' theorem, you should follow a few examples like

this a good deal further, and see how infallibly it tells vou what information
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would be relevant, what irrelevant, in plausible reasoning. Even in situa-
tions where we would be quite unable to say what numerical values should
be used, it still reproduces gualitatively just what your common sense

(after perhaps a little meditation) tells vou.

7.3. Testing Scientific Theories.

Another class of applications of Bayes' theorem, which has been dis-
cussed vigorously by philosophers of science for over a century, concerns
the reasoning process of a scientist, by which he accepts or zejects his
thecories in the light of the observed facts. I menticned in the second

lecture that this consists largely of the use of two forms of syllogism,

If A, then B If A, then B
one strong: B false , and one weak: B true
2 false A more plausible

We see that these correspond to the use of Bayes' theorem in the forms

_ (b|2) , (BiA)
(alp) = alx (—b‘x—) @B = &|x Gy

respectively., It is at once obvious that Bayes' theorem accounts for the
strong syllogism; for if (B|A) = 1, Bayes' theorem gives (&|b) = 0; our
rules for plausible reasoning include those of deductive reascning as a
special case.

Interest here centers on the question whether the second form of Bayes'
thecrem gives a satisfactory quantitative version of the weak syllogism.
Let us consider a specific example given by Professor George Polya [Polya,
1954; Vel, II, pp. 130-132]. The planet Uranus was discovered by Herschel
in 1781. Within a few decades (i.e. by the time Uranus had traversed about
cone third of its orbit), it was clear that it was not following exactly the
path prescribed for it by the Newtonian theory (laws of mechanics and
gravitation). At this peint, a naive applicaticon of the strong syllogism

might lead one to conclude that the Newtonian theory was demolished. However,
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its many other successes had established the Newtonian theory so firmly
that to the French astroncmer Leverrier, an alternative hypothesis was
rendered more plausible: there must be still another planet bevond Uranus,
whose gravitational pull is causing the discrepancy.

Working backwards, Leverrier computed the masz and orbit of a planet
which could produce the ohserved deviation and predicted where the new
planet would be found. B2An observatory recelved Leverrier's prediction on
September 23, 1846, and on the evening of the same day, the new planet
(Neptune) was discovered within one degree of the predicted position!

Instinctively, we feel that the plausibility of the Newtonian theory
was increased by this little drama. The question is, how much? The attempt
to apply Bayes' theorem to this problem will give us a good example of the
complexity of actual situations faced by scientists, and also of the caution
which must be exercised in reading the rather confused literature on these
problems,

Following Polya's ncotation, let T stand for the Newtonian theory, N
for the part of Leverrier's prediction that was wverified. Then Bayes' theocrem
gives for the posterior probability of T,

(N|TX) .

(T[M) = (T|X) %) (7-3)
Suppeose we try to evaluate (NIX). This is the prior probability of W,
regardless of whether T is true or not. Since N = N(T+t) = NT + Nit, we
have, by applying Rule 3, then Rule 1,
(N|X) = (NT + Nt|X) = (NT[X) + (t]X)
= (N|TX) (T]X) + ] ex) (£|%) (7-4)

and you see that {N|tx) has intruded itself into the problem. But in the

problem as stated this quantity is not defined; the statement t = "Newton's

theory is false" has no definite implications until we specify what alterna-
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tive we have to put in place of Newton's theory.

For example, if there were only a single possible alternative according
te which there could be no planets beyond Uranus, then (N|tX) = 0, and Bayes'
thecrem would again reduce to deductive reasoning, giving (T|N} = 1, indepen-
dently of the prior probability (T[X). On the other hand, if Einstein's
theory were the only possible alternative, its predictions do not differ
appreciably from those of Newton's theory for this phenomenon, and we would
have (N|tX) = (T|X), whereupon Bayes' theorem reduces to (T|N) = (T|x).
Verification of Leverrier's prediction might elevate the Newtonlan theory
to certainty, or it might have no effect at all on its plausibility! It

depends entirely on this: Against which specific alternatives are we testing

Newton's theory?

