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Abstract. After finishing the paper generalizing the Lomb-Scargle periodogram
to the case of quadrature data having a decaying sinusoidal signal [4], I sent a
copy of that paper to Jeffrey Scargle thinking that he would enjoy seeing how his
periodogram could be generalized. He immediately asked whether or not the peri-
odogram could be generalized to periodic but nonsinusoidal functions. The answer
to this is of course yes, but for me it was not a particularly interesting case simply
because I work in an NMR lab and in NMR the signals are so nearly sinusoidal
that issues concerning nonsinusoidal oscillations never come up. However, in As-
trophysics and a host of other applications the issue does come up. So I responded
to his email message with a short note that explained how the Lomb-Scargle pe-
riodogram could be generalized to the nonsinusoidal but periodic case and then
mapped out how those generalizations would go and what the sufficient statistics
derived using Bayesian probability theory would be. In this paper, I give a refined
version of that calculation and show that the Lomb-Scargle periodogram can be
generalized in a way that covers both the sinusoidal and nonsinusoidal cases as
well as a host of cases.
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1. Introductions

Generalizing the Lomb-Scargle periodogram is not so much an issue of generalizing
the periodogram, rather its an issue of generalizing the model used by Lomb to
derive the Lomb-Scargle periodogram [1-3]. The Lomb model consists of a single
stationary sinusoidal with an extra redundant phase parameter. Lomb choose this
phase in such a way as to make the sine and cosine model functions orthogonal
on the discretely sampled times. This achieved a tremendous simplification in the
way his periodogram appeared and simultaneously made the relationship to the
discrete Fourier transform power spectrum obvious. It is the combination of the
redundant phase and choosing that phase to make the model orthogonal that
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defines what I mean by a Lomb type model. In [4] I generalized the Lomb model
to a decaying sinusoid that was measured in quadrature. Because of the way the
Lomb model was generalized, it subsumed the stationary sinusoidal model used
by Lomb as a special case and so that paper showed how the Lomb periodogram
generalizes from real data containing a stationary sinusoid, to quadrature data
containing arbitrarily decaying sinusoids. Here I would like to generalize the Lomb
model to periodic functions in general where the model functions may or may not
be sinusoidal.

Suppose we have quadrature data, i.e., a measurement of the real and imaginary
parts of a complex signal, and the data has some type of oscillation in it. Here we
will assume that the functional form of this oscillation is known, although that is
by no means a requirement in a Bayesian calculation. One could easily expand an
arbitrary periodic nonsinusoidal signal in a complete set and then proceed with the
appropriate Bayesian calculation. This has indeed been done, [5,6]. However, while
such a calculation is simple and straightforward, the resulting sufficient statistic are
not a “periodogram” in the generally accepted sense of that word. Consequently
we will restrict our attention to the case where the model is a known function.
The most general model we will consider is of the form

Complex Signal = AeZ(/)—1H(f:1) 1)

where A is the intensity of the signal, and the functions Z(f,t¢) and H(f,t) are
otherwise completely arbitrary (except for the presumption that they are periodic
functions of frequency f). Of coarse any complex function

u(f,t) +iv(f,1) (2)

may be written in this form because

w(f,8) + 0(f,£) = /ulf, )2 + 0(f, £)2 exp {itan—l [ZE; ’3] } LB

The functions Z(f,t) and H(f,t) can be identified explicitly if we multiple by the
amplitude A, and place the square root in the exponent:

Alu(f,t) + iv(f,t)] = Aexp {log Vu(f,t)2 +o(f,t)2 +itan? [ZE;’, g] } . (4)

Inspecting this equation we find

e

Consequently any arbitrary periodic complex function may be used as a model in
this calculation.

