Lecture 15

SURVEY OF ORTHODOX PRINCIPLES

Now I want to turn to a few other topics which come under the heading
of clearing up various questions that were left dangling in previous lectures.
We need to have an understanding of the terminclogy and the various concepts
and principles of orthodox statistics in order to make comparisons and refer
eaglily to the existing literature. We have already examined the principle
of maximum likelihood in Lecture 9, and in the last two lectures we saw some-
thing of the orthodox principles for point estimation of parameters, and
the orthodox approach to decision theory. This seems like as good a time as
any to extend the list.

The methods to be described are now obsclete, in the sense that Bayesian
methods either include them as special cases, or improve on them. MNeverthe-
less, they exist, the literature is full of them, and they will continue to
appear in the literature throughout ocur lifetimes, because many Statistics
Departments are still teaching them to thelr students as if Bayesian methods
didn't exist. So, we have no choice but to learn the terminclogy of orthodox
statistics,

However, don't get the impression that there exists any definite mono-
lithic "orthodox thecrv." In fact, orthodox statistics is a mish-mash of
mutually contradictory ad hoe principles, and there are just as many--and
just as bitter-controversies between different workers within the orthodox

school as between orthodox and Bayesian advocatss.
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15.1. Sufficient Statistics.

Given a sampling distribution function (xl...x Ia) and a proposed esti-
1
mator B(xl...x ) of o, let us carry out a change of wvariables (xl...xn) -
n
v h that = N d the j bi J = A M.
(yl yn) sug a Yl B(Xl xn) an e jacobian atyl yn}/Q{Kl xn}
is finite and not identically =zero. Then the sampling distribution function
of the Y, is
(y,...v o) = (x,...x ‘a)|J|_l (15-1)
1 n 1 n

By our Rule 1, this can be factored:
(v, ..oy oy = (By,...v [0) = (8]@) (v,...y_|Ba) (15-2)
Suppose now that (y2...yn|8u) turns out to be independent of w. This is
equivalent to saying that the original sampling distribution can be factored
in the form
(xq.ox Ja) = glxg..ax)) (Bla) (15-3)

where g{xl...x l = (v ...y iSJ]JI can be expressed as a function of the x
1 n

2 ir

not involving o, Therefore, if B iz known, knowing the value of o would

give us no more informaticon about the sample. Conversely, it seems intuitively

that if B is known, then knowledge of (yz...yn) could give ug no further

information about «; i.e. all the information in the sample, that is relevant

for inference about a, 1s contained summarized in the single function B(xl...xn).
Let ug check whether this is true. The ultimate criterien is, of course,

whether the conjectured property can be derived from Bayes' thecorem; i.e.

whether the posterior distribution (alxl...xn} depends on the sample only

through the function B{xl...x .

n

This distribution has the form

. a = 15-4
(afx - ox ) F o ) ) (15-4)

where f{a) is a prior probability density.
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Substituting {15-3) into this, we obtain

(8] o) glx ...x ) £lo)

(a]x ...x ) = {15-5)

n J’(Bla) g(xl...xn) fla) do
Since g(xl...xn) does not depend on «, it cancels out, leaving us with

(] %) = (B]a) £(a)
S (Bla) fla) du

(15-6)

which says, as conjectured, that the posterior probability distribution of o
depends only on the particular function B(xl...an of the sample values.
All other properties of the sample are irrelevant for inference about o.

In this case, B is said to be a sufficient statistic for a, a terminology

introduced by Fisher, More generally, any function f(xl...xn) of the sample
values is called a "statistic."
For example, let o be the unknown mean value of a gaussian distribution

of known variance ¢2. Then

(x X |u) = A exp| - L zn {x. - a)2 (15-7)
1°*%n 202 Li=1 ‘%4

where A is a normalizing constant. Rearranging, we have

= _.n 2 _ - 2
(xl...xn[a} A exp[ pyna (x 2ax% + o )]
= A exp[ - -—z-nsz 1 exp [ - _Tn (x - a)z] (15-8)
2q 20
where
— 1 <01
% = ; zi=l x5 {15-9)
= _ 1" 2
x* = = i1 % (15-10)
s = x2 - x¢ (15-11)

are the sample mean, mean square, and variance respectively.

Suppose we propose the sample mean as our estimator; i.e. we take

Blx ook 2 X = % E’;_l % (15-12)
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The sampling distribution of B is

(Bla) = f del...dxn a(g - %E xi} (xqoeox o) (15-13)

To evaluate this, it is easier to take first its Fourier transform, or char-

acteristic function:

b (k) = <eik8> = Im Bla) o™ ag

20 o . k
i—f{x +...4+x )
dx az e ™ 1 P x_|a)
1= o n 1" n

o

The integration is elementary, and we find

2.2
4(k) = exp [ ik - an ] (15-14)

Then, inverting the Fourier integral, we have

oo

1 -ik
(Bla) = Py p(k) e kB dk
n 2
= 2_”—1;2- exp[ - EZ— (B jnd 0‘.) ] (15—15)

But, comparing with (13-8), we see that the factorization property (15-3)
does hold for this estimator, and consequently £ is a sufficient statistic
for estimation of wo.

Conversely, applying Baves' theorem {14-4), we find

jo]

exp[ ~ 55T (oo - ;)21 £ l{a)
" {15-16)

fexp{— o7 (© —E)Z]_f(a) do

(u[xl...xn}

which says again that the sample mean % is a sufficient statistic for estimation
of . The parameter g would be termed the "population mean" by the statistician.
However, this underlying "population™ is entirely fictitious in most real
problems.

If the mean ¢ and standard deviation ¢ are both unknown, we can apply

Bayeg' theorem to find their joint posterior probability density (ac[xl...xn).
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In this case we need the correct normalization constant for the sample distri-

bution function:

_on {_ (x4 —a)z} ]
(xl...xnra,U) Hi=1 /E;EI exp —~l§E?—— {15-17}
Bayes' theorem then vields, with priocr probability density £(a,g):
A fla,q0) n -
(wo|xq. .2 ) = == exp[— 3.7 [s7 + (a - )213 (15-18)

where A i1s a normalizing constant independent of u and g. Since only the

. - 2 - 2 . .
sample mean and variance x, s appear here, x and 8 are jointly sufficient

for ¢ and o, a fact that I mentioned briefly at the end of Lecture 6. In
general (15-18) will show some correlation between ¢ and ¢; but if we just
want the best estimates of each independently of the other, we get them from

the marginal distributions obtained by integrating out the unwanted parameter:

(o]xy. .. ) = Jn(aclxl...xn} do (15-19)

(U]xl...x ) \[(aofxl...xn} do (15-20)

i

Similarly, let Q0 < o < 1, ©

1A

X: < =, and consider the distribution

1
31 £y
(ry-oxpJo) =AW " o (15-21)
Since this factors:
(pnox o) = & (xp...x )P 77 (15-22)

we find as before that the sample mean % is a sufficient statistic for o,
and the best estimate of o, by the criterion of any loss function, will be
some function 8(%} of the sample mean only.