Now tc a scientist who is judging his theories, this conclusion is the
nost obvious exercise of common sense. Yet statisticians have developed
criteria for accepting or rejecting theories (Chi-squared test, etc.) which
make no reference to any alternatives. A practical difficulty of this
was polnted out forcefully by Sir Harold Jeffreys {(Jeffrevs, 1939); there
is not the slightest use in rejecting any hypothesis H unless we can do it
in favor of some definite alternative H' which better fits the facts.*

Bayes' theorem tells us much more than this: unless the observed facts

are absolutely impossible on hypothesis H, it is meaningless to ask how

much those facts tend "in themselves" to confirm or refute H. WNet only

the mathematics, but also our common sense (if we think about it for a

minute) tells us that we have not asked any definite, well-posed question

*I don't mean to argue against the use of the Chi-squared test itself:
later in these lectures, when we take up significance tests, we will see
that in some cases it 1s very nearly the right test toc answer a different
gquestion, namely: "Within a certain specified class of alternatives H',
do any exist which better f£it the facts, and how much improvement in fit
is possible?"
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until we specify the possible alternatives to H.
Of course, as the obserwved facts approach impossibility on hypothesis
H, we are led to worry more and more about H; but mere imprcbability, however
great, cannot in itself be the reason for doubting H. For example, 1f I
toss a coin 1000 times, then no matter what the result is, the specific

observed sequence of heads and tails has a probability of only 2_1000,

or
minus 3000 decibels, on the hypothesis that the coin is honest., If, after
having tossed it 1000 times, I still believe that the coin is honest, it

can be only because the chserved sequence 1s even more improbable on any
alternative hypothesis that I am willing to consider seriously. This situa-
tion will be analyzed more deeply later on, where it will lead to a general
formulation of significance tests.

We see here that, even when the application is only qualitative, classi-
cal probability theory is still useful te us in a normative sense; it iz the
test by which we can detect inconsistencies in our own reasoning. Some
authors have argued strongly against the use of Bayes' theorem for testing
hypotheses. But when we take the trouble to learn what it actually says,
we find that Baves' theorem tells immediately what is needed before we
have any rational criterion for testing hypotheses.

This brings us to some comparisons with the literature. In Polya's
discussion of Bayes' theorem applied to the status of Newton's theory before
and after Leverrier's feat, no specific alternative to Newton's theory is
stated; but from the numerical ﬁalues used (loc. cit., p. 131) we can infer
that the alternative H' was one according to which it was known that one
more planet existed beyond Uranus, but all directions on the celestial
sphere were considered equally likely. Unfortunately, in the calculation
no distinction was made between (N|X} and (N|tx); and consequently the

quantity which Polya interprets as the ratio of posterior to prior probabi-
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lities of Newton's theory, is actually the ratio of posterior to prior

odds. This is, in our notation, (N|TX)/(N|tX) = (N|TX)/(N|H'®) = 13,000.

The conclusicns are much more satisfactory when we notice this. What-
ever prior probability (T|X) we imagine Newton's theory to have, if H' is
the only alternative considered, then verification of Leverrier's prediction
increased the evidence for Newton's thecry by 10 logy4(13,000) = 41 decibels.
Actually, if there were a new planet, it would be reasonable to adopt a
different alternative hypothesis H", according to which its orbit would lie
in the plane of the ecliptic, as Polya points out. If, on hypethesis H",
all values of longitude are considered equally likely, we might reduce this
figure to about 10 log;o[ M|TX)/M|H"X)] = 10 log,,(180) = 23 decibels.

In view of the great uncertainty as to just what the alternative is, it
seems to me any value between these extremes is more or less reasonable.

There was a difficulty {which Polya interpréted as revealing an incon-
gistency in Bayes' theorem), that if the probability of Newton's theory
were increased by a factor of 13,000, then the prior probability was neces-
sarily lower than (1/13,000}; but this contradicts common sense, because
Newton's theory was already very well established before Leverrier was
born. Recognitien that we are, in the above numbers, dealing with odds
rather than probabilities, completely removes this objection and makes
Bayes' theorem appear guite satisfactory in describing the inductive reason-
ing of a scientist. This is a good example of the way in which objections
to the Bayes-Laplace methods which you find in the literature, disappear
when you look at the problem more carefully.

But the example also shows clearly that in practice the situation
faced by the scientist is so complicated that there is little hope ef apply-
ing Bayes' theorem to give gquantitative results about the relative status

of theories. Also there is no need to do this, because ths real difficulty
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of the scientist is not in the reasoning process itself; his common sense

is guite adequate for that. The real difficulty is in learning how to
formulate new alternatives which better fit the facts. Usually, when one
succeeds in doing this, the evidence for the new theory scon becomes so
overwhelming that no one needs probability theory to tell him what conclusions

teo draw. So, I would say that in principle the application of Bayes' theorem

in the above way is perfectly legitimate; but in practice it is of very

little use to a scientist.

7.4. Different Views on Prchability Theory.

Professor L. J. Savage (Savage, 1954) has written an excellent survey
of the foundations of statistics, in which he clearly recognizes, and gives
a rigorous discussion of, many of the points that I am trving to put across
here in a more informal way. He gives a broad classification of attitudes
toward probability theory into three different camps:

(a} Obijectivistic. Probability has nothing whatsocever to do with

"degree of reasonable bhelief" or inductive reasoning. By
"probability” we must mean only observable frequencies in inde-
pendent repetitions of a random experiment.

