Chapter II

USE OF JACOBIANS IN THERMODYNAMICS

Many students find that thermodynamics, although mathematically almost
trivial, is nevertheless cne of the most difficult subjects in their program.
A large part of the blame for this lies in the extremely cumbersome partial
derivative notation. In this chapter we develop a different mathematical
scheme, with which thermodynamic derivations can be carried out more easily,
and which gives a better physical insight into the meaning cof thermodynamic

relations.

2.1 Statement of the Problem

In fields other than thermodynamics, one usually starts out by stating
explicitly what variables shall be considered the independent ones, and then
uses partial derivaﬁives without subscripts, the understanding being that all
independent variables other than the ones explicitly present are held constant
in the differentiation. This convention is used in most of mathematics and
physics without serious misunderstandings. But in thermodynamics, one never
seems to be able to maintain a fixed set of independent variables throughout
a dexrivation, and 1t becomes necessary to add one or more subscripts to every
derivative to indicate what i1s being held constant. The often-needed trans-

formation from one constant guantity to another involves the relation
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which, although it expresses a fact that is mathematically trivial, assumes
such a complicated form in the usual notation that few people can remember it
leng enough to write it down after the book is closed.

As a further comment on notation, we note that in thermodynamics as well
as in mechanics and electrodynamics, our equations are made cumbersome if we
are forced to refer at all times to some particular coordinate system (i.e.,
set of independent variakles}. In the latter subjects this needless complica-
tion has long since been remcved by the use of vector notation, which enables
us to describe physical relationships without reference to any particular
coordinate system. A similar house-cleaning can be effected for thermodynamics
by use of jacobilans, which enable us to express physical relationships without
committing ourselves to any particular set of independent variables.

We have here an interesting example of retrograde progress in science:
for the historical fact is that use of jacobians was the original mathematical
method of thermodynamics. They were used extensively by the founder of mcdern
thermodynamics, Rudolph Clausius, in his work dating from about 1850. He used

the neotation

D = - {(2-2)

where Q stands, as always, for heat, and x, y are any two thermodynamic quan-
tities. Since dQ is not an exact differential, ny is not identically zero.
It is understandable that this notation, used in his published works, involved
Clausius in many controversies, which in retrospect appear highly amusing. Aan
account of some of them may be found in his book (Clausius, 1875). On the
other hand, it is unfortunate that this occurred, because it is probably for
this reason that the guantities ny went out of general use for many vears,

with only few exceptions (See commentg at the end of this chapter). In a foot-



note in Chapter II of Flanck's famous treatise (Planck, 1897), he explains
that he avoids using dQ to represent an infinitesimal guantity of heat, because
that would imply that it is the differential of some guantity Q. This in turn
leads to the pessibility of many fallacious arguments, all of which amount to
setting ny = 0. However, a reading of Clausius' works makes it clear that
the quantities ny, when properly used, form the natural medium for discussion
of thermodynamics. They enabled him to carry out certain derivations with a
facility and directness which is conspicuously missing in most recent exposi-
tions. We leave it as an exercise for the reader to prove that ny is a
jacobian (Problem 2.1).

We now develop a condensed nctation in which the algebra of jacobians
may be surveyved as a whole, in a form easy to remember since the ahstract
relations are just the ones with which we are familiar in.connection with the

properties of commutators in gquantum mechanics.

2.2 Formal Properties of Jacobians

Consider first a system with only two degrees of freedom. We define

9R  9A
9X 0y
 3(a,B)
[2,B] = St = (2-3)
3 (x,
s ae
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where X, y are any variables adequate to determine the state of the system.

Since for a change of variables, x, v > x', v' we have

o(A,B) _ 3(A,B) 3(x,y)
o(x',y')  0o(x,y) 3(x',y")

(2~4)

or, in an easily understandakle condensed notation,

[2,B]" = [A,B])[x,y]" {2-5)



It follows that any equations that are homogeneous in the jacobians are in-
variant in form under "coordinate transformations”, so that we can suppress
the independent variables x, v and carry out derivations without committing
ourselves to any particular set.

