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Abstract. Ultrasonic tissue characterization has shown promise for clinical diagnosis of diseased
bone (e.g., osteoporosis) by establishing correlations between bone ultrasonic characteristics and
the state of disease. Porous (trabecular) bone supports propagation of two compressional modes,
a fast wave and a slow wave, each of which is characterized by an approximately linear-with-
frequency attenuation coefficient and monotonically increasing with frequency phase velocity. Only
a single wave, however, is generally apparent in the received signals. The ultrasonic parameters
that govern propagation of this single wave appear to be causally inconsistent [1]. Specifically, the
attenuation coefficient rises approximately linearly with frequency, but the phase velocity exhibits a
decrease with frequency. These inconsistent results are obtained when the data are analyzed under
the assumption that the received signal is composed of one wave. The inconsistency disappears if
the data are analyzed under the assumption that the signal is composed of superposed fast and slow
waves. In the current investigation, Bayesian probability theory is applied to estimate the ultrasonic
characteristics underlying the propagation of the fast and slow wave from computer simulations. Our
motivation is the assumption that identifying the intrinsic material properties of bone will provide
more reliable estimates of bone quality and fracture risk than the apparent properties derived by
analyzing the data using a one-mode model.

INTRODUCTION

Osteoporosis is a disease that results in a decrease in the mineral density of trabecular
bone, a porous material that fills the inner cavity of bones. By establishing correlations
between ultrasonic parameters and mineral density of trabecular bone, ultrasonic tissue
characterization has become an accepted method for clinical diagnosis of osteoporosis
[2, 3]. The physics of ultrasound interaction with the composite structure of bone is
not yet completely understood. In most measurements a single wave is apparent in
the acquired signals [1, 3]. However, the propagation of two types of compressional
waves, known as a fast and a slow wave, has been independently observed by several
researches [1, 2, 4]. Furthermore, the ultrasonic characteristics of bone appear to violate
the conditions imposed by causality. In particular, as illustrated in Fig. 1, for media
with an attenuation coefficient that rises approximately linearly with frequency, such as
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FIGURE 1. This figure illustrates the apparent inconsistency in the ultrasound measurements on bone.
The phase velocity inferred from phase spectroscopy analysis exhibits negative dispersion. However,
the phase velocity predicted from the attenuation coefficient using the nearly-local approximation of the
Kramers-Kronig relations (Eq. 5) rises logarithmically with frequency

bone, the nearly-local approximation of the Kramers-Kronig relations [1] suggests that
an increase of phase velocity with frequency or positive dispersion should be expected,
as opposed to the decrease with frequency or negative dispersion that is often reported.
These inconsistent results are obtained when the data are analyzed under the assumption
that the received signal is composed of one wave. However, this inconsistency disappears
if the data are analyzed under the assumption that the signal is composed of superposed
fast and slow waves [5].

The motivation for the current study is the assumption that identifying the true ul-
trasonic properties of bone will provide a more reliable estimate of bone quality and
fracture risk than the apparent properties derived from conventional techniques. Conse-
quently, our objective is to make the best possible inferences about the ultrasonic charac-
teristics of bone given that the data consist of two interfering fast and slow waves [1, 2].
Bayesian probability theory provides a powerful and well-developed apparatus tailored
to solving problems of this kind. In what follows, we will first review the model for
ultrasonic propagation in trabecular bone, apply Bayesian probability theory to compute
the posterior probability for each parameter in the model. Finally, we apply the calcula-
tions to simulation data to determine how accurately the parameters for two interfering
modes can be estimated.



MODEL FOR ULTRASONIC PROPAGATION

For linear ultrasound propagation, the real-valued time-series data are related to the
complex spectrum of the propagated pulse via the discrete Fourier transform:

di = Real

[
1
N

N

∑
j=1

Pj exp{−iω jti/N}

]
+ni (1)

where di is a data value sampled at time ti, Pj is a value of the complex spectrum at
angular frequency ω j, N is a number of points in the data, and as ni is a real additive
noise.

The data are modeled as the sum of the fast and slow modes. In the frequency domain
this sum is given by

Pj = γA jH f ast, j +(1− γ)A jHslow, j (2)

where A j is the complex spectrum of ultrasonic pulse prior to propagation through the
bone. The fractional amplitude γ expresses what fraction of the signal amplitude is in the
fast wave. Quantitatively γ varies from 0 (only a slow wave propagates) to 1 (only a fast
wave propagates). The quantities H f ast, j and Hslow, j characterize the material properties
of medium and are commonly called as the medium transfer functions. The transfer
functions govern the ultrasonic propagation of the fast and slow waves and have identical
functional form for each mode. Therefore, only the equations for the fast mode are given
below. Equivalent formulas for the slow mode are realized on the replacement of the
label fast by slow.

