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ABSTRACT

A Bayesian analysis of the phase variations of the 26.5 day periodic radio
outbursts from the high mass X-ray binary LS I +61°303 demonstrates a clear
periodic modulation on a time scale similar to that previously found for the long term
modulation of the outburst peak flux density. Combining the outburst phase and flux
information we obtain a phase and flux modulation period of 1584ﬂ‘1L days as well as a
more accurate outburst period of 26.4917 + .0025 days. From the shape of the phase
and outburst flux modulation we find that larger outbursts occur at an earlier orbital
phase, closer to periastron, probably as a result of variations in the wind from the
rapidly rotating Be star primary. The phase modulation also suggests a rather sudden
onset to each new cycle of mass loss by the Be star. The next maximum in long term
flux modulation is predicted to occur between February, 1999 and March, 2000 (Julian
day 2,451,233 to 2,451,633).

Subject headings: Bayesian methods, period detection, LS T +61°303, Gregory-Loredo
method, x-ray binary, neutron star, radio star, pulsar

1. INTRODUCTION

The luminous, massive X-ray binary, LS I +61°303 (V615 Cas, GT 0236+610) is particularly
interesting because of its strong variable emission from radio to X-ray. It is also the probable
counterpart to the y-ray source, 2CG 135+01 (Gregory and Taylor 1978, Kniffen et al. 1997).
At radio wavelengths it exhibits periodic radio outbursts with a period of 26.5 days (Taylor and
Gregory 1982, 1984). The X-ray emission (Bignami et al. 1981; Goldoni & Mereghetti 1995;
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Taylor et al. 1996; Leahy, Harrison & Yoshida 1997) is weak (103* erg s~! at maximum) and has
been observed to vary by a factor of 10 over an one orbital period (Taylor et al. 1996). Recently
Paredes et al. (1997) reported an approximately 5 fold 26.7 + 0.2 day modulation of the 2-10 keV
X-ray flux.

The radio outbursts are not stable in phase. Outburst maxima have been seen from phase 0.45
to 0.95, but bright maxima seem to occur near 0.6 (Paredes, Estalella, & Rius 1990). Furthermore
the peak fluxes of the outbursts are known to exhibit a long term ~ 1600 day modulation (Gregory
et al. 1989, Marti 1993, Marti and Paredes 1995, Peracaula 1997, Gregory 1999, hereafter Paper

1).

In the period 1977 August to 1992 August a total of 14 outbursts were recorded by a variety
of groups. Beginning in January 1994 (Ray et al. 1997) detailed monitoring was performed
(several times a day) with the National Radio Astronomy Observatory Green Bank Interferometer
(GBI). This has yielded high-quality data for an additional 33 outbursts to date. From an analysis
of the GBI data, Ray et al. (1997) reported a secular change in the outburst phase indicating
either orbital period evolution, or a drift in orbital phase. Based on the first 2 years of the GBI
data (28 cycles) they found only weak evidence for the proposed long term periodic outburst peak
flux modulation.

A recent Bayesian analysis of over 20 years of LS I +61°303 data (Paper I) clearly
demonstrated the existence of a periodic or quasi-periodic outburst peak flux modulation with a
period of 1632 days and a 68% credible range from 1599 to 1660 days. In this paper (Paper II) we
report a Bayesian analysis of the outburst phase.

In section 2 of this paper we consider four hypotheses to explain the outburst phase variations
that are to be tested and discuss the data. In sections 3 to 6 we describe our Bayesian analysis
of these hypotheses. The probabilities of the four hypotheses are compared in section 7, leading
to the conclusion that the outburst phase is periodically modulated on a time scale similar to
that previously found for the outburst peak flux. Section 8 describes a joint analysis of the phase
and flux data and presents final results on the common modulation period, the outburst period,
and details of the shape of the phase and flux modulation light curves. In section 9 we discuss
the implications of this work in terms of a model of the LS I +61°303 binary system. Our final
conclusions are presented in section 10.

2. Hypothesis Space and Data

In a Bayesian analysis the first step is to define the hypothesis space of interest. In this
problem we are interested in hypotheses concerning a time series with associated Gaussian errors.
In the particular case of LS I +61°303 the time series consists of the times and peak flux densities
of the radio outbursts together with their uncertainties. The outburst phase, of primary interest
in this paper, is simply related to the timing residual which is the difference between the observed
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and predicted outburst time for a given outburst period. There are four hypotheses concerning
the outburst times which we consider in this problem. They are:

ABBREVIATION HYPOTHESES

H, Outburst times are consistent with a single period P.

The timing residuals are assumed to be independent
Gaussian random with an unknown sigma.

H, Sudden period change from P4 to Pp sometime during the
data gap from August 1992 to August 1994 just prior to
start of Green Bank monitoring program.

Hj Outburst times are consistent with a single period P
and a period derivative P.

H, Single period P; for all outbursts plus a periodic
modulation P of the timing residuals of unknown
shape.

The first job is to obtain the probability of each of these hypotheses given prior information
represented by the symbol, I, and the data, D. The probability of any hypothesis H; is given by
Bayes’s theorem.

p(H; | Dp(D | H;, 1)
>u; P(Hi | I)p(D | H;, I)
p(H; | I)p(D | Hy, 1)

p(D | I) '

p(H; | D,1I)

(1)

The prior probability of hypothesis H;, assuming the truth of the information given to
the right of the vertical bar, in this case I, is given by p(H; | I). p(H; | D,I) is the posterior
probability of H; given I and D. The term p(D | H;,I) is called the likelihood function, which
stands for the probability of obtaining the data D which we did, if H; is true.