The algebra of these symbols is characterized by the following identities
(the comma may be omitted if A, B are single letters). The properties of

antisymmetry, linearity, and composition have the familiar form

[(aB] = - [BA], [AA] = O {(2-6)
[A + B,C] = [AC] * [BC] (2-7)
[aB,C] = [AC]B + AI[BC] (2-8)

In addition we have three cyclic identities, easily proved:

[AB] dC + [BC] da + [CA] dB = O (2-9)
(a,[BC]] + [B,[cal]l + [c,[AB]] = O (2-10)
[AB] [CX] + [BC][AX] + [CAl[BX] =0 (2-11)
The final fundamental property is the "theorem"
Let dA = bk dB + ¢ dC. (2-12}
Then, for &il X,
[AX] = bI[BX] + c[CX]. (2-13)

These relations are not all independent; for example, (2-11) follows from
(2-9) and {2-13).
Putting 4dC = 0 in (2-9), we obtain the rule

3ay  _ [acl  [ca] -
( ) ~ [BC] ~ [CB] (2-14)

by means of which egquations are translated from one language to the other.



From it one sees that the transformation law (2-1) now appears as a special
case of the identity (2-11). Writing for the enthalpy, free energy, and Gibbs

function respectively,

fas
li

U+ PV
F=U-1T8 {2-15)

G=1U- T8 + PV

where U is the internal energy with the property dU = t dSs - P dV, we have as

consequences of (2-13) the relations

[UX] = T[sX] - P[VX]
[EX] = T[8X] + V[PX]
(2-16)
[FX] = - s[T%] - P[VX]
[GX] = - 8[TX] + VIPX]

The advantages of this notation is shown particularly when we consider the

four Maxwell equations

- - B (2-172)
= -,
E%ﬂv = (%%]T (2-17¢)
%%3P = - (%%)T (2-17d)

Applying (2-14), we see that each reduces to the single identity

[Ts] = [PV] (2-18)



Thus, all of the Maxwell equations are expressions in different "coordinate
systems" of the same basic fact (2-18), which will receive a physical inter-
pretaticn in Sec. 2.4. In a derivation, such as that of Eg. (1-49), every-
thing that can be gained by using any of the equations (2-17) is already
accomplished by application ¢f the single relation (2-18).

Jaccbians which invelve the entropy in combinations other than [T8] are

related to various specific heats. The heat capacity at constant X is

s
CX = T (W)X {(2-19)

and, using (2-14) we obtain the identity
cC

[sx] = ?X [TX] (2-20)

In the simplest derivations, application of (2-18) or (2-20) is the essential
step.

In his well-known textbook, Zemansky (1943) shows that many of the ele-
mentary derivations in thermcdynamics may be reduced to application of the

"T dS equations"

_ aP _
Tds =C, dr + T {ﬁ} av (2-21)
v
v
T d§ = Cp dt - T (ﬁjp dp (2-22)

and the "“energy equation",
[B_U} o (S_E) _p (2-23)

In the above notation these equations are far from obvious and not easy to
remember. Note, however, that the T dS eguations are special cases of the
cyclic identity (2-9) for the sets of variables {TVS}, {TPS}, respectively,

while the energy eguation is a consequence of {2-13) and the Maxwell relation:



[UT] = T[sT] - P[VT] = - T[PV] - P[VT] (2-24)

From (2-14) we see that this is the energy equation in jacobian notation.

2.3 Elementary Examples

In a large class of problems, the objective is to express some guantity
of interest, or some condition of interest, in terms of experimentally mea-
surable guantities. Therefore, the "sense of direction" in derivations is
provided by the principle that we want to get rid of any explicit appearance
of the entropy and the varicus energies U, H, F, G. Thus, if the entropy
appears in the combination [TS], we use the Maxwell relation to replace it
with [PV]. If it appears in some other combination [SX], we can use the
identity (2-20).