Likewise, consider the rectangular distribution

n
Geyooem foy = T £ (xp) (15-23)

1

where
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£ ={at, Osxsa (15-24)
a, o < X
Thus,
0 Xpdn * 0
(xl...xnia) = a B, 0« Xoin € Xmax & ° (15-25}
0, O < Xpax
where Xmin’ xmax are the minimum and maximum cobserved sample valuss. The

posterior distribution (a[xl...x )} depends on the Xy only through X onse? (and,

Il
of cocurse, on the number n of observations). Consequently Xk is a sufficient
statistic for estimation of a; or, iv a little different terminology often

found in the literature, X hax and n are jointly sufficient.

Evidently, the condition for existence of a sufficient statistic is

that a single function y(x ..xn} of the sample walueg must exist gsuch that

1
(xl...xnfa) factors into the form
(xl...xnjal = g(xl...xn} hiy,a). (15-26)
For the rectangular distribution, this is the case with y(xl...xn) = X’
g(xl...xn) = 1, and
-1n
a T, a>y
hiy,a) = {15-27)

A gufficient statistic deoes not always exist. For example, the Cauchy distri-

-1

n
bution (xl...xnla} = A Hi [1 + {xi - a}zl deces not admit any factorization

=1

of the form (15-26), nor does the truncated exponential distribution (xl...xn[a)

= A exp[—a(xl+ .. +xn)], 0 < xl...xn < ¢, But in the latter case E_and

X are Jjointly sufficient for a.
max
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15.2. Efficient Estimates.

I have already pointed out [Eg. (13-38)] that the c¢riterion of minimum
ax-expected loss does not in general lead to any specific "best" estimator

B(xl...xn), but it may do so in some special cases. We can now exhibit one

such special case. Consider a gquadratic loss funection L(a,p) = (B - a)2,
and independent sampling so that
gz fo) = £lx,0) £lxy,a) ... £lx_,a) (15-28)

An estimator B which minimizes the w-expected loss was called "efficient"

by R, &, Fisher. In some of the later literature, however, the term "efficient"
is taken to mean only that this condition is approached asymptotically, in

the limit of large samples. This is the condition called "asymptotic efficiency™
by Cramér (1946). A famous inequality associated with the names of Fréchet,
Darmois, Rao, Cramér, and cthers, places a lower limit on the g-expected loss

with any estimator B(xl...xn):

()
a
<{B - a) %> 2 2
J‘(B log £
n P

5 (15-29)
) fix,q) dx

with eqguality when and only when the following two conditions are met:
(1) B is a sufficient statistic for estimation of «, i.e.

(xl...xn[a) = g(x;...%) h{8,a) (15-30)

(2) the function h(B,a) satisfies

g log h _

k(o) (B - a) {15-31)
aa

for some function kiw). A simple proof of this thecrem is given by Cramér
{1946, Sec. 32.3). From {(15-30) and (15-31) it is seen that the sampling

distribution function must also satisfy
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3 log (xl...xn|a)

= k{o) (B - a} (15-32)
P IvA

or, on integration, i1t must have the form

m(xl...xn) exp[-Ai (a) B(xl...x 1]

n
R = 15-33
(Xl xnla) . ( )
where A depends only on o, and
Z(A) = Jﬁm(xl...xn) exp[—kﬁ(xl...xn)] dxl...dxn {15-34)

Since this 1s just the canonical distribution of statistical mechanics, we
may restate the theorem as fallows: The best estimator 8(x1...xn) by the
criterion of minimum g~expected loss, which achieves equality in (15-29),
exists when and only when the sampling distribution function has the canonical
form with maximum entropy, relative to some welghting function m(xl...xn),

for a given expectation value <R>.

Thus, for example, the energy of a system at thermal equilibrium is
always a sufficient and efficient statistic for estimation of the temperature
of the heat-bath surrounding it, all other details of its state being irrelevant
for that purposse.

We examined the notion of sufficiency in Lecture 14, from the standpoint
of "information" in the sense of entropy, and saw in Eg. (14-14) the exact
sense in which the colloguial term "information" is related to entropy.
Although "gufficiency"” was introduced by R. A. Fisher within the context of
orthodox statistics, we saw in Eg. (15-6) that it is exactly derivable from
Baves' theorem. Therefore, it remains a valid and useful notion in Bayesian
statistics; any problem of inference in which a single sufficient statistic
exists, will be vastly simpler mathematically, and will lead tc much shorter

calculations in applications. Generally, in nontrivial real problems whers

a sufficient statistic does not exist, we will be driven to approximations
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in reducing data. B, ' . _ Y - .-

The notion of efficiency, however, is not of any particular walue in
Bayesian statistics, because Bayes' theorem automatically gives us the best
estimator by the criterion of any loss function. Thus the need toc compare
different estimators doesn't arise unless the equations are so complicated
that we have to resort to approximations. But then it is the x-expected
loss [as defined in Eg. (13-15)] rather than the gw-expected loss that provides
our criterion of good approximation.

Furthermore, the notion of efficiency doesn't really have any "objectiwve"
meaning, because 1t depends on the particular way you or I choose to define
our parameters. For example, instead of the parameter o, there is no reason

2, or & = log o, etc.,

why we couldn't use just as well, the parameter vy = o
and of course any satisfactory statistical methods ought to lead us to the
same final conclusicons however we have defined our parameters. But the

Fisher definition of efficiency is so parameter-dependent that if an efficient

2

estimator of o exists, then an efficient estimator of o does not exist!

For these reasons, we will have no further use for the concept of efficiency.

15,3. Tests of Goodness of Fit.

