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In a recent report [J. J. Kotyk et al., J. Magn. Reson. 98, 483
(1992)], estimates of NMR frequency and amplitude parameters
obtained from Bayesian probability theory were shown to be
more precise and more accurate than those obtained from the
discrete Fourier transform (DFT), This previous study examined
the effects of varying signal-to-noise ratio and did not address
the performance of either probability theory or the DFT as a
function of acquisition time, i.e., truncation. Herein, a quanti-
tative comparison between probability theory and the DFT is
presented and discussed in terms of the accuracy and precision
they provide in estimating the frequency and amplitude from
truncated free induction decay data. For simplicity, data con-
taining only a single frequency are examined. For frequency es-
timation, Bayesian probability theory gives either more precise
and accurate estimates or exactly the same estimates as the DFT.
This latter result only occurs when the theory indicates that the
Bayesian procedure is functionally identical to the DFT. For
amplitude estimation, the results presented herein are consistent
with those cited in previous work. Even for the best DFT pro-
cedure, probability theory outperforms the DFT by a factor of
two or more depending on the signal-to-noise ratio and the prior
information supplied in the analysis. The amplitude estimates
from probability theory are more precise and/or more accurate
than the DFT results for all levels of truncation. Additionally,
the only time the DFT amplitude estimates are more precise
(less uncertain) are when they are inaccurate (give an incorrect
answer). Thus, the use of probability theory offers significant
improvement over the use of DFT in highly truncated NMR

free induction decay data. © 1995 Academic Press, Inc.

INTRODUCTION

In practical applications of Fourier-transform NMR spec-
troscopy, experimental time considerations often limit the
acquisition time { AT ) during which the free induction decay
is discretely sampled. A short AT relative to the transverse-
relaxation decay time constant (73 ) of the NMR signal or
coherence (e.g., AT < 5.07% ) leads to the collection of trun-
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cated time-domain data. In turn, a discrete Fourier transform
(DFT) of this truncated FID data exhibits deleterious effects
that can make frequency and amplitude estimation difficult.
Such effects have been extensively documented (/-3). For
example, frequency-domain NMR spectra of truncated FID
data lose resolution, have distorted lineshapes, and exhibit
sinc oscillations. The problems associated with truncation
artifacts are more pronounced in multidimensional NMR
experiments where the AT in higher dimensions is severcly
restricted. A typical AT for an indirect-detected dimension
in a three-dimensional or four-dimensional NMR experi-
ment is usually between 10 and 40 ms {4, 5), which can be
extremely short compared to the life times of single-quantum
and multiple-quantum coherence(s). In some cases, as few
as 8 or 16 complex data points may be acquired. Such ex-
treme truncation of the time-domain data results in poor
estimates of the frequencies and amplitudes.

Several different techniques have been used to analyze
truncated NMR FID data. The most common approach is
to use a time-domain apodization filter (e.g., a decaying ex-
ponential, Gaussian, cosine, Hanning, or Hamming filter)
in conjunction with a DFT. While some improvements in
frequency-domain spectral presentation are obtained by
apodization of FID data (e.g., reduction of sinc oscillations),
apodization functions have the disadvantage of broadening
resonances and distorting lineshapes. A second common ap-
proach is to use nonlinear-least-squares curve fitting in the
frequency domain. Fitting routines seek to improve NMR
frequency and amplitude estimates by modeling phase twists,
baseline distortion, and other common artifacts {6). A third
approach relies upon linear prediction to time-forward ex-
tend the original time-domain FID data. This extended FID
is then analyzed using the DFT. Such procedures have been
extensively studied by others (7-12). Like the DFT, linear
prediction 1s usually not used to estimate parameters directly;
rather, both procedures rely on frequency-domain peak
picking and digital integration to obtain parameter estimates.
A fourth, more recent approach is to analyze the time-do-
main FID data directly using probability theory. This ap-
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proach has the advantage of not being directly affected by
either truncation artifacts or baseline distortions. For the use
of probability theory to be routinely accepted, its ability to
obtain precise and accurate estimates of NMR. frequencies
and amplitudes must be demonstrated and directly compared
to the DFT procedures.