Similarly, if combinations such as [HX]! or [UX] appear, we can use {(2-16)

and replace them with

[HX] = TI[SX] + VI[PX] = CX[TX] + VI[PX] (2-25}
[UX] = CXITX] - P[VX] (2=-286)
If the entropy appears outside a jaccobian, as in [GX] = - S[TX] + Vv[PX],

it cannot be eliminated in this way. However, since in phenomenclogical
thermodynamics the absolute value of the entropy has no meaning, this situa-
ticon canncot arise in any expressicn representing a definite physical quantity.
For problems of this simplest type, the jacchian formalism works like a
well-oiled machine, as the following examples show. We dencte the isothermal
compressibility, thermal expansion coefficient, and ratioc of specific heats

by K, B, v, respectively:

-1 (BV) _ L] (527

3p) T VIPT)
T



B = % (B_V) - PV] (2-28)

CP
y = =" (2-29)

and note that from (2-27) and (2-28) we have

5 = ————
§ [BV] 3P .

[TV] QE) (2-30)

Several derivatives, chosen at random, are now evaluated in terms of these

guantities:
auy _ lusl _ mIss) - Pvs] _ _ Sy v _ pvk (2-31)
aP)S (ps] 25] o T T Ty
P
@_g_) _lus) _miss] - prvs) _ v [l _ TovS 2.32)
3T/ [TX] (pV] ST [PV TR )
aTy _ ITul _ TIST] - Plvel _ T rlve] - Blvr) _ 1 |, _ 18 (2-33)
as) [SU]  TI[sS] - P[VS] P C [TV} c PK
U v v
{gy_) _ ep] _wlspl + vipp]l _ , 1] _ %p (3-34)
Vip  [vP) (7] p VPl BV
(B_T) _ LTH] _ TST] + V[PT] _ TIVP] + VIPT] _ V_ (gp . 1y (2-35)
3P), [(PH] T[SP] + V(PP C_[TP] c
p P
8Fy _ [FT) _ - S[TT] - P[VT] _ _ PX B
(as)T [T [V : 12736
3G) _ [GT] _ - s[TT] + V[PT] _ _ 1 _
{av)T = v T [VT] K (2-37)

A more difficult type of problem ig the following: We have given a num-

ber of quantities and wish to find the general relaticon, if any, connecting

them. In one sense, the guestion whether relations exist can be answered



immediately; for any two quantities A, B a necessary and sufficient condition
for the existence of a functional relation 2 = £(B) in a region R is: {[AR]
= 0 in R}. In a system of two degrees cof freedom it is clear that between
any three quantities A, B, C there is necessarily at least one functional
relation £(A,B,C) = 0, as is implied by the identity (2-9) [Problem 2.2]. An
example is the equation of state £(PVT) = Q. Thisg, however, is not the type
of félation cne usually has in mind. For each choice of A, B, C and each
particular system cf two degrees of freedom, some functional relationship
must exist, but in general it will depend on the physical nature of the system
and can be cbtained only when one has sufficient information, obtained from
measurement or theory, about the system.

The problem is rather to find those relaticns between various guantities
which hold generally, regardless of the nature ¢f the particular system.
Mathematically, all such relations are trivial in the sense that they must be
special cases of the basic identities already given. Their physical meaning
may, however, be far from trivial and they may be difficult to find. Note,
for example, that the derivative computed in (2-35} is just the Joule-Thomson
coefficient y. Suppose the problem had been stated as: "Given the five
quantities {u, Vv, Cp, B, T}, determine whether there is a general relation
between them and if so find it." DNow, althoush a repetition of the argument
of (2-35) would be successful in this case, this success must be viewed as a
lucky accident from-the standpoint of the problem just formulated. It is not
a general rule for attacking this type of problem because there is no way of
ensuring that the answer will come out in terms of the desired guantities.

To illustrate a general rule of preocedure, consider the problem of f£ind-
ing a relationship, if any, between.{cp, Cv’ v, T, B, X}. First we write

these quantities in terms of jacobians.



[sP] [5V]

c =T

P [TP] v vl
(2-38)
_ IvP] _ ]
g V[TP] K ViPT]

At this point we make a definite choice of some coordinate system. Since

[TP] occurs more often than any other jacobian, we adopt x = T, v = P as the

independent variables; thus [TP] £ 1. We can now solve for the remaining
jacobians:
C
[sp] = = , [VP] = gV
T
(2-39)
CVKV
[V3] = T r [(VT} = RV

The variables in jacobians are P, V, T, S, for which (2-11) gives
[(pv]{TS] + [vT][PS] + [TPI[VS] = C (2-40)

or, in this case

[PV]2 + [VT][P8] + [Vs] = 0. (2-41)
substituting the expressions (2-39) into this we obtain