For linear plane wave propagation H f ast, j is given as

H f ast, j = exp
{
−α f ast, jl

}
exp
{
−iω jl/v f ast, j

}
(3)

in which l is the specimen thickness, v f ast, j is the phase velocity and α f ast, j is the (linear-
with-frequency) attenuation coefficient:

α f ast, j = β f ast
ω j

2π
. (4)

The parameter β f ast is frequently referred to as the slope of attenuation.
The slope of attenuation, and therefore the attenuation coefficient, and phase velocity

of the medium are not independent. The interrelation between these properties mathe-
matically are expressed through the nearly-local approximation of the Kramers-Kronig
relations [1]. For media characterized with an approximately linear-with-frequency at-
tenuation coefficient, such as bone, the nearly-local approximation takes the form

v f ast, j ≈ v f ast +
β f ast

π2 v2
f ast ln

(
ω j

ωr

)
(5)

in which v f ast is a phase velocity at some arbitrarily chosen reference angular frequency
ωr. Following the earlier study [5] the reference frequency ωr/2π of 300kHz is used in
the calculations presented here.



BAYESIAN CALCULATIONS

The objective is to evaluate the posterior probability density functions for each parameter
appearing in the model. These probability densities can be computed from the joint
posterior probability for all of the parameters. Consequently, in what follows we will
compute the joint posterior probability for all the parameters and then use a Markov
chain Monte Carlo simulation with simulated annealing to approximate the respective
posterior density functions.

If we denote Θ ≡ {β f ast ,βslow,v f ast ,vslow,γ}, then joint posterior probability for Θ

given all the data D and background information I, P(Θ|DI), is given by the Bayes’
theorem

P(Θ|DI) =
P(Θ|I)P(D|ΘI)

P(D|I)
(6)

where the prior probability for the data P(D|I) is a normalization constant and may
be dropped provided we normalize this density functions at the end of the calculation,
P(Θ|I) is the joint prior probability for the parameters, and P(D|ΘI) is the direct
probability for the parameters.

Assuming that the parameters are logically independent, the joint prior probability
can be factored using the product rule

P(Θ|I) = P(vslow|I)P(v f ast |I)P(βslow|I)P(β f ast |I)P(γ|I) (7)

where we have one prior for each parameter appearing in the model. Each prior proba-
bility in Eq. (7) is assigned using a bounded Gaussian to represent what is known about
each of the parameters. Specifically, the prior probability for kth parameter in Θ is given
by

P(Θk|I) ∝

{
exp
{
− [Θk−Mk]2

2δ 2
k

}
if Lk ≤Θk ≤ Hk

0 otherwise
(8)

where Mk,δk,Lk and Hk are the mean, standard deviation and the low and high bounds
for the respective parameters. The quantities Mk,δk,Lk and Hk are assumed known.

The direct probability for data given Θ, P(D|ΘI), cannot yet be assigned because it
is a marginal probability. To assign this direct probability, the standard deviation of the
noise prior probability must be introduced into the calculation. Applying the sum and
product rules gives

P(D|ΘI) =
∫

P(D|Θσ I)P(σ |I)dσ (9)

where P(σ |I) is the prior probability for the standard deviation of the noise prior and
P(D|Θσ I) is the direct probability for the data given both Θ and σ or, in this case, the
likelihood. The prior probability for σ is typically assigned using a Jeffreys’ prior [6]

P(σ |I) ∝
1
σ

. (10)



The direct probability for the data given both Θ and σ will be assigned using a Gaussian
noise prior probability

P(D|Θσ I) = (2πσ
2)−N/2 exp

{
− Q

2σ2

}
(11)

where Q is the sum of squared difference between data and the model

Q =
N

∑
i=1

(
di−Real

[
1
N

N

∑
j=1

Pj exp{−iω jti/N}

])2

. (12)

Substituting Eq. (10) and (11) into Eq. (9) and performing integration over σ yields

P(D|ΘI) ∝ Q−N
2 (13)

which is of the form of Student’s t-distribution.
This completes the assignment of the joint posterior probability for the parameters,

P(Θ|DI). The program that implements this calculation uses a Markov chain Monte
Carlo simulation with simulated annealing to draw samples from this joint posterior
probability density function. At the end of the annealing phase samples are drawn
from this joint posterior probability and Monte Carlo integration is then used to obtain
samples from the marginal posterior probability for each parameter.

DISCUSSION

There is increasing evidence that ultrasonic signals acquired on bone are comprised
of the overlapping fast and slow waves [2, 3, 5]. Because the conventional broadband
spectroscopy analyses assume a single mode in the data, there is a need for an alternative
analysis appropriate for the multi-modal signals.