Back in Lecture 7, when we discussed the application of Bayes' theorem
te such problems as the validity of Newtonian celestial mechanics, we noted
this: Baves' theorem ftells us that we cannot say how the observed facts affect
the probability of some hypothesis H, until we state some specific alternatives
against which H is to be tested, For example. suppose there are only two
possikle hypotheses, H and H', to be considered. Then, on any data D, we
must always have (H|D) + (H'!D} = 1, and in terms of our logarithmic measure

of plaugibility in decibels, Bayes' theorem becomes
(D|H)

H|ID) = HX) + 10 15-35

et|D) = e|x) 9910 E") ( )
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which we might describe in words by saving that, "data D supports hypothesis
H relative to H', by 10 log;g, (D]H)/(DIH') decibels." The phrase relative
to H' is essential here, since with some other alternative H", the change

in evidence for H, [e(H|D} - e(H!X)] might be entirely different; it does
not make sense to ask how much the observed facts tend "in themselwves" to
support or refute H (except, of course, in the case where D is absolutely
impossible on hypothesis H, so deductive reasoning can take over).

Now as long as we talk only in these generalities, our common sense
readily assents to this. But if we consider specific problems, we may have
some doubts. For example, in the particle counter problem of Lecture 8 we
had a case (known source strength s and known counter efficiency a) where
the probability of getting ¢ counts in any one second is a Poisson distributicon

{8-5) with mean wvalue ¢ = sa:

[
-sa (sa)
c!

(c|s,a) = e (15-36)

Although it wasn't necessary for the problem we were considering then, we

can still ask: what can we infer from this about the relative frequencies

with which we would see ¢ counts if we repeat the measurement in many different
saconds, with the result {clcz...cn}? If the probability of any particular

event (say the event ¢ = 12) is independently equal to

12

—=sa (sa)
= =244 15-37)
P=e 121 (

at each trial, then the probability that the event will occur exactly r times

in n trials is the bkinomial distribution
F 1 r n-x
{r|n) = (r) p (1-p) (15-38)

or, the probkability that it will occur with frequency f = r/n, is

; £ ~nf
RN (15-39)

(£|n)
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When n is very large, we can use the Stirling approximation (10-16) to get

L = 1 Aog {f/n)
n

=~ - £ log £ - {1-f) log (1-f) + £ log p + (1-f) log (1l-p) (15-40)

Treating £ as a continuous wvariable,

3 £ P
921 1

afZ T T E(1-f)
So L reaches a maximum at £ = p, and we have the Tavlor series expansion

about that point:

o - _Ep)”
R A

Therefore, an approximation (which is actually much hetter than you might

guess from this simple derivation) to (15-39) is

{f[n} * (const.)-ex {— Eiﬁ:Eli} {15-41)
VST pp)

Thus the most likely frequency to be observed is numerically equal to the

probability; and the (mean * standard deviation) estimate of the frequency is

(f) - p+ /RUP) (15-42)

est n
Here is another connection between probability and frequency which common
sense cculd have anticipated, except that it would hardly give us a quantita-
tive interval of reascnable "errcr." The result (15-42) will be generalized
to a wider class of probability models in the next two lectures.

In the long run, therefore, we expect that the actual frequencies of
various counts will be distributed in a manner approximating the Poisson
distributicn (15-36)., Now we can perform the experiment, and the experimental
frequencies either will or will not be a reasonable approximation to the
predicted wvalues. 1If, by the time we have observed a few thousand counts,

the observed frequencies are wildly different from a Poigson distribution,
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our common sense will tell us that the theory which led to Poisson prediction
must be wrong. Yet we have not said anything about any alternatives! 1Is

our common sense wrong here, or is there some way we c¢an reconclle the theory
with common sense?

Let's look again at equation (15-35). No matter what H' is, we must
have {DIH'J > 1, and therefore a statement which is independent of any alter-
native hypotheses is

e(H[D) 2 e(H[X) + 10 log,(D[H) = e(H|X) - y_ (15-42)
where

o

P = - 10 loglo{D]H} > 0. (15-44)

Thus, there is no possible alternative which data D could support, relative

to H, by more than y decibels.

This suggests a solution to our paradox: in judging the amount of
agreement between theory and observations, the proper gquestion to ask is not,
"How well dees data D support hypothesis H?" A much better question is,
"Are there any alternatives H' which data D would support relative to H, and
how much support is possible?" Probabkility theory can give no meaningful
answer to the first question, but it can give a very definite answer to the
second.

We might ke tempted to conclude that the proper criterion of "goodness
of £it" is simply V_, or what is the same thing, the probability (D‘H).

This is not so, however, as the following argument shows. After we have
obtained data D, it is always possible to invent a strange, "sure thing"
hypothesis He, according to which D was inevitable: (D[HS) = 1, and Hs will
always be supported relative to H by exactly ¥, decibels. TLet us see what
this implies. Suppose I toss a die N = 10,000 times, and record the result

of sach toss. Then, on the hypothesis H = "the die ig honest,” each of the
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6N possible results has probability 6_N, or ¢, = 10 loglo{6N) = 77,815 decibels!
No matter what I cbhserve in the 10,000 tosses, there is always an hypothesis
HS that will be supported relative to H by this enormous amount. If, after
performing this experiment, I continue to believe that the die is honest,
it can be only because I considered the prior probability of Hs to be very
much lower than minus 77,815 decibels. Otherwise, I am reasoning inconsistently.

This is, I think, all perfectly correct and we have to accept the con-
clusion. The priocr probability of Hy was indeed much lower than 6_N, simply
because there were 6N different "sure thing" hvpotheses which were all on the
same footing befoxe I observed D. But it is cbwvicous that in practice we don't
want to bother with this kind of hypothesis; ewven though it is supported by
the data more than any other, its prior probability is so low that we are not
going to accept it anvyway.

In practice we are not interested in comparing H to all conceivable
alternatives, but only to all those in some restricted class 2, consisting
of hypotheses which we consider to he in some sense "reasonable" @ priori,
Let me give cne example (by far the most commen and useful one) of a test
relative to such a restricted class of hypotheses.