Implicit in this calculation and in the Lomb-Scargle periodogram, is the as-
sumption that the model is a single frequency model. Consequently, when we
compute the joint posterior probability for the frequency it is only applicable to

H(f,t):—tan‘l[ and  Z(f,t) = log /a(F, 02 + o(F,0P.  (5)
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data that are known to contain a single resonance. If the data contain multiple
resonances, Bayesian probability leads to a simple procedure for estimating multi-
ple frequencies, its just that the statistics that come out of these calculations are
not generalizations of the Lomb-Scargle periodogram.

The model, Eq. (1), is not yet sufficient to model a complex data set nor is it in
the form that will yield a generalized Lomb-Scargle type periodogram. To model
a complex signal, we must insert a phase parameter ¢ into this model. This phase
parameter simply tells us where in a cycle the start of data acquisition occurred,
one obtains

Complex Signal = AeZ(f)—iH(ft)=i¢, (6)

To make this model a generalized Lomb-Scargle model, we must also add a redun-
dant phase 6: ) o
Complex Signal = AeZ(/;t)—iH(f,)~i¢—i0 (7

For now we will assume 6 know, and derive its functional dependence on Z(f,t)
and H(f,t) later.

If we now separate this equation into its real and imaginary parts and use it
to model the quadrature data, one obtains:

dr(t;) = acos[H(f,t;) — 0]eZ(Ft) 4 bsin[H(f,t;) — 0]eZFt) 4 error  (8)

for the real data, where “error” represents the misfit between the data and the
model; dr(t;) denotes a real data item acquired at time ¢;. Similarly for the imag-
inary data one obtains

Z(f,t} : Z(f,t"
dr(t;) = beos[H(f, ;) — 0]e?St) — asin[H(f,t}) — 0]e? /1) + error.  (9)

We have made a change of variables, a = Acos(¢) and b = —Asin(¢), to switch
form polar coordinates (A, ¢), to Cartesian coordinates (a, b), and we have denoted
the acquisition time of the imaginary or quadrature data as t;- to indicate that the
times at which the quadrature data were acquired may be different from the times
at which the real data were acquired.

2. The Generalized Lomb-Scargle Periodogram

To generalize the Lomb-Scargle periodogram we now apply the rules of Bayesian
probability theory using the generalized Lomb model, Eq. (7), and derive the
marginal posterior probability for the frequency f independent of the two am-
plitudes a and b and independent of the standard deviation of the noise prior
probability o. This marginal probability density function is denoted as P(f|DI)
where this should be read as the marginal posterior probability for the frequency
given all of the data D = {Dg, D} and the background information I. This back-
ground information includes the quadrature nature of the signal as well as the
assumption that the model is known. We have denoted the real and quadrature
data as D = {dgr(t1),...,dr(tns)} and Dy = {ds(t},...,dr(ty,)} respectively.
The number of data items in the real and quadrature data sets have been denoted
as Ng and Nj.
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The marginal posterior probability for the frequency is computed from the joint
posterior probability for all of the parameters appearing in the model:

P(f|DI) = / dadbdo P(fabo|DI) (10)

where the integrals result from the application of the sum rule of probability theory.
Assuming logical independence, one can factor the right-hand side of this equation
to obtain

P(f|DI) oc/dadde'P(f|I)P(a|I)P(b|I)P(J|I)P(DR|fabaI)P(D1|fab0I)
(11)

where we have dropped a normalization constant. Assigning uniform prior proba-
bilities to P(f|I), P(a|l) and P(b|I), a Jeffreys’ prior to P(c|I) and Gaussians to
noise prior probabilities, one obtains

P(f|DI) / da / db / doo~(N+1)

Y exp {_Nd_2 — 2aR(f) — 2bI(f) + a*C(f) + b*S(f) }

202

(12)

where the quantities appearing in this equation are defined in a way analogous to
those given in [4]. The total number of data values, N, is defined as

N = N + Njy. (13)