In the current study the feasibility for accurate estimation of the bone parameters
is investigated by applying Bayesian probability theory to the simulated bimodal data.
The parameters used to generate this data were assigned from the empirical values
as: β f ast = 20dB/cm/MHz, βslow = 6.9dB/cm/MHz, v f ast = 2100m/s, vslow = 1500m/s,
[1, 2]. It is these parameter values that we seek to recover in the Bayesian analysis.
The other model parameters, γ , l and σ , were systematically varied in the synthesized
data to assess the performance of Bayesian methods under various conditions. First, data
with signal-to-noise ratios of 500:1, 100:1 and 50:1 were generated. Next, data sets with
varying overlaps between the fast and the slow wave were produced by changing the
samples thickness l. The overlap was quantified as

overlap [%] =
tpulse− l(1/vslow−1/v f ast)

tpulse
×100% (14)

in which tpulse is the temporal length of the unpropagated pulse. Last, data sets were also
generated by varying the relative fraction of fast and slow wave, γ .
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FIGURE 2. The marginal posterior probability density functions for vslow (panel a), v f ast (panel b),
βslow (panel c) and β f ast (panel d). Posterior probabilities shown in each plot are computed from simulated
data with peak signal-to-noise ratio set at 500:1, 100:1 and 50:1 level.

A plot of some of the marginal posterior probability density functions are given in
Fig. 2. These posterior probabilities were computed using three simulated data sets
having signal-to-noise ratios of 500:1, 100:1 and 50:1 respectively. As illustrated in
Fig. 2, the widths of the posterior probabilities scale inversely with the signal-to-noise
ration. However, close inspection of scales in panels a and b, reveals that the widths
of the posterior for the fast waves parameters are roughly 15 times greater than the
posterior probabilities associated with the slow waves parameters. This is in part due to
the specific values of parameters used to simulate the data. The analyzed waveform is
composed of 70% slow wave and 30% fast wave. The fast wave is highly attenuated.
The signal-to-noise ratio is markedly lower for the fast wave than for the slow wave.
Consequently, the large widths of the posterior probability density functions for the
parameters of the fast wave.

The parameter estimates for all of the simulated data are summarized in Fig. 3. These
summaries are mean ± standard deviation parameter estimates. The mean for a given
data set is represented by the dark bar, the standard deviations by error bars and the
true value of each parameter are represented by the line. The percents at the bottom
of this figure are the percent fast and slow waves in the simulated data. The standard
deviations are smallest for the 500:1 signal-to-noise ratio data and increase as the noise
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FIGURE 3. The true values for the phase velocity at 300kHz and the slope of attenuation for the fast
and the slow wave are compared to the mean ± standard deviation estimates computed from marginal
posterior probability for each parameter. In all cases the Bayesian posterior probabilities overlap the true
value used in generating the simulated data.

level increases. Signal-to-noise ratio of 100:1 are typical for data acquired in vitro,
whereas a lower value is anticipated in measurements in vivo. Except for the first three
cases, the parameter estimates shown in Fig. 3 are for 50:1 signal-to-noise ratio data. For
all the data, the estimated parameter values lie within one or two standard deviations of
the true values.

Although the complementary problem of model selection is beyond the scope of this
paper, we briefly examine the results of analyzing simulated bimodal data using both a
one-mode and a two-mode model, Fig. 4. Panels a and b are the simulated bimodal data,
we have repeated the data in panel b for easier comparison. The simulated bimodal data
are comprised of 30% fast wave and 70% slow wave with 80% overlap. The peak signal-
to-noise ratio of 50:1. Panels c and d are models generated from the parameters that
maximized the joint posterior probability for the parameters when the data are analyzed
using a one-mode model (panel c) and a two-mode model (panel d). The residuals, the
difference between the data and the model, are shown in panels e and f. Panel e, the
residuals generated from the one-mode model, have a strong systematic artifact; while,
panel f, the residuals generated from the two-mode model, are random and on the order
of the noise. While panels e and f are suggestive that a two-mode model is needed to
explain this data, it is not enough. One needs to go further and compute the posterior
probability for the models before one can know for certain, see [7] for more details on
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FIGURE 4. A comparison of the residuals generated when bimodal simulated data (panels a and
repeated in b) are analyzed using a one-mode and a two-mode model. Panels c is the model generated
from the parameters that maximized the joint posterior probabilities for the parameters given a one-mode
model; while panel d is the model generated from the parameters that maximum the joint posterior
probability given a two-mode model. The residuals for each models are shown on panels e and f,
respectively. The simulated bimodal data are comprised of 30% fast wave and 70% slow wave with 80%
overlap. The peak signal-to-noise ratio of 50:1.

how this is done.

SUMMARY

We have applied the Bayesian probability theory to simulated data containing both a
fast and a slow wave that mimic those seen in trabecular bone. Conventional phase and
power spectroscopy analyses have no mechanism to handle these bimodal data. How-
ever, Bayesian probability theory provides a rigorous approach to analyzing such data.
In all of the investigated data sets, including low signal-to-noise ratio data, the Bayesian
posterior probabilities cover the true value of the parameters. Thus the Bayesian ap-



proach is an effective method for extracting properties of bone both in vitro and in vivo.
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