We consider some experiment, which has r possible cutcomes, A_, Az,..., Ar.
Define the gquantities

X, = m, if A is true on the n'th trial (15-45)

n
Thus each x, can take on the values x = 1, 2, «v.;, r. TIf the experiment
consists of tossing a die, then ¥ = 6, and x, is the number of spots up on
the n'th toss. 3Suppocse now we wish to take inte account only the hypotheses
belonging to the "Bernoulli class” B,/ in which the probabilities of the A
on successive repetitions of the experiment are considered independent and

stationary; thus, when H is in Br' the prohability, conditional on H, of any

specific sequence {xl...xN} of observations has the form
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I'll I

¥
coux |H) = ... -
(] xN\) P, P (15-46)

where p 1is the probability of result Am in any trial, and n 1s the number
m m
of times Am was true in the seguence. O0Of course, Z n = N. To every hypothesis
m
It

in B_ there corresponds a set of numbers {p_...p } such that p > 0O, Zp =1,

¥ 1 ¥ m - m
and for our present purposes these numbers completely characterize the hypo-
thesis. Conversely, every such set of numbers defines an hypothesis bhelonging
to the Bernoulli class B..

Now let's note an important lemma, which we have used before to establish

some properties of entropy. Using the fact that log x > (1 - x_l), with

egquality if and only if x = 1, we find at once that
e 1 i, 0 (15-47)
i=1 ni Qg NPl - r

with equality if and only if p; = ni/N for all i. This inequality is the
same as

log (xl...ﬁllH) <N ) £, log £, (15-48}

where fi = ni/N is the observed frequency of result Ai. The righthand side
of (15-48) depends only on the observed sample, so if we consider various
hypotheses Hl, H2, ce. in Br in the light of this particular sample, the
guantity (15-47) gives us a measure of how well the different hypotheses fit
the data; the nearer to equality, the better the fit.

For convenience in numaricai work, let's express the quantity {(15-47)

in decibel units:

r o,
by = 10 Eizl n, loglo ﬁﬁi (15-49}
i

To see the exact significance of wB’ suppose we apply Baves' theorem in the

form of Equation {15-35}. There are only two hypotheses, H = {pl...pr}, and
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H' = {pl',...,pr'} to be considered. 1Ilet the walues of (15-49) computed
according to H and H' be wB’ wB‘ respectively. Then Bayes' theorem reads

{(x ...xNJH)

1
H . = HiXy + 10 1
el |xl xN) e (H| % °9.4 ?EhtiTE_Tﬁjﬁ
1 N
= e(H|X) + '- 15~50
(H] %) byt by ( )
Now we can always find an hypothesis H' in Br' for which pi‘ = ni/N, and
wB' = 0; therefore wB has the following meaning:

Given an hypothesis H and the cbserved data {xl...xN}, compute Wn
from (15-49). Then given any D £ wB' it is possible to find an
alternative hypothesis H' in B, such that the data will support H'
relative to H by D decibels. There is no H' in B, which is sup-

ported relative to H by more than wB decibels,

Thus, wB ig exactly the appropriate measure of "doodness of fit" relative to

the class of Bernoulli alternatives.

We can also interpret wB in this manner: we may regard the observed
results {xl...xN} as a "message" consisting of N symbols chosen from an
alphabet of r letters. On each repetition of the experiment, Wature transmits
to us one more letter of the message. How much information 1s transmitted
by this message, under the Bernoulli probability assignment with independence

of successive symbols? Note that

X
b/N =10 f.  f, log) (£./p) (15-51)

with £ = n /N. Thus, {—wB/N} is the entropy per symnbol of the observed
i i

message distribution {f ..fr} relative to the "expected distribution"

1
{pl...pr}. This shows that the notion of entropy is, in a sense, "inherent”

in probability theory. Independently of Shannon's thecrem, entropy or some

monotonic function of entropy will appear automatically in the egquations of
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anyone who is willing to use Bayes' theorem for hypothesis testing,.
Historically, a slightly different test was introduced by Karl Pearson.
We expect that, if hypothesis H is true, then ng will be close to Npi, in the

sense that the differxence 'ni - Npi will grow with N only as YN. cCall this

"condition A." Using the expansion log x = (x-1) - (x—l)2/2 + ..., we easily
find that
2
r n, ¥ {n, - Np.)
Y on, log —= =217 1 e — 15-52
Li=1 4 J Np, 251=l Np; VN ( )

the gquantity designated as o (1/vVN) tending to zero as indicated provided

that the observed sample does in fact satisfy condition A. The gquantity
2 2

(n; - Np,) r (fi - pi)

x =],  TTmeem— = N ), m—e—e— (15-53)

i=1 NPi i=1 D,

is thus wvery nearly proportional to wB’ if the sample freguencies are close
to the expected values:

2, O(L/YN) = 2.1715 Xz + 0(1/ViN) (15-54}

yg = (10 logge) % X

Pearson suggested that the gquantity X2 be used as a criterion of goodness
of £it, and this has led to the "Chi-squared" test, one of the most used
techniques of orthodox statistics. Before describing the test, let's examine
first its thecretical basis and suitability as a criterion. Evidently,
xz z 0, and X2 = 0 only if the observed freguencies agree exactly with those
expected if the hypothesis is true. 8o, larger values of xz correspond in
some way to greater deviations between prediction and cbservation, and tce
large a value of XZ should lead us to doubt the truth of the hypothesis. But
these gualitative properties are possessed also by @--and by any number of
other quantities we could define. We have seen the theoretical hasis, and
precise significance, of P; so we ask (noting the comments of Pratt and Bross,
as qucted in the preface) whether there exists any "connected argument"

leading to xz.
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The results of a search for this connected argument are disappointing.
Scanning a number of orthodox textbooks, we find that xz is often introduced

as a straight deux ex machina; but Cramér (1946} does attempt to prepare the

way for the l1dea, in these words: "It will then be in conformity with the
general principle of least squares to adopt as measure of deviation an expres-
sion of the form Z ci(ni/N - pi)2 where the coefficients c; may be chosen
more or less arbitrarily. It was shown by K. Pearson that if we take c, = N/pi,
we shall obtain a deviation measure with particularly simple properties.”
In cther words, xz is adopted, not because of any connected argument but
because it has, in Pratt's words, "some pleasant properties.”