Recently, Bayesian probability theory ( BPT ) has been ap-
plied to the problem of NMR parameter estimation (/3-
23). Bayesian analysis is a general inference procedure that
readily incorporates prior information about the NMR ex-
periment into the analysis and by some very simple and
appealing criteria is guaranteed to provide the best estimates
possible of the NMR signal parameters. A quantitative com-
parison between the BPT and the DFT was published in
earlier work (24). That study examined the frequencies and
amplitudes estimated from nontruncated NMR FID data
containing a single frequency as a function of the signal-to-
noise ratio {5/ N) of the data. For both BPT and the DFT,
the precision of the parameter estimates depended on
whether the signal phase () and T% were incorporated into
the analysis. As theory indicated, the two analysis procedures
gave equivalent frequency estimates when both 4 and 75
are known and used in the analysis. In these circumstances,
the BPT frequency estimation procedure is equivalent to
peak picking from the frequency-domain absorption spec-
trum generated using a matched exponential apodization
filter. Similarly, when 7% is known and # is not known, the
BPT frequency-estimation procedure is equivalent to peak
picking from the frequency-domain DFT power spectrum
generated using a matched exponential apodization filter.
Under conditions where 75 or 0 are unknown, the DFT
performs much worse or completely fails at S/ N levels where
BPT succeeds. Under these conditions, even when the DFT
is successful, BPT provides a factor of 3 to 7 improvement
in the precision of the frequency estimates. Unlike frequency
estimation, no equivalency between BPT and the DFT pro-
cedures is observed for amplitude estimation. At time-do-
main S/ N levels where both procedures work, BPT is sub-
stantially more precise { about threefold ) than the DFT. Like
the frequency-estimation procedures, when 775 is not known,
DFT amplitude estimation fails at .S/ N levels where BPT is
still successful. A more detailed discussion of these findings
for nontruncated data is presented elsewhere (24).

As a continuation of earlier studies, we now report a
quantitative comparison between the DFT and BPT under
conditicns of increasing FID data truncation. By extending
the comparison to data where AT < 575, the extreme effects
of truncation can be examined. Although this work examines
only the single-frequency case. these quantitative compari-
sons are also relevant for multiple well-separated frequencies.
The single-frequency model was chosen in order to explore
direct comparisons of the strengths and weaknesses of the
two procedures and to avoid complicating factors that ac-
company the analysis of overlapping resonances. Under ideal

conditions, the frequency-domain area under an NMR
spectral absorption-mode peak is proportional to the initial
time-domain amplitude of the NMR resonance. Hence, we
will refer to both quantities as the NMR signal amplitude.

EXPERIMENTAL METHODS

Experimental Design

NMR frequency and amplitude estimates from simulated
single-frequency FID data (frequency = 1000 Hz; amplitude
= 100; noise standard deviation = 1; 75 = 0.2 s; linewidth
= 1.5 Hz; sweep width = 65,536 Hz; 65,536 complex points)
were obtained using the DFT and BPT procedures described
below. The simulated data are equivalent to conditions where
the AT = 575 . The data were analyzed without truncation
(AT = 1.0 s) and at 50 increasing levels of truncation, where
gach increase in truncation resulted in a 15% loss of the
number of complex data values. For example, the first trun-
cated data set contains 55,492 complex points (i.e., 85% of
the original 65K FID data; AT = 0.85 s), while the last
truncated data set contains only 16 complex data points (AT
= (.244 ms). The advantage of using simulated data is that
the true parameter values are known.

At each truncation level, 30 different individual sets of
Gaussian white noise with fixed variance were generated (25)
and individually added to the truncated FID data to generate
a series of noise-containing FIID data sets. Computer-gen-
erated noise used in this fashion gives statistically identical
results to noise introduced by the spectrometer when the
audio filter bandwidth is set to twice the spectral window
(24). Each of the 2500 unique combined data sets (i.e., FID
signal + Gaussian noise) contained a time-domain S/ N of
100. This corresponds to a frequency-domain S/ N of 1630
for the Fourier-transformed nontruncated data sets when a
matched exponential filter was used. Relatively high S/NV
was chosen so as to explore the effects of increasing trun-
cation, not the effects of decreasing §/N as was presented
earlier ( 24). At each truncation factor, the standard deviation
and variance of the NMR parameter estimates were com-
puted from the 50 independent parameter estimates made
(one each of frequency and amplitude). All calculations and
data processing were performed using either automated C-
shell scripts or FORTRAN programs developed in our lab-
oratories.

Discrete Fourier-Transformation Procedures

Each combined data set (signal plus noise) at ¢ach trun-
cation level was zero-padded to a Fourier number of 256K
complex data values and then analyzed using a DFT to obtain
both the frequency and amplitude estimates. Frequency es-
timates were obtained by peak picking the highest point in
the frequency-domain NMR spectrum, while the integrated
area or signal amplitudes were determined by summing the



BAYESIAN ANALYSIS OF TRUNCATED FIDS 3

spectrum over the region of the frequency-domain spectrum
defined by the integration limits. As in our earlier work (24),
ancillary measures were taken to help improve the robustness
of the software-driven DFT procedures. This hidden or im-
plicit use of prior information is required to prevent pre-
mature catastrophic failure of DFT procedures and is not
inconsistent with the intuition guiding a trained spectro-
scopist.