(b} Personalistic. Probability can be used legitimately to describe

the degree of confidence that a particular individual has in
the truth of a proposition, but probability assignments are not
unigue; two individuals having the same prior evidence may assign
different probakilities without either being unreascnable.

(¢) '"Necessary views hold that probability measures the extent to
which one set of propositions, out of logical necessity and apart
from human opinion, confirms the truth of another. They are

generally regarded by their holders as extensions of logic, which
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tells when one set of propositions necessitates the truth of
another."

Here I have merely summarized Savage's description of cbjectivistic
and personalistic views, but quoted his statement about "necessary" views
in full. This is the view which he lmputes to Laplace; or more accurately,
Laplace's view is described (p. 278) as a "naive necessary one,"

I want to say something about each of these adjectives, because I am
expounding a viewpoint which I believe is the same as Laplace's (although
from this distance in time, there is no way to be sure of that in every
detail) . Since the term "necessary" was coined by Savage, we have to accept
its definition as given above; but we can still ask whether the definition
properly describes Laplace's view (or the one I am developing, if there is
any difference). Now in order to answer this, it would clearly be absurd
to try to consult every statement about probability made by, or in the name
of, Laplace. We have to distinguish clearly between probability theory
and things that have been said about probability theory; too often, they
are entirely different. The only way to find out what Laplace's form of
probability theory "really says" about some question is to look at the
eguations Laplace gave us, in some specific case where the question comes up.

Now, where is an eguation which says that probability measures the
extent to which one set of propositions, out of logical necessity, confirms
the truth of another? Where, indeed, is the relation in logic which tells
when one set of propositions necessitates the truth of another? The relations
of logic are of the form, "If A implies B, and iﬁ B implies ¢, then ...."
There is nothing in logic which tells us whether A does in fact imply B.

In other words, the relations of logic are only rules for the consistent

manipulation of implications; they do not tell us whether some proposed impli-

cations are correct, but only whether they are mutually consistent,
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It is exactly the same in probability theory. The basic equations are

simply,

(aB|C) = (a|BC) (B|CQ)

(alsy + (alB) =1
These, vou see, are again statements of the form, "If C implies B to the
extent (B|C), and if BC implies A to the extent (A!BC), then ...." There is
nothing which tells whether C does in fact imply B to the extent (B]C). In
other words, the relations of probability theory are only rules for the

consistent manipulation of partial implications; they do not tell us whether

some proposed prokability assignments are correct, but only whether they are
mutually consistent.

If, on meditation, I decide that my personal probabilities are [B|C) =
3/4, (a[BC) = 4/5, (AB|C) = 1/2, then probability theory tells me that I am
reasoning inconsistently. It does not tell me how to resolve that inconsist-
ency.

But we can, in the case of probhability theory, make a much stronger
statement. What did we just learn? How much did verification of Leverrier's
predicticn N, cut cof logical necessity, confirm the truth of Newton's theory
T? Bayes' theorem not only did not answer this, but it explicitly stated

the opposite of the "necessary" view: Unless N is absolutely impossible on

hypothesis T, it is meaningless to ask how much N, in itself, confirms the

truth of T.

How about Rule 47 Isn't that an equation that tells us that one propo-
sition does, out of logical necessity, confirm the truth of ancther to a
definite extent? No, it isn't. Mathematically, the rule asserts one thing,
and one thing conly: 1if the sum of N equal numbers is unity, then each of the

1

numbers must be N . Rule 4 assigns definite numerical values to probabilities

only after we have arbitrarily specified the set of propositicns ByeanBy that
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we're going to consider. Nothing in probability theory tells us that this
specific set of propositions was the right szet to introduce.

Congider two different problems; in problem (1) we have W different
propositions, Al vas AN. In problem {2) we have one more proposlition AN+1
that must be taken into account. In general, for a given specific piece of
evidence E, the probability (Al]E) will be different in the two problems.

We saw this in detail when we studied multiple hypothesis testing in Lecture
6; additicn of hypothesis D to the problem completely changed the numerical
value of (A|E).

Probability theory not only does not say that evidence E confirms the
truth of & to scme definite extent; it explicitly denies that any such rela-
tion exists. The probability (A|EJ dees neot depend only on A and E; it
depends alsc on which alternatives to A we are considering, and it is mathe-
matically indeterminate until those alternatives have been specified.