We have seen that in some cases xz is nearly a multiple of ¢ and in
such cases they will of course lead to essentially the same conclusions.
But let's trr to understand the guantitative difference in these criteria by
a technigue that I want to use a lot from now on, in comparing crthodox and
Bayesian methods. As discussed in the preface, we often find a small quanti-
tative difference between Bayesian and orthodox results, which would be of
ne consequence in most practical problems, and is sc small that our common
sense is unable to pass judgment on which result is preferable. But when
this happens, we can understand the difference by "magnifying" it--by finding
some extreme problem where the difference is so great that our common sense
can tell us which theory is giving sensible results, and which is not.

as our first example of this magnification technigue, let's compare ¥

and XZ to see which is the more reasonable criterion of goodness of fit,

15.4. Comparison of ¥ and Chi-squared.

A coln toss can give three different outcomes: (1} heads, (2) tails,
{3) it may stand on edge. Suppose that Mr. A's knowledge of coins is such

that he assigns probabilities pl = p2 = 0.499, p3 = 0.002 to these cases.
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We are in communication with Mr. B on the planet Mars, who has never seen a
coin and doesn't have the slightest idea what a coin is. So, when told that
there are three possible outcomes at each trial, and nothing more, he can
only assign equal probabilities, pl' = p2' = pa' = 1/3.

Now we want to test Mr. A's hypothesis against Mr. B's by doing a "random"
experiment. We toss the coin 29 times and observe the cutcomes: ng=n, = 14;

ny = 1. 8o, we have for the two hypotheses:

‘ 14 1
a~ [28 todyg (29 % .499) * 1ody, (29 % .002)} = 8.3 db

14 % 3) ( 3)
10| 28 1 12X 3) 21l = 35. i
B { °910 ( 29 10914 (29 ] 30019 db

From thisz experiment the man on Mars thus learns that {(a) there is another

=
Il

v

Il

hypothesis about the coin that is 35.2 db better than his (35.2 db corresponds
to odds of over 3,300:1}) and so unless he can justify an extremely low prior
probability for that alternative, he cannot reasonably adhere to his first
theory. (b) Mr. A's hypothesis is better than his by some 26.8 db, and in
fact is within about 8 db of the best hypothesis that could be made, under
our assumption of independent Bernoulli trials B,. Here the P-test tells us
pretty much what our common sense does.

But suppose that the man on Mars knew only about "orthodox" statistical
principles as usually taught; and therefore believed that X2 was the proper

criterion of goodness of fit. He would find that

2 2
2 (14 - 29 x .499) (L - 29 x .002)
X % =2 + = 15.
A 29 x .499 29 x .002 3.33
2 (14 - 29 x .333)° (1 - 29 x .333)2
= e + o = .
Xp 2 29 % .333 29 = .333 11.65
and he would report back delightedly: "My hypothesis, by the accepted statisti-

cal test, 1s shown to be slightly preferable to yours!"
I think that many persons trained to use xz will find this comparison

startling, and will immediately try to find the error in my nhumerical work
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above. We have here still another fulfillment of our rcbot's prediction
back in Lecture 4. The V¥ criterion is exactly derivable from Baves' theorem;
therefore any criterion which is only an approximation to it must contain
either an inconsistency or a gualitative wviolation of common sense, which
can be exhibited by producing special cases,

We can learn an important lesson about the practical use of XZ by looking
more cleosely at what is happening here. On hypothesis A, the "expected”
nunber of heads or tails in 29 tosses was Np; = 14.471. The actual observed
number must be an integer; and we supposed above that in each case it was the
closest possible integer, namely 14, This certainly seems a mild assumption,
not harmful to hypothesis A. Yet this small discrepancy between expected
and obgarved sample numbers, in a sense the smallest it could possibly be,
nevertheless had an encrmous effect on xz. The spogk lies entirely in the
fact that XAZ turned out so much larger than seems reasonable; there is
nothing surprising about the other numerical values. Evidently, it is the
last term in XAQr which refers to the fact that the coin stood on edge once
in 29 tosses, that is causing the trouble. On hypothesis A, the probability
that this would happen exactly n times in 29 tosses is our binomial distri-
bution

(n|w,py = (ﬁ) " (1-p) M

with N = 29, p = 0.002. From this, we find that the probability of seeing

the coin on edge one or more times in 29 trials is about (1/18); i.e. the

fact that we saw 1t even once is a bit uneuvpected, and constitutes some evidence
against A, that contributes 8 db to the value of wA. But this amount of
evidence is certainly not overwhelming; if our travel guide tells us that
London has fog, on the average, one day in 18, we are hardly astonished to

see fog on the day we arrive.
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It is the (l/pi) weighting factor in the summand of X2 that causes this
ancmaly. Because of it, the xz criterion essentially concentrates its atten-
tion on the extremely unlikely possibilities, if the hypothesis contains them;
and the slightest discrepancy between expected and observed sample numbers
for the .unlikely events severely penalizes the hypothesis. The {-test also
contains this effect, but in a much milder form, the (1/p;) factor appearing
only in the logarithm.

To see this effect more clearly, suppose now that the experiment had
yielded the results nl = 14, n, = 15, n, = 0. Evidently, by either the X2

or ¥ criterion, this ocught to make hypothesis & lock better, B worse, than

in the first example. Repeating the calculations, we now find

wA 0.30 db Ka

0.0925

51.2 db X 14.55

B B

!

You see that by far the greatest relative change was in xAz: both criteria
now agree that hypothesis A is far superior to B.

This shows what can happen through uncritical use of xz. Professor Q
believes in extrasensory perception, and undertakes to prove it to us poor
benighted, intransigent doubters. So he plays card games. On the "null
hypothesis" that only chance is operating, it is extremely unlikely that the
subject will guess many cards correctly.

The first few hundred times he plays, the results are disappointing;
but these are readily explained away on the ground that the subject is not
in a "receptive" mood. [The literature of parapsycholegy abounds with wistful
complaints about the difficulty of reproducing the phenomenon; indeed, just
the kind of difficulty one would expect if the phenomencn did not existl]

But one day providence smiles on Mr. Q; the subject comes through hand-

somely. Immediately he calls in the statisticians, the mathematicians,
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the notary publics, and the newspaper reporters. An extremely improbable

event has at last occurred; and XQ is encrmous. Now he can publish the results
and assert: "The validity of the data is certified by reputable, disinterested
persons, the statistical analysis has been under the supervision of recognized
statisticians, the calculations have been checked by competent mathematicians.
By the accepted statistical test, the null hypothesis has been decisively
rejected.” And everyvthing he haz said is absclutely true!

Moral: For testing hypotheses involving moderately large probabilities,
which agree moderately well with observation, it won't make much difference
whether we use Y or x2. But for testing hypotheses involving extremely
unlikely events, we had better use ¥; or life might become too exciting for

us.