Two DFT procedures using different sets of integration
limits were used to obtain amplitude estimates. In the DFT
procedure, the integration limits were fixed to include +12.67
X (NMR signal linewidth ), known for the nontruncated data
in the presence of a matched exponential filter. This provides
95% of the integrated area in the absence of truncation. In
the DFT, procedure, the integration limits were varied as a
function of the number of data points needed to give exactly
95% of the integrated area when a matched filter was applied.
This required consideration of the actual ( not idealized ) fre-
guency-domain lineshape. As discussed, use of variable in-
tegration limits based on the actual frequency-domain line-
shape helps compensate for truncation effects. Setting the
DFT integration limits {fixed or variable) in this fashion
requires prior knowledge of T3 (or linewidth). Table 1 il-
lustrates the changes in the DFT, integration limits at selected
truncation levels. Such an approach employing direct digital
integration is obviously not generally feasible with actual
multiresonance NMR FID data.

For the DFT, the following procedures were used: first,
frequency estimates were obtained either by peak picking
the absorption spectrum, when the phase, #, was assumed
known, or by peak picking a power spectrum when the phase,
fl, was not given. All amplitude estimates were obtained by
integration over the absorption spectrum. The phase of the
absorption spectrum was set to either the “true” phase when
¢ is assumed known or the maximum-likelihood phase es-
timate obtained from the peak of the power spectrum. In
addition to a T3 matched exponential filter, DFT estimates

were obtained using one of the following common apodi-
zation filters: Gaussian, cosine, Hanning, Hamming, reso-
lution enhancing, or an exponential (not 73 matched). In
total, seven different apodization filters were employed. All
apodization filters (except the 73 matched exponential filter)
were set so that the amplitude of the last few data points in
the truncated FID data were approximately 1/1000th the
amplitude of the initial data point in the FID. The matched
exponential filter was set based on the known 775 for the
signal in the nontruncated data. Two frequency and four
amplitude estimates (i.e., those with or without known phase
for either fixed or variable integration limits) were obtained
for each apodization filter for each of the 2500 free induction
decays.

Bavesian Analysis Procedures

Each combined data set (signal plus noise) was analyzed
using BPT to obtain the posterior probability distributions
for the frequency and signal amplitude. A detailed description
and theoretical basis for these procedures can be found else-
where (16~-20). Frequencies were estimated both in the ab-
sence and in the presence of # and 775 prior information as
indicated.

RESULTS AND DISCUSSION

The present work examines the ability of both BPT and
the DFT to estimate the frequency and the amplitude of a
single exponentially decaying sinusoid as a function of signal
truncation. Comparisons are made between the BPT results
and the DFT results obtained with various integration limits
and apodization functions. The true parameter values were
frequency = 1000 Hz and signal amplitude = 100. In the
case of the DFT estimates, the integration limits were selected
to give 95% of the known value. Any consistent deviation
or scatter from these values reflects a lack of accuracy or
precision in the analysis procedures caused by data trunca-
tion.

TABLE 1
Summary of NMR Parameters and DIYT, Integration Limits® at Various Truncation Levels

No. of cvcles DFET, integration DFT, integration

AT Complex data points Truncation level digitized limits (pts)? limits (lw)
1.0 65536 5.07% 1000 +152 + 12.67
0.20 13052 1.0773 200 +140 + 11.63
0.02 1314 0.173 20 +129 + 10.65
0.002 130 0.017% 2 +1159 + 96.56
0.0002 16 0.0017% 0.2 +9569 +797.42

“ Variable integration limits were determined by applying a 75 matched exponential filter to the known cxponentially decaying single-frequency signal,
performing a DFT, and then finding the symmctric integration limits that enclosed 95% of the known and total integrated area.

 Integration limits of the fourfold zero-padded (635,536—>262,144 complex points) frequency-domain spectrum. There are four points per hertz.

¢ [ntegration limits expressed in umits of linewidth at half-height in the absence of truncation but in the presence of a T3 matched exponential filter;

e.g.. 1 lw = 3.0 Hz for the simulated signal used herein.
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A nontruncated signal is defined in the present study as
one that is digitized for at least 573. The degree of data
truncation is discussed relative to the NMR signal in two
ways. Most fundamentally, it can be presented in terms of
the AT relative to the signal’s 75 value, i.e., in units of
7% . Nontruncated data, for instance, is equivalent to col-
lecting data with an AT = 5,075, while highly truncated
data might be collected with an AT = 0.001775 . Additionally,
the truncation level can be discussed in terms of the number
of cycles in the simulated sinusoid. The nontruncated FID
data set had 1000 cycles while the most highly truncated FID
data set examined has only 0.2 cycles.