5 5 C C XV
BV - RV
T

-
+
<
I
[®]

c -C = (2-42)

which is now seen as a special case of (2-11).
There are several points to notice in this derivation: {1} no use has

been made of the fact that the quantities T, V were given explicitly; the



argument supplied them automatically. (2) The solution depends in no way on
the particular coordinate system adopted; if we had chosen [TV] = 1, the alge-
bra would have been very slightly longer, with the same regult., (3} The
particular arrangement of {(PVTS) in (2-40) has no influence on the result;
after an arbitrary permutation of (PVTS), Egq. (2-40) still says exactly the
same thing. (4) It was essential to the method that &ll the guantities be
expressible in terms of jacobians of exactly four variables, but any four in
place of PVIS would have served just as well.

In sclid-state physics, Cy is most easily calculated from theory, while
Cp is most easily measured in the laboratory. Eguation (2-42) is therefore
much used (often in approximate forms known as the Eucken-~Griineisen relation,
or the Nernst-Lindemann equation) for the correction of experimental specific
heat data before comparison with theory. For further details, see Zemansky
(1943), Chap. 13; or Callen (1960), Appendix E.

As a second example, congider again the proklem of the Joule-Thomson
coefficient; find a relation between {u, B, CP} and any other quantities that

may be needed. Proceeding as before, we have

[HT] _ T[ST] + V[PT]
U =
[HP) T[SP]
g = LYEI_ o - o I8Pl
VITP] p [TP]
Choosing the coordinate system [SP] = 1, and solving for the remaining jaco-
bians, we have
“p
BVT



but at this stage we see already that the Jacckiang [TP], [VP] are the only

cnes appearing in y, so we have immediately the result {2-35):

u=[VPJ+%[PT]=E—VE—‘T—’%—=%—(BT—1) (2-43)
P P P

and the identity (2-11l) was not needed.
As a third example consider the problem of finding a relation between
R, K, Cp, and the quantity o = (BU/BT)S. The calculation goes through exactly

as in the first example, with the result

KC
o = P [-—5—’ - RV ) (2-44)

We have already found a simpler formula for o in (2-32}. By use of {Z-42)

one shows that (2-44) and (2-32) are indeed equivalent. If we had chosen the
variables {o, B, K, Cv} we would once again have found a "shortcut" that takes
us directly to (2-32) without use of (2-11).

In the first type of problem, illustrated by equations (2-30) through
(2-37), we are content to find the guantity or condition of interest in terms
of any experimentally measurable quantities. After finding any such relation-
ship, one can apply the basic identities and transform it into wvarious other
forms. In the second type of problem we demand that the result must come out
in terms of certain specified quantities, for example the ones which we have
measured. The second method of procedure leads us directly to this relation
if it exists.

As a final example, suppose we have measured Cp and the thermal expan-
sion ccefficient B at various temperatures and volumes. Are these data suf-
ficient to determine the gquantity & = (aT/aP)U? If not, what additiocnal
measurements must we make? In the coordinate system [SP] = 1, we find the

relations



T RVT
TP = — =
[TP] G ' [vp] C

P E
[VT] = _g. B% -6

P
and substituting into (2-40) we have
2.2 C
v T VT

[sv] = & .- BT (2-45)

Cp P P

We do not yet have the desired result because there is nothing which deter-
mines the Jjacobian [SV]. This means that B and Cp are not enough to determine
§; but we can determine the missing quantity as follows. The extra jacobian

{(2-45) is, from (2-20},

P C

c c
[sV] = T—V [TV] = —¥ [5 - Bﬂ} (2-46)
p

Thus, it would be sufficient te measure also Cyr Bquating (2-45) and (2-40)

and solving for §,

§ = BVT {1 _ _E_V_E’_.] (2-47)
C C -
e p v

which, using (2-42), may also be written as

(BT - KP). (2-48)

O
I
nl<:

IS

so that a measurement of the compressibility K would also suffice.
It is impossible to appreciate the ease with which these derivations
have been carried out here unless one alsc tries to derive them without malk-

ing any use of jaccbians; the reader is urged to do this for himself [Problem

2N



2.4 Physical Meaning of Jacocbians

The preceding discussion, while demonstrating the power and usefulness of
jacobians in thermodynamics, has raised mcore guestions than it has answered.
What do the jacobians mean? Why do these methods work so well? Can we f£ind
a peoint of view which makes it clear from the start that jacobians rather than
partial derivatives are the "natural” quantities of thermcdynamics? 2and a
much deeper guestion: Why is it that in so many different branches of physics,
the introduction of antisymmetric bracket symbols, zll with the same abstract
algebraic properties, leads to the most succinct and powerful methods of cal-
culaticn?