Mow let's describe briefly the Chi-sguared test as done in practice.
We have the sc-called "null hypothesis" H to be tested, and no alternative
is stated. The null hypothesis predicts certain relative freguencies {pl...pr}
and corresponding sample numbers {Npl,...,Npr} where N 1s the number of trials.
We observe the actual sample nunbers {nl,...,nr}. If some of the ni are
very small, we group categories together so that each n, is at least, say,
five. For example, in a case with r = 6, if the observed sample numbers
were {6, 11, 14, 7, 3, 2} we would group the last two categories together,
making it equiwvalent to a problem with r' = 5 distinguishable outcomes per
trial, with sample nunbers {6, 11, 14, 7, 5}, and null hypothesis H' which
predicts frequencies {pl, Py p3, p4, p5+pe}.

We then calculate the cbserved value of XZ:
2

1 (Ili - Nle

2 =
Xobs Zi=1 Npi

(15-55}

as our measure of deviation of cobservation from prediction. Evidently, it

is very unlikely that we would find Xébs = @ even if the hypothesis is true.
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S0, goeg the orthodox reasoning, we should calculate the preobability that
xz would have various wvalues, given H', and reject H if the probability of
a deviation as great or greater than ngs is sufficiently small; usually one
takes 5 per cent as the threshold of rejection.

Now the n, are integers, so xz is capable of taking on only a discrete
gset of numerical values, at most (N+r-1)!/N!{(r-1)! different values, if
the p; are all different and incommensurable. Therefore, the exact x2 distri-
bution is necessarily discrete and defined at only a finite number of points.
However, for sufficiently large N, the number and density of points becomes

2 distribution by a continuous one.

s0 large that we may approximate the ¥
The "pleasant property" referred to by Cramér and Pratt, ig then the fact,

at first glance surprising, that in the limit of large N, we obtain a universal

distribution law: the probability that x? lies in the interval d{y2) is

£op

2y a(v2) = X L2 g2 15-56

g(x%) a(x?) 7z (f‘z): exp{- = x*} a(x?) ( )
2

where f is called the "number of degrees of freedom" of the X2—distribution.
If£f the null hypothesis H was completely specified (i.e. if it contained no
variable parameters), then £ = r' - 1, where r' is the number of categories
used in the sum of (15-55). But if H contains unspecified parameters which
must be estimated from the data, we take £ = r' - 1 - m, where m is the
number of parameters estimated.

We readily calculate the expectation and variance of x2 over this distri-
bution: <X2> = T, var(xzj = 2f; so if we were given H but didn't have the
data of the expsriment, the (mean * standard deviation) estimate of the XZ
we expect to see, would be just

(x2) = f + /2f (15-57)
The reason usually given for grouping categories for which the sample numbers
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are small, is that the approximation (15-56) would otherwise be bad. But
grouping inevitably throws away some of the relevant evidence of the sample,
and there is newver any reason to do this when using .

The probability that we would see a deviation as great or greater than

X%bs is then
2 - 2 2
P[Xobs) J;gbs gy di{x*)
e k
= % e 9 ag {15-58)
qobs
where g = % Xz, k = (£-2)/2. 1If P(xgbs) < 0.05, we reject the null hypothesis
at the 5% "significance level" (sometimes called the 95% level). Tables of
X%bs for which P = 0.01, 0.05, 0.10, 0.50 for various numbers of degrees of

freedom, are given in mest orthodox textbooks and collections of statistical
tables.

Note the traditional procedure here: we choose some basically arbitrary
significance level first, then report only whether the null hypothesis was
or was not rejected at this level. Evidently, this doesn't tell us very
much about the real import of the data; if vou tell me that the hypothesis
was rejected at the 5% lewvel, then I don't know from this whether it would
have been rejected at the 2%, or 1%, level. 1If you tell me it was not rejected
at the 5% lewvel, then I don't know whether is would have beaen rejected at
the 10%, or 20%, level. The orthodox statistician would tell us far more
about what the data really indicates i1if he would report instead the signifi-

cance level P(ngs) at which the null hypothesis is just barely reijected;

for then we know what the verdict would be at all levels. But, for reasons
totally incomprehensible to me, orthodox practice never doesg this, on the
Chi-squared or any other significance test. In fact, the crthodox x2 and

cther tables are so constructed that you can't report the conclusions in
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this more informative way, because they give numerical values only at such
widely separated values of the significance level that interxrpolation isn't
possible,

Sc, let me show you how to find numerical values of P/{ from {(15-58)

P
Xobs)
without using the Chi-sguared tables. Writing g = g, t t, we have

100 oo

k k —-ig +t)}
pe | DoTaga | dmr®l 0T g
k! 0 ki
qO
> - (g +
= 1 Zk K m ok e {qo © dt
K1 fp=0 {m) Jyp To
g a
x -q
=l o © —- (15-59)

But this is just the cumulative Poisson distributicon; i.e. the probability

K
(nsk|q,) = Zm=0 (m]q,)

that m £ k, if m has a Poisson distribution with mean value <m> = Ayt

—q_q "
3 TO
mig) =e = — (15-60)

Numerical values of (15-59) for all wvalues of U v k of usual interest are
given in the graph of the cumulative Poisson distribution in Appendix C.
Use of this will somewhat improwve the walue of the Chi-sguared test.

But if you use the {-test instead, you don't need any tables or graphs
at all. The evidential meaning of the sample is then described simply by

the numerical value of §; and not by a further arbitrary constraint such as

tail areas. Of course, the numerical value of ¥ doesn't in itself tell you
whether to reject the hypothesis (although we could, with just as much justi-
fication as in the Chi-sguared test, prescribe some definite "level" at which
to reject). From the Bayesian point of view, there is simply no use in

"rejecting” any hypothesis unless we can replace it with a definite alternatiwve
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known to be better; and whether this is justified must obvicusly depend not
only on ¥, but also on the priox probability of the alternative (recall our
quotation from E. L. Lehmann on p. 90), and on the conseguences of making
wrong decisions.

In spite of the difference in viewpoints, there is often not much Adif-
ference in the actual conclusions reached. For example, as the number of
degrees of freedom £ increases, the orthodox statistician will accept a higher
value of xz [roughly proportional to £, as (15-57) indicates] before rejecting
the hypothesis, on the grounds that such a high value is guite likely to
occur if the hypothesis is true; but the Bayesian who will reject it only
in favor of a definite alternative, must also a=cept a proportionally higher
value of |, because the number of reasonable alternatives is increasing
exponentially with £, and the pricr prokability of any one of them is corres-
pendingly decreasing. So, in either case we reject the hypothesis if ¥ or
X2 exceeds some limit, with an encrmous difference in the philosophy of how
we choose that limit, but not necessarily a blg difference in its actual
location.