As described previously (24}, inclusion of 8 and T prior
information markedly improves the parameter estimates
obtained via DFT procedures but is less important in the
BPT analysis. In fact, without 73 prior information, the DFT
performance is so poor relative to BPT performance (see
Ref. (24)) that it was decided to use 7 prior information
for all DFT analyses in the present study. Such actions not
only allow somewhat more practical comparisons to be made
(the trained spectroscopist often knows the approximate
value of 7'5) but are also necessary for determining DFT
integration limits.

Frequency Estimates

Figure | shows the BPT and the DFT frequency estimates
plotted as a function of truncation. Both BPT and this DFT
analysis give accurate frequency estimates with minimal
scatter at truncation levels where AT > 0.0375 (six cycles
digitized). Both procedures are adversely affected by more
severe truncation, i.e., the scatter increases markedly when
AT < 0.037%. At truncation levels beyond AT = 0.0373,
the precision of the BPT frequency estimates obtained with-

out either § or T3 prior information (Fig. LA )is only slightly
worse than that found for the DFT power spectrum given
T* (Fig. 1B). The BTP results given T3 (Fig. 1C) are iden-
tical to the DFT, as theory says they must be. Additional
improvement in the DFT frequency estimates is observed
when both 7% and 4 prior information is used (Fig. 1D).
Again theory indicates in this latter case that the BPT and
the DFT results are identical. Use of apodization functions
other than a matched exponential filter in the DFT analysis
(data not shown) shows very little difference from the be-
havior displayed in Fig. 1B or Fig. 1D. Figure 1 demonstrates
that both BPT and the DFT frequency estimates improve
when more prior information is supplied and become iden-
tical when theory indicates they should. These findings are
consistent with our previous study (24). Note that the small
differences in the BPT and DFT estimates observed in the
figures are due to the digital resolution implicit in the DFT.
If BPT is restricted to that same digital resoluticn, the BPT
results are identical to those obtained from the DFT.

The truncation of the FID data results in a progressive
loss in the frequency-domain S/ N level (excessive truncation
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FIG. 1. Individual frequency estimates obtained using the BPT and the
DFT analysis procedures plotted as a function of the FID data truncation
level, Results are shown for (A) the BPT estimates obtained in the absence
of T5 and 8 prior information: {B) the DFT estimates obtained with T;‘,
but without § prior information, i.e., from the frequency-domain power
spectrum; (C) the BPT estimates obtained with T3, but without 8 prior
information; and (D) the DFT frequency estimates obtained with T3 and
f prior information from the frequency-domain absorption spectrum. Fifty
independent frequency estimates were made at each of 50 truncation levels
for a total of 2500 individual estimates in each panel. The solid line shown
in (A)-(D) represents the mean of the 50 individual frequency estimates
obtained at each truncation level and is an indication of the accuracy of the
estimation, while the upper and lower dashed lines represent one standard
deviation from the mean, respectively, and reflect the precision of the esti-
mation.

broadening decreases resonance lineshape height), but no
loss in the time-domain S/N. Herein, even for the most
truncated data, the S/ N is sufficient to give frequency esti-
mates that only deviate by 20 Hz from the true value of 1000
Hz. Thus, the precision of the frequency estimates is relatively
good. The discrete nature of the fast Fourier transform de-
grades the performance of the DFT procedures. Effects due
to coarse digitization even appear in the DFT frequency es-
timates { 1000.25 Hz) obtained for the nontruncated data.
Additionally, digitization also affects the amplitude estimates
at all levels of truncation. These digitization effects appear
because the lineshape changes as a function of the number
of complex data values, The changing lineshape has the par-
adoxical affect of causing the average DFT area per frequency
step either to decrease (so the integral is less than 95) or to
increase (so the integral is larger than 95). depending on the
degree of truncation. The size of the effect can be quite large.
By comparison, neither the frequency-domain S/ N level nor
the discrete nature of the peak-picking routines are directly
relevant to the BPT procedures. The mean BPT amplitude
and frequency estimates do not display digitization artifacts
like those observed in the DFT analysis.
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One advantage of BPT is that, in addition to estimating
the parameters, it also carries an estimate of the accuracy
and precision of the estimated parameters. By performing a
calculation similar to that done previously (18, 19), the ac-
curacy and precision of the BPT frequency estimates at ex-
treme levels of data truncation (linear approximation of ex-
ponential decay) can be expressed in terms of the experi-
mental and signal parameters