As a start toward answering these guestions we observe that, inrspite of
first appearances, jacobians are actually simpler guantities than are partial
derivatives. Because of the fact that the particular coordinate system x, v
is unimportant, we can regard a jacobian as expressing a mutual property of
two variables, while a partial derivative represents a joint property of three
variables. One interpretation of this mutual property follows from the famil-
iar use of jacocbians in transforming an element of volume in multiple inte-
grals. Thus, consider a quantity Z2(x,y) which is a function of state of the
system, and a certain range cof states represented by the area r in the (x-y)
plane. TIn tevrms of a different set of variables A, B this same set of states
is mapped onto a corresponding region R in the (A-B) plane. Then the integral

of Z over this region is given by

jZdAdB:jZdedy (2-49)
. )

Thus elements of volume corresponding to the same range of states transform

according to

dr (2-50)



or, the jacobian is the local magnification factor in the mapping of the (x-y)

plane onto the (A-B) plane.

These remarks are illustrated in Fig. 2.1, in which we see an infinitesi-
mal Carnot cycle as viewed in the six different planes which can be formed
from the coordinates P, V, T, S. Adopting the convention that the rectangle
in the T-$S plane encloses unit area, the jaccbian [AB] is then egual to the
area enclosed by the mapping of this Carnot cycle onto the A-B plane, with a
positive sign if it is described in a counterclockwise direction, negative if
cleckwise. The Maxwell equation (2-17a) is often described as expressing the
fact that (T dS - P dV) 1is an exact differential; an eguivalent statement

which has perhaps more intuitive appeal is that the mapping of the T-5 plane

onto the P-V plane always preserves arcas. This is just the statement that

the work done in a closed reversible cycle can be found equally well from the
T-3 diagram as the P-V diagram: § T ds = § P 4av.

The content of the identity (2~11):
[PV][Ts] + [VT][PS] + [TP][VS] = 0O

is that, given the ratios [TS]:[PS]:[VS] of the areas of the top three dia-
grams, one linear combination of the areas [PV], [VT], [TP] is determined. A
study of Fig. 2.1 discloses the geometrical reason for this and shows that a
stronger statement can be made: Given the top three diagrams, all the others
may be constructed by projections as shown.

The interpretation of a jacobian [AB] as giving the area and direction of
travel for an infinitesimal reversible cycle, as seen in the A-B plane, is
probably the most convenient one. However, another way of looking at it is to
draw in the x-y plane the contours A(x,y) = const., Bi(x,y) = const., as in
Fig. 2.2. If we imagine a z-axis at right angles to the paper, we see that

the jacchbian can be written as a vector cross-product



2n infinitesimal

adiabatic expansion
isothermal compression
adiabatic compression

isothermal expansion

Carnot cycle in several coordinate planes.
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Figure 2.2. Lines of constant A and constant B in the x~y plane. The jaco-
bian [A,B] is egqual to the area of the parallelogram.

9(A,B) _ 3A 3B _ 3A 9B _ (VA x VB) (2-51)
8 ({x,v) dx dy 9y 9% z

- -
of the gradients VA, VB. Its numerical value is therefore equal to the area

of the parallelogram whose sides are %A, ﬁB. At any point where [A,B] = 0,
the lines B = const., A = const., are tangent to each other. At such a point,
any infinitesimal change cf state which holds A constant also holds B constant;

thus, the condition for the inversion point of the Joule-Thompson effect is
0 = [HT] = T[sT] + V[PT] = T[VP] + V[PT] (2-52)

This appears as a singular point in the mapping of the P-V plane onto the

H-T plane.