So, I think we have to plead "not guilty" to any charge that Laplace's
formulation of probability theory is a "necessary" one. Indeed, 1f anyone
is guilty of supposing that one proposition confirms the truth of another to
any unigue extent, it is the "objectivist" who teaches his students how to
accept or reject hypotheses without considering the alternatives. Laplace's
theory will not allow us to commit that error of reasoning.

Why have I answered this cbjection at such great, and repetitious, length?
For several decades, authors of works on probability and statistics have
been repeating the charge that Laplace's theory is nonsense because it supposes
that for any two propositions A, B, there is a definite numerical value of
(A[B). The most casual glance at Laplace's eguations shows that this is
simply not true.

I think the trouble comes ultimately from some unfortunate historical

accidents. After Laplace's death, some nineteenth~century philosophers made
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ridiculous misapplications of probability theory, asserted that their non-
sensical conclusions were "mathematically proved," and invoked the authority
of Laplace to back them up. No man's reputation ever suffered more from the
antics of enthusiastic but uncritical friends. The rise of the "objectivist"
viewpeint in the twentieth century is an understandable, but misdirected,
reaction against this lunacy. Instead of analyzing the transgressions and
learning how to avoid such mistakes in the future, it was much easier to
attack Laplace.

On the other hand, isn't it perfectly obviocus that probability theory

is an extension of legic, in exactly the sense alluded to by Savage? Proba-
bility theeory fills in the gap between logical proof and disproof and shows

us how to reascn consistently in the intermediate region where, of necessity,
virtually all of our actual reasoning takes place. It clearly includes
deductive logic as a special case. I am continually amazed at the caution
with which mathematicians approach this issue, and at their extreme reluctance
to take the problem of inductive reasoning seriously. One gets the impression
that an extension of logic is some enormously difficult, and probably impos-
sible, problem which crdinary mortals had better leave alone.

Part of our communication gap here lies in the fact that no one has ever

given an explicit answer to this question: What is it that we should prove
about a propesed extension of logic before mathematicians will take it
seriously? What are the tests that it has to pass? If vou demand a proof
that Laplace's theory is "correct," then I'm afraid I don't know what the
questlon means. If you want to see a proof that it is the only possible
extension of logic, then I would reply that it is surely not unigue. But I
think we have given fairly convincing arguments for the view that it is the
only possible extension of logic which ig internally congistent and represents

s

degrees of plausibility by real numbers. You can, of course, hope to sec
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more rigorous and more general arguments than I have given; and I hope that
you will. 1In this connecticn, let me just mention that the book of Savage
(Savage, 1954) contains a great deal of this more refined analysis using
measure theory, which is applicable to ocur problem.

How about other kinds of extensions of logic, in which we don't repre-
sent plausibility by real numbers? The possibilities of such "lattice
theories" seem endless, and I want to say a little more about them in the
last lecture. However, before dashing off to explore them, one should
realize this: unless and until some specific failure of Laplace's theory
is discovered, we have no rational basis for saying that a different theory
is any better than the one we already have, and no clue to tell us in what
way we should want another theory to be any different.

S0, I would like to propose this as a working procedure. Let's take
the good points of Savage's definition of "personalistic” and "necessary"
views and combine them into a single definition; and above all, let's acknow-
ledge their proper source:

(d) Laplace's Theory. Probability theory is an extension of logic

which describes the consistent inductive reasoning of an idealized
being who represents degrees of plausibility by real numbers.

The numerical value of any probability (A’B) will in general

depend not only on A and B, but also con the entire background

of other propositicns that this being is taking inte account. &
probability assignment is "subjective" in the sense that it describes
a state of knowledge rather than anything which could be measured

in an experiment; but it is completely "objective" in the sense

that it is independenp of the perscnality of the user; two beings
with the same total background of knowledge must assign the same

prebabilities.
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Now for that other adjective, "naive". This is more difficult to discuss,
becaugse it is vague. A dictionary definition of naive is: "of unaffected
simplicity.” To call any mathematical theory naive in that sense is, I think,

very great praise; and praise of which Laplace's theory is fully deserving.
But I don't think Savage meant it in that way. I think he meant that Laplace
did not hesitate to apply probability theory in all sorts of problems where

a modern statistician would fear to tread. Our little excursion intc juris-
prudence is, no doubt, a good example. But, of course, if probability theory
really is an extension of logic, there shouldn't be any restriction on the
kind of problem treated; in principle, we ought to be able to apply it to
any situation where plausible inference is needed. The only way of judging
whether this is so, 1s simply to apply Laplace's theory to many specific

situations, particularly those where the objectivists have warned us not

to use it, and see for ourszelves just how naive the results are, and whether
the objectivist can produce any better results. We have already done some
of this in the last three lectures, and many more examples will come up in

later ones.
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