Y
O'T2

8AVN’ ]

{(Flea = F+

where (F)y is the estimated frequency, F is the true fre-
quency, ¢ is the standard deviation for the noise, A is the
true signal amplitude, and N is the number of discrete data
values. Equation {1] shows that the precision of the BPT
frequency estimates depends on, among other factors, the
time-domain S/N level (A/¢) and the square root of the
number of data values gathered. Loss of accuracy in the BPT
frequency-estimation results for constant time-domain S/N
level is caused by a reduction in the number of data points.
Also note that the BPT analysis is accurate in the sense that,
as the noise level goes to zero, the BPT procedure always
returns the true frequency. A more detailed discussion of
the dependence of the BPT frequency estimates on the ex-
perimental parameters can be found in Refs. (18, 19}.

Signal Amplitude Estimates

The BPT and DFT signal amplitude estimates obtained
for the nontruncated FID data are summarized in Table 2.
The BPT and the DFT {matched) procedures give the ex-
pected estimates of the signal amplitude, i.e., 100 and 95%,
respectively. Not unexpectedly, application of apodization
filters distorts the lineshape so that the fixed integration limits
no longer define 95% of the integrated area of the NMR
signal. Thus, differences in amplitude estimates for non-
truncated data provide a relative measure of the incompat-
ibility of the apodization filter and Lorentzian-based inte-
gration region. Such apodization-induced accuracy errors are
also present, and in some cases greatly magnified, in trun-
cated data analysis and have a significant effect upon the
performance of the DFT amplitude estimation procedures
(vide infra).

Figures 2 and 3 display the amplitude estimates for the
BPT analysis and the DFT analysis using fixed and variable
integration limits, respectively. In both figures, the abscissa
scales are identical for all eight panels (A-H) and represent
the AT in units of 7% . The ordinate scale in Fig. 2 and Fig.
3 varies depending on the analysis procedure. In most panels,
the ordinate scale spans an amplitude range of 100 (Figs.
2B-2H and Figs. 3C-3H), while other panels dispiay ex-
panded ordinate scales: Fig. 2A spans a range of 8 and Figs.
3A and 3B each span a range of 4.

TABLE 2
Signal Amplitude Estimates (Mean) Obtained for
Nontruncated Data Analysis

Method Nontruncated
(apodization filter)® amplitude®
BPT 99.995
DFT (matched) 95.002
DFT (unmatched) 98.369
DFT (Gaussian) 99.973
DFT (cosine) 97.488
DFT (Hanning) 97.488
DFT (Hamming) 97.487
DFT (enhancing) 100.804

2 Functional forms for all DFT apodization functions were obtained from
Ref. (I). All apodization filters other than the matched exponential filter
were specifically set so that the amplitude of the last few data points in the
truncated FID data were approximately 1/1000th the amplitude of the initial
data point in the FID.

% Frequency-domain integration limits were set as is appropriate to recover
95% of the area for the nontruncated signal in the presence of a matched
exponential filter.

A comparison of each procedure can be made at different
truncation levels by examining both the mean and standard
deviation of the parameter estimate. While the BPT analysis
(Figs. 2A and 3A) gives reasonable amplitude estimates at
all truncation levels, the performance of the DFT procedures
depends strongly on the degree of data truncation, the in-
tegration limits, and the choice of apodization filter. In gen-
eral, the DFT amplitude estimates at minor to moderate
levels of data truncation yield reasonable results and follow
the trend established for the nontruncated data in Table 2.
At high truncation levels, all of the DFT procedures, with
the possible exception of Fig. 3B, fail to yield accurate esti-
mates of the signal amplitude.

As previously noted, seven different apodization functions
were used in the DFT, analysis. Of these seven, five were
reasonably precise at moderate truncation levels (Figs. 2B,
2D, 2E, 2F, and 2G), but gave inaccurate or biased results
at higher truncation levels. Two apodization functions ( Figs.
2C and 2H) worked poorly at all levels of truncation. By
conirast, the Bavesian estimate (Fig. 2A ) worked well for all
levels of truncation, exhibiting both accurate and precise
results. The results from all the DFT procedures are inac-
curate for high levels of truncation. The inaccuracies in the
DFT; analysis are caused by the fact that the integration
limits are fixed, but the linewidth changes as a function of
the truncation. This is most apparent when using a matched
filter (Fig. 2B). Note how the amplitude estimate decreases
and then increases and how finally most of the area moves
completely out of the integration window. This behavior is
caused both by the height of the peak and by the position of
the sinc minima and maxima changing as a function of the
number of complex data values.
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FIG. 2. Individual signal amplitude estimates obtained vusing the BPT