Although the point isn't made in the orthodox literature which just
doesn't mention alternatives at all, we see from the above that xz is not
a measure of goodness of fit relative to all conceivable alternatives; but
only relative to those in the same Bernoulli class. More generally, given
any well-defined class C of alternatives, if we can write Bayes' theorem
{(describing the effect of new data D on the plausibility of two hypotheses
Hl’ H.) in the form

2

e(Hl|DX) - e(Hl|X) = wl - ¢2

where 1, depends only on the sample and Hi, is non-negative over C, and
1

vanishes for some Hy in ¢, then we have constructed the appropriate i which
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measures goodness of fit relative to the class of alternatives C.

In a recent article, Anscombe (1963) holds it to be a weakness of the
Bayesian method that we had to introduce a specific class of alternatives.
It seems to me, however, that it is entirely meaningless to speak of "goodness
of fit" without reference to definite alternatives. For example, if vou ask
a scientist, "How well did the Zilch experiment fit the Bong theory?" you may
get this reply: "Well, if vou had asked me last week, I would have said it
fits the Bong theory wvery handsomely; the experimental points lie much closer
to Bong's curve than to the old Smith thecry curve. But just vesterday I
learned that this fellow Jones has worked out a new theory based on entirely
different assumptions; and his curve goes right through the experimental
points. 50, now I'm afraid I have to say that the Zilch experiment pretty
well demolishes the Bong theory.”

Whether given data support or refute an hypothesis depends entirely on
which alternatives we have in mind; if we fail to specify any alternatives
we cannot hope to get a meaningful significance test, because we have not
asked a well-posed guestion. The guestion when we should seek new alternatives
mist involve our knowledge about the "mechanism"” being studied, and the line
of reascning which led to formulation of the null hypothesis in the first
rlace; it cannot be answered merely from examining the null hypothesis and
the sample. I would hold it to be a great merit of the Bavesian approach
that it forces us to recognize these things, which have apparently not been
obvious to statisticians (although qualitatively they are part of the ele-
mentary common sense which any scientist uses constantly in judging his theories).

This ig a good example of what, I suggest, is the general situation:
the Bayesian approach to statistics supplies the missing theoretical basis
for, and often improvements on, orthodox methods which had long been, just

as Pratt says, "ad hoc procedures with some pleasant properties.”
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15,5. An Acceptance Test.

Here is another very interesting example of a useful significance test.
The probability that a certain machine will operate without failure for a
time t 1s, by hypothesis, exp(~-it). We test n units for a time t, and observe
r failures; what assurance do we then have that the mean life § = k_l exceeds
a preassigned value 80? Let us examine the crthodox sclution based on the
same kind of philesophy that we just saw in the Chi-sguared test (i.e. it is
taboo to speak of the prcobability that ¢ has various values, because & isn't
a "random variable"; so we can use only the probability of getting wvarious
sample values, or the probability distribution of some "statistic"); and
also give the Bayesian solution.

Sobel and Tischendorf (1959) (hereafter dencted ST} give an orthodox
solution with tables that are reproduced in Reoberts (1963). The test iz to
have a critical number C (i.e. we accept only if r ¢ C). On the hypothesis

that we have the maximum tolerable failure rate, Ao = Bo . the probability
that we shall see r or fewer failures is the binomial sum

r - -k _t At
Win,x) = zk:o (EJ °© -e °)F (15-61)

and so, setting W(n,C) £ 1 - P gives us the sample size n reguired in order
that this test will assure § > 80 at the 100 P per cent significance level.
From the ST tables we find, for example, that if we wish to test only for
a time t = 0.01 €, with C = 3, then at the 90 per cent significance level
we shall require a test sample of n = 668 units; while if we are willing to
test for a time t = 60 with € = 1, we need test only 5 units.

The amcunt cof testing called for is appalling if t << 80; and out of
the question if the units are complete systems. For example, if we want to
have 95 per cent confidence (synonymous with significance) that a space

vehicle has 80 z 10 vears, but the test must be made in six months, then
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with C = 1, the ST tables say that we must build and test 97 vehicles! Suppose
that, nevertheless, it had been decreed on the highest policy level that this
degree of confidence must be attained, and you were in charge of the testing
program, If a more careful analysis of the statistical problem, requiring

a few man-vears of statisticians' time, could reduce the test sample by only
cne or two units, it would be well justified economically. Scrutinizing the
test more closely, we note four points:

(1) We know from the experiment not only the total number r of failures,
but also the particular times {tl...tr} at which failure occurred. This
information is clearly relevant to the question being asked; but the ST
test makes no use of it.

{2) The test has a "quasi-segquential" feature; if we adopt an acceptance
number C = 3, then as soon as the fourth failure occurs, we know that the
units are going to be rejected. If no failures occur, the required degree
of confidence will be bullt up long before the time t specified in the ST

tables. 1In fact, t is the maximum possible testing time, which is actually

required only in the marginal case where we cbserve exactly C failures. A
test which 1s "gquasi-sequential"” in the sense that i1t terminates when a clear
rejection or the required confidence is attained, will have an expected length
less than t; conversely, such a test with the expected length set at t will
require fewer units tested.

(3) We have relevant prior information; after all, the engineers who
designed the space wehicle knew in advance what degree of reliability was
needed. They have chosen the quality of materials and components, and the
construction methods, with this in mind. Each sub-unit has had its own tests.
The wehicles would never have reached the final testing stage unless the
engineers knew that they were operating satisfactorily. In other words, we

are not testing a completely unknown entity. These facts constitute prior
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information about the reliability, just as cogent as anything we can learn
from a random experiment.

{(4) In practice, we are usually concerned with a different guestion than
the cne the ST test answers. An astronaut starting a five-year flight to
Mars would not be particularly comforted to be told, "We are 95 per cent

confident that the average life of an imaginary populaticon of space vehicles

like yours, 1s at least ten years.”™ He would much rather hear, "There is
95 pexr cent probability that this vehicle will operate without breakdown
for ten years." Such a statement might appear meaningless to an orthodox
statistician who holds that {probability) = (frequency). But such a statement
would be very meaningful indeed to the astronaut. This is hardly a trivial
point; for if it were known that l_l = 10 years, the probability that a
particular vehicle will actually run for 10 vears would be only 1/ = 0.368;
and the pericd for which we are 95 per cent sure of success would be only
- 10 1In(0.95) vyears, or 6.2 monthas. Reports which concern only the "mean
life" can be rather misleading!