The mean-square data value, d2, is defined as

Ng Ny
S dn(t)?+ S di(t)?] (14)
i=1 j=1
The function R(f) is defined as
R(f) = ZdR ) cos[H (f,t;) — ]eZ(St)
(15)
- Zdz sin[H(f,t}) — o]eZ(f,t}).
Similarly, I(f) is defined as
I(f) = ZdR sin[H(f,t;) — 0leZ(Ht)
(16)

+ ZdI cos[H(f,t}) — O]e Z(545),
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The function C(f) is defined as
NR NI
C(f) =Y _cos®[H(f,t;) — 0]*”H) 13 "sin®[H(f, 1)) — 6]*” %) (17)
i=1 j=1

and is an effective number of data items in the real channel. Similarly, the function
S(f) is defined as

Ngr Ny
S(f) =Y sin®[H(f,t;) — 0701 + 3 " cos?[H({, t}) — 0> 1) (18)
1=1

Jj=1

and is an effective number of data values in the imaginary channel. Finally, the
condition that the model be orthogonal, i.e., that the quadratic term involving ab
be zero in Eq. (12), is

Nr
0 = ZCOS[H(f, t;) — O] sin[H(f,t;) — g]e2Z(f,ti)
i;: »
— ) sin[H(f,t;) — 6] cos[H(f,t}) — 61275,

i=1

For simultaneous sampling, this condition is automatically satisfied and we defined
0 to be zero; otherwise 6 is given by

P o 'R sin[2H(f, t;)]e?ZU4) — S sin[2H (f, ))]e? 449 20)
2 Ziﬁl cos[2H (f,t;)]e2Z(F:t:) — Z;VZII cos[2H (f, t;)]ezz(f’tg')

The triple integral in Eq. (12) may be evaluated as follows: First, the integral
over the two amplitudes are uncoupled Gaussian quadrature integrals and are
easily evaluated. One needs only complete the square in the exponent, and a simple
change of variables to evaluate them. The remaining integral over the standard
deviation of the noise prior probability may be transformed into a Gamma integral
and is also easily evaluated. We do not give the details of these evaluations; rather
we simply give the results:

2—-N

1 — 5] 2
P(f|DI ———— |Nd? — h? 21
P st N =
where the sufficient statistic, h2, is given by
5 _ R 1)
"=t s )

and is a generalization of the Lomb-Scargle periodogram that includes both the
nonsinusoidal and sinusoidal cases, as well as a host of others special cases depend-
ing on the functions Z(f,t) and H(f,t).
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3. Discussion

To see that this sufficient statistic subsumes the Lomb-Scargle periodogram as a
special case all one needs to do is to substitute

H(f,t) =2nft and Z(f,t)=0 (23)

and, because the Lomb model assumes real data, Ny = 0; one obtains

2 2

Ngr Ng
> “dr(t;) cos[2m ft; — 0] > dr(t;)sin[27 ft; — 6]
) i=1 i=1
h? = o + o (24)
Z cos?[2mt; — 6] Z sin?[27t; — 6]
i=1 i=1

which is the Lomb-Scargle periodogram. Additionally, it is easy to show that if
exp{Z(f,t)} — Z(f,t), and N1 # 0 this statistic reduces to what was found for
decaying sinusoids in [4].

The generalized Lomb-Scargle periodogram, Eq. (22), reduced to the Lomb-
Scargle periodogram for a real stationary sinusoid. It generalizes the Lomb-Scargle
periodogram to the case of a real decaying sinusoid for either uniformly or nonuni-
formly sampled data. It then generalizes to the Schuster periodogram for a sta-
tionary sinusoid when the data are quadrature. It generalizes to a weighted power
spectrum when the sinusoid decays for simultaneously sampled quadrature data;
the weight function being the decay envelope of the sinusoid. When the data are
not simultaneously sampled, the statistic generalizes again to a Lomb-Scargle type
periodogram. Finally, Eq. (22) generalizes the Lomb-Scargle periodogram to single
frequency estimation when the signal is periodic but not sinusoidal.
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