and the DFT; analysis procedures plotted as a function of the FID data
truncation level, Results are shown for (A} the BPT procedure estimates
obtained using 73 prior information (note expanded ordinate seale) and
the DFT, procedure ¢stimates obtained vsing integration limits fixed as is
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exponental; (C) decaving exponential; (D) Gaussaan: (E) cosineg: {F) Hanning:
(G)y Hamming; and (H) resolution enhancing, Except for (B), all filters wiere
applied such that the final point in the FID was reduced to approximately
1/1000th of the amplitude of the initial peint in the FID. All DFT ¢stimates
were obtained with # prior information, 1.e., from the absorption spectrum.
Fifty independent amplitude estimates were made at each of 50 truncation
levels for a total of 2500 individual estimates in each panel. The solid line
shown in (A)-{H) represents the mean of the 50 individual frequency esti-
mates obtained al each truncation level and is an indication of the accuracy
of the estumation, while the upper and lower dashed lines represent one
standard deviation, respectively, and reflect the precision of the estimation.

To help compensate for this effect, amplitude estimates
were obtained a second time using variable integration limits,
t.e., DFT,. These integration limits were set so that the
matched filter integral enclosed at least 95% of the total area.
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To determine these limits, the simulated data were multiplied
by a matched filter, transformed. and phased, and the small-
est symmetric interval was found that enclosed at least 95%
of the total amplitude. Because the DFT has finite resolution,
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lowing apodization filter functions: (B) 7% matched decaying cxponential
(ordinate scale expanded equivalent to that of (A ); (C) decaying exponential;
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2500 individual estimates in each panel. The solid line shown in (A)-(H)
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each truncation level and is an indication of the accuracy of the estimation,
while the upper and lower dashed lines represent one standard deviation,
respectively, and reflect the precision af the estimation.
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the actual area enclosed using this approach is always a little
more than 93%. The results of this analysis are shown in
Figs. 3B-3H. Note the continued presence of digitization
artifacts. These artifacts are unavoidable and are implicit in
the discrete nature of the amplitude integral.

Table 3 summarizes the amplitude-estimation failure
points for all the analytical procedures, For fixed integration
limits and moderate levels of truncation, more accurate am-
plitude estimates are obtained using a (Gaussian, cosine,
Hanning, or Hamming filter than those obtained using a
matched exponentially decaying filter. On the other hand,
variable integration limits correct for sinc oscillation artifacts
(Fig. 3B) and dramatically improve the accuracy of the
matched exponential filter results, but show a decrease in
the accuracy of the results for the other filters because an
incorrect lineshape is assumed in sefting the variable inte-
gration limits. In practice, meaningful DFT amplitude es-
timates can be obtained only at truncation levels less than
those shown in Table 3.

A closer comparison of Figs. 2 and 3 and Table 3 show
all DFT, procedures, except DFT, { matched ), begin to fail
at truncation levels lower than their corresponding DFT;
procedures. For instance, the DFT, (Hanning) amplitude
estimates (Fig. 3F) begin to fail when AT = 0.973 {160
cycles digitized), whereas the DFT; {Hanning) procedure
(Fig. 2F) provides reasonable amplitude estimates until AT
== 0.37% (60 cycles digitized). This seemingly counterin-
tuitive behavior for other apodization functions, i.e., poorer
performance for DFT, vs DFTy, is observed because the
variable integration limits used were specifically set for a
matched exponential apodization function, Accurate am-
plitude determination using other apodization functions
would require a different calculation for each apodization
function to determine the appropriate integration limit. At
high data truncation levels, where extremely large integration
limits are used, some improvements in DFT, amplitude es-
timates are seen for other apodization functions (Figs. 3E,
3F, and 3G). This is demonstrated by the estimates remain-
ing on scale and leveling out at values closer to the known
amplitude {compared to the DFT results shown in Fig. 2}.