Let us first compare the ST test with a Bayesian test which makes use
of exactly the same Information; i.e. we are allowed to use only the total

nunber of fallures, not the actual failure times. On the hypothesis that

the fajlure rate is A, the prokability that exactly r units fail in time ¢ is

(1 - e ) (15-62)

plr|n,,t) = (n) e (RTL)AL Aty
X

T want to defer discussion of nonuniform priors to a later section; for the
time being suppose we assign a uniform prior to A. This amounts to saving
that, before the test, we consider it extremely unlikely that cur space vehi-
cles have a mean life as long as a microsecond; nevertheless it will be of
interest to see the result of using this priocr. The posterior distribution

of A is then

15-29



n! -{n-r}it -At. ¥

p(dhln,r,t} = Tor-1) T ©l {1l - e yoodA(At) (15-63)

The Bayesian acceptance criterion, which ensures § > Ao_l with 100 P per cent
probability, is then

0o
J; piai|n,r,t) <1 -p (15-64)
o]

But the left-hand side of (15-64) iz identical with W(n,r) given by (15-61);
this is just the well-known identity of the incomplete Beta function and the
incomplete binomial sum, given already in the original memoir of Baves {1762).
In this first cemparison we therefore find that the ST test is mathematically
identical with a Bayesian test in which (1) we are denied use of the actual
failure times; (2) because of this it is not possible to take advantage of
the quasi-sequential feature; (3) we assign a ridiculously pessimistic prier
to A; (4) we still are not answering the guestion of real interest for most
applications.

Of these shortcomings, (2} is readily corrected, and (1) undoubtedly
could be corrected, without departing from crthodox principles. On the
hypothesis that the failure rate is A, the probability that r specified units
fail in the time intervals {dtl...dtg-respectively, and the remaining (n-x)
units do not fail in time t, is

r -irt -(n-r)rt
pldty...dat |n,A,t) = A e dty...dt ]l e ] (15-65)

where t = rdl Zti is the mean life of the units which failed. There is no
single "statistic" which conwveys all the relevant information; but r and t
are jointly sufficient, and so an cptimal orthodox test must somehow make
use of both. When we seek their joint sampling distribution p(r,dE]n,A,t}
we find, to cur dismay, that for given r the interval 0 < t < t is broken
up into r equal intervals, with a different analytical expression for each.

Evidently a decrease in r, or an increase in t, should incline us in the
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direction of acceptance; but at what rate should we trade off one against
the other? To specify a definite critical region in both variables would
seem to lmply some postulate as to their relative importance. The problem
does not appear simple, either mathematically or conceptually; and I would
not presume to guess how an orthodox statistician would solve it.

The relative simplicity of the Bayesian analysis is particularly striking
in this problem; for all four of the above shortcomings are corrected effort-
lessly. PFor the time being, we again assign the pessimistic uniform prior

to A; from (15-65), the posterior distribution of A is then

X
p(di|n,t, t t ) = (AT)  -AT

1t T d(AT) (15-66)

where
T=rt+ (n-r)t (15-67)
is the tectal unit-hours of failure-free operation observed. The posterior
probability that *» > X is now
o
k
o -4 T AT
1 r -x r o )

Bin,r) = = " x" e T dx = e ) 0 TET (15-68)

o
]

and so, B{n,r) < 1 - P is the new Bayesian acceptance criterion at the 100 P
per cent level; the test can terminate with acceptance as soon as this inequa-
lity is satisfied.

Numerical analysis shows little difference between this test and the
ST teat in the usual range of practical interest, where we test for a time
short compared to 60 and observe only a very few failures. For, if Aot << 1,
and r << n, then the Peoisson approximaticon to (15-61}) will be wvalid (as in
Lecture 8); but this is just the expression (15-68) except for the replacement
of T by nt, which is itself a good approximation. In this region the Bayesian

test (15-68) with maximum possikble duration t generally calls for a test

sample one or two units smaller than the ST test. Our common sense readily
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assents to this; for if we see only a few fallures, then information about
the actual failure time adds little to our state of knowledge.

Now let us magnify. The big differences between (15-61) and (15-68)
will occur when we find many failures; if all n units fail, the ST test tells
us to reject at all confidence levels, even though the cbkserved mean life
may have been thousands of times our preassigned 80. The Bayesian test (15-68)
does not break down in this way; thus if we test 2 units and all fail, it
tells us to accept at the 90 per cent level if the observed mean life E_i 1.58 BO.
If we test 10 units and ¢ fail, the ST test says we can assert with 20 per
cent confidence that 8 > 0.22%t; the Bayesian test (15-68) says there is 90
per cent probability that 0 > 0.63 t + 0.07 t. Our common sense has no dif-
ficulty in deciding which result we should prefer; thus taking the actual
failure times intc account leads to a clear, although usually not spectacular,
improvement in the test, The person who rejects the use of Baves' theorem
in the manner of Eg. (15-66} will be able to obtain a comparable improvement
only with far greater difficulty.

But the Bayesian test (15-68) can be further improved in two respects.
To correct shortcoming (4), and give a test which refers to the reliability
of the individual unit instead of the mean life of an imaginary "population"
of them, we note that if A were known, then by our original hypothesis the
probability that the lifetime 8 of a given unit is at least 80, is

-\
p(oz8_|A) = e (15-69)

The probability that © > 80, conditional on the evidence of the test,

is therefore

o  -A8
Q
p(egeo\n,t .t ) = JC e plai|n, t)...¢)

1 r
r+1
- (T E'@“) (15-70)
o]
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Thus, the Bayesian test which ensures, with 100 P per cent probability,

that the life of an individual unit is at least 80, has an acceptance criterion

that the expression ({15-70) is > P; a result which is simple, sensible, and
as far as I can see, utterly bevond the reach of orthodox statistics.

The Bayesian tests (15-68) and (15-70) are, however, still based on a
ridiculous prior for A; ancother improvement, even further beyond the reach
cf orthodox statistics, will be found presently, as a result of using a

reasonable prior.
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