Lineshape distortion in the frequency domain is intro-
duced by apodization and by truncation of the time-domain
data. The net effect of lineshape distortion is to distribute
the signal amplitude such that the integration limits set for
a Lorentzian lineshape (+12.67 X known NMR signal line-
width ) are no longer appropriate. This leads to bias or sys-
tematic error in the accuracy of the DFT amplitude estimates
which eventually results in the failure of the DFT procedures
as shown in both Figs. 2 and 3. Unfortunately, at high levels
of data truncation, impractically large variable integration
limits are necessary to compensate for the changes in line-
shape. For instance, to include 95% of the signal amplitude
for a resonance with a true linewidth of 1.5 Hz, an integration
region of 2392 Hz is required at AT = 0.000275 (0.2 cycles

TABLE 3
Amplitude Estimation Failure Points for BPT and DFT
Analysis Procedures Reported in Terms of 73

Using variable
integration limits®
(cycles digntized)

Method*
(apodization filter)

Using fixed integration
limits® {eycles digitized)

BPT 0.0027% (0.4)

DFT (matched) 1.07% (200) 0.00273 (0.4)
DFT (unmatched) — —_
DFT (Gaussian) 0.477% (80) 0.77% (140)
DFT (cosine) 0.4T% (80) 0.97% (180)
DFT (Hanning) 0.37F (60) 0.9773 (180)
DFT (Hamming) 0.37% (60} 0.87% (160)

DFT (enhancing) — —

¢ Funcuonal forms for all DFT apodization functions were obtained from
Ref. (7). All apodization filters other than the matched exponential filter
were set so that the amplitude of the last few data points in the truncated
FID data were approximately 1/1000th the amplitude of the initial data
point in the FID.

® Frequency-domain integration limits were set as is appropriate io recover
95% of the area for the nontruncated signal in the presence of a matched
exponental filter,

“ Variable integration limits were chosen to bound 95% of the area for
the actual DFT lineshape resulting from the matched exponentially filtered
truncated data set.

digitized ) when a matched filter is used, while only 232 to
38 Hz is needed for AT = 0.027% (20 cycles digitized).
Although generally impractical in the presence of multiple
resonances, variable integration limits account for the vari-
ability of the lineshape as a function of AT. However, even
after accounting for the change in lineshape, variable inte-
gration is still effected by systematic digitization artifacts.

In summary, accurate and precise amplitude estimates
can only be obtained from the DFT for moderate levels of
truncation. At high levels of truncation, all DFT precedures
give amplitude estimates that are inaccurate. It is possible
using variable integration limits specific for a given apodi-
zation function and truncation level to correct for these in-
accuracies. However, digitization artifacts persist even here,
which cause biased estimates to be obtained. By contrast,
BPT amplitude estimation is free of artifacts and performs
as expected.

In many applications where highly truncated data is col-
lected, e.g., multidimensional experiments, this loss in am-
plitude accuracy may not be as disastrous as it first appears.
Provided all resonances have roughly the same linewidth,
strong apodization functions can be expected to dominate
the linewidth and affect all resonances equally. In addition,
such experiments often measure relative amplitudes which
are compared to an internal control amplitude observed for
a known resonance, e.g., as in the determination of distances
derived from NOE cross-peak amplitudes/volumes. Thus,
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to some extent, the loss in accuracy 1s compensated for by
use of relative amplitude measurements.

Like the BPT frequency estimates, a straightforward cal-
culation similar to that described earlier (/8, 19) may be
used to exhibit the dependence of the BPT amplitude esti-
mates on the experimental parameters in highly truncated
FID data (linear approximation of exponential decay). In
this case one finds

(A)es = A + [2]

a
m b
where (A ). is the estimated amplitude, A is the true ampli-
tude, o 1s the standard deviation of the noise, and N is the
number of discrete data values. Thus, for constant time-do-
main S/ Nlevels, the precision of the BPT amplitude estimate
in Eq. [2] has the same dependence on N as BPT frequency
estimates, Eq. [1]. While an increase in performance of the
BPT ampiitude (and BPT frequency) estimates might be
expected at higher truncation levels by oversampling the data,
in practice, these effects are tempered by the effects of audio
filters. A more detailed discussion of the dependence of BPT
amplitude estimates on experimental parameters can be
found in Ref. (20).

Equations [1] and [ 2] demonstrate that the precision of
the parameter estimate varies as one over the square root of
the number of data values. Thus for a fixed value of the noise
standard deviation, ¢, one should expect less accurate results
for both amplitude and frequency estimates as the number
of data values decreases. For example, for a fixed noise stan-
dard deviation, the estimates obtained from a data set con-
taining 128 data values are two times more precise than those
obtained from a data set containing 32 data values, and four
times more precise than those obtained from a data set con-
taining only 8 data values. Of course, as the number of res-
onances increases, the number of parameters to be estimated
increases. In the case of a very limited number of data values,
these parameters will be almost unconstrained by the data,
i.e., their values will be completely indeterminant unless one
has strong prior information.

A closer comparison between BPT and DFT procedures
can be made by examining Fig, 4 which plots the amplitude
standard deviation vs the mean-amplitude estimate at se-
lected truncation levels. Because variable integration limits
can rarely be used in practice, the comparisons in Fig. 4 are
made by using fixed integration limits. At all truncation levels
shown, the BPT analysis provides more accurate and precise
amplitude estimates than any of the DFT; procedures. The
mean BPT amplitude estimate falls exactly at the known
amplitude of 100, while many of the DFT; resulfs give an
estimate other than the expected value of 95. Consistent with
earlier discussions ( Table 3), the DFT ;{matched) procedure
provides the most accurate DFT ; estimates at the first three
truncation levels shown (Figs. 4A, 4B, and 4C). At higher
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FIG. 4. Amplitude standard deviation vs mean amplitude estimate at
selected FID data truncation levels for the BPT analysis (O) and the DFT;
procedures using a 73 matched exponential (), a decaving exponential
(+). a Gaussian (¥), a cosine (X), a Hanning (x), an Hamming (&), or an
enhancing () apodization filter. All DFT estimates were obtained with 8
prior information, Le., from the absorption spectrum. Fifty independent
amplitude estimates were made at each of 50 truncation levels for a total of
2500 individual estimates in each panel. Accurate mean amplitude estimates
for the BPT procedure should be 100, while accurate DFT procedures should
vield a value of 95. While a seemingly more precise amplitude estimate is
observed for the DF T, (matched) analysisat AT = 0.1 T; (I, such precision
is fortuitous in that the analysis has failed long before this level of truncation
was reached (see Table 3 and Fig. 2B).

truncation levels, the DFT ; procedures perform very poorly
yielding amplitude estimates and standard deviations which
are off the scale (Figs. 4D, 4E, and 4F). While a seemingly
more precise amplitude estimate is observed for the DFT
(matched ) analysis at AT = 0.175 (Fig. 4D), such precision
1s fortuitous in that the analysis has failed long before this
level of truncation was reached (see Table 3 and Fig. 2B).

SUMMARY AND CONCLUSIONS

Our results demonstrate that BPT offers distinct improve-
ments over the DFT as a means to obtain precise and ac-
curate estimates of the frequency and signal amplitude from
single-frequency, truncated FID data. The source of im-
provement lies in fundamental differences between analysis
using DFT frequency-domain and BPT time-domain pro-
cedures. The DFT relies on peak-picking and digital inte-
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gration techniques and is greatly affected by distortions in
lineshape and data truncation. BPT does not rely on fre-
guency-domain peak-picking and lineshape integration lim-
its. It is capable of incorporating prior information even in
cases where it 1s impractical to do so using DFT procedures.
The advantages observed using BPT exist for both nontrun-
cated and truncated FID data, but are most pronounced for
data with low frequency-domain S/ N and/or high truncation
levels.

When 775 prior information is supplied, BPT and the DFT
procedures are equivalent for estimating frequency at all lev-
els of data truncation. When # is not known, both procedures
reduce to peak picking a power spectrum, and when 6 is
known, both procedures reduce to peak picking an absorp-
tion spectrum. Such findings are consistent with earlier work
(24) and are based both on theory and on empirically mea-
sured uncertainties determined from repetitive estimates of
the NMR parameters. Regardless of the degree of data trun-
cation, under practical conditions where neither § nor T
are known, BPT analysis can be expected to yield more ac-
curate and precise estimates of the frequency than the DFT
method as described in this and earlier work (24).

At increasing truncation levels, the BPT analysis gives
more accurate and precise estimates of the signal amplitude.
Only when # and 73 prior information is used and integra-
tion limits are chosen based on the true lineshape does the
accuracy and precision of the two procedures become com-
parable. Even then, the DFT results exhibit bias in the am-
plitude estimates. Obviously, this strategy would not be fea-
sible in spectra where lineshapes overlap from multiple res-
onances. Inappropriately accounting for lineshape distortion
in the frequency domain is the single major source of ac-
curacy error in the DFT procedures. As truncation levels
increase, all DFT procedures, except the DFT, (matched)
procedure, completely fail to provide accurate estimates of
the signal amplitude. Use of apodization filters, other than
a matched exponentially decaying filter, exacerbates the
problems due to lineshape distortion and results in failure
of the DFT procedure at moderate data truncation levels.

For practical applications, where T3 and § are unknown,
significantly more accurate and precise parameter estimates
can be obtained using BPT, Furthermore, in contrast to direct
DFET procedures, BPT analysis can be applied to signals con-
taining closely spaced frequency components. In this regard,
we anticipate that Bayesian analysis will become an impor-

tant method for examining time-domain FID or interfero-
gram NMR data.
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