DEtlatQa"';tNa (2)

where #; are the times of the individual data outbursts. Let ?,; represent the predicted outburst
times assuming H; is true. Then we can write:



t; = tpi + e, (3)

where e; is a noise term representing the uncertainty in ;. In general e; consists of the random
measurement errors plus any real signal in the data that cannot be explained by the model. In the
absence of a detailed knowledge of the noise distribution, other than it has a finite variance, the
maximum entropy principle tells us that a Gaussian distribution would be the most conservative
choice (i.e. maximally non-committal about the information we don’t have). In this paper we
assume a Gaussian distribution for e; with a variance 0. We let s; = the experimenter’s estimate
of g3, prior to fitting the model and examining the model residuals. In the present case the absolute
value of o; is not well known and so we introduce a parameter called the noise scale parameter,
b, to allow for this which we marginalize over a prior range. For a discussion of marginalization
and other aspects of Bayesian analysis the reader is referred to Section 2 of Gregory and Loredo
(1992b). The meaning of the b is given by,

- 832 (4)

Q=

Marginalizing over b has the desirable effect of treating anything in the data that can’t
be explained by the model as noise and this leads to the most conservative estimates of model
parameters. We can also use Bayes’s theorem to compute p(b | D,Model, I). If the most probable
estimate of b = 1, then the model is doing a good job accounting for everything that isn’t
measurement noise. If b < 1 then either the model is not accounting for significant features in the
data or the initial noise estimates, s;, were low.

Given this prior information we can write the p(D | H;, I) as the product of N Gaussians.

N
0| B 1) = ]

N 4 )2
= ¥ ] [(s) " exp(—b itk
i—1 2si
x N > 1
= (27b)> exp(——-xw) [] (s:) (5)
i=1
where,
N 2 N 2
2 _ o (i —tpi)? e
Xw = ; SZ'Q - 2221 S (6)

All of the hypotheses (models) to be considered have different parameters (e.g. period,
phase, shape) which up to now do not appear explicitly in the likelihood term. Let 6 represent
the set of parameters of H;. The particular parameters for each hypothesis will be introduced
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later. For comparing the probabilities of the four hypotheses we need to compute the global
likelihoods p(D | H;,I) obtained by marginalizing over all the parameters of each model. In
this analysis we assume that the prior probabilities of all four hypotheses are equal. Thus the
posterior probabilities are determined by the global likelihoods. A feature of the Bayesian analysis
is that marginalization of the model parameters required to determine the global likelihoods
automatically introduces a quantified Occam’s razor, penalizing more complicated models for their
greater complexity.

0y
p(D | H, ) = /9 do p(6 | )p(D | 6, H;, T) (7)

For several of the hypotheses we will also use Bayes’s theorem to evaluate the probability
density function of particular model parameters.

The outburst times, flux densities and errors used in this analysis are given in Table 1 of
Paper 1. The peak outburst for some outbursts was sufficiently weak that it was not possible to
derive an outburst time accurately enough to use in the timing residual analysis. This is indicated
by blank in the timing residual and error columns. These outbursts were still included if the
coverage was sufficient to provide information about the flux density. Similarly in two cases it was
only possible to obtain a lower limit on the flux density but it was still possible to obtain useful
information on the outburst times. This table contains information on a total of 57 outbursts
spanning 7520 days.

3. Model Hypothesis H;

H, =“outburst times are consistent with a single period P. The timing residuals are assumed
to be independent Gaussian random with an unknown ¢”. This is the simplest hypothesis in our
space of hypotheses. According to H; the only reason for a difference between ¢; and ¢,; is because
of errors in determining the outburst times. For this model #,; is given by:

t; — 1
tpi = tpo + P nint(zipo

); (8)

where nint = nearest integer value, ¢, is the predicted outburst time for some particular outburst
chosen as a reference whose observed time is #y. As with any outburst time, g will have an
associated error but because it acts as a reference its error will systematically affect all (t; — ¢p;)
terms. We can allow for an unknown systematic error in this quantity by introducing a reference
offset parameter F0 and then marginalizing over it, where E0 is defined by,

EO = to — ty0. 9)
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Equation (8) can be rewritten in terms of the measured times and model parameters as,

t; —to + EO

tpi = to — EO + P nint( iz )s

(10)

The use of equation (8) assumes that the errors in the outburst times are less than P/2 or
approximately 13 days. There are two criteria for selecting a reference outburst. It should be a
well defined outburst and result in timing residuals for the most probable set of parameter values
that are roughly symmetrical distributed about zero.

There is one additional parameter for the H; model, b, because the model assumes any timing

b—0.5

residuals are Gaussian with an unknown value of ¢ = s; which can be larger than the timing

uncertainties quoted in Table 1 of Paper 1. The global likelihood is given by:

EOgr Py
0| H1) = [ " apop@o | w1 [ ap p(P | 1)
EO0ro Pro
buT
x / db p(b | Hy, I)p(D | B0, P,b, Hy, ), (11)
bro

where the priors for P, E0, & b are assumed to be independent. Since P and b are scale parameters
(always positive) we will use a normalized Jeffreys prior of the form,

1
b| Hy,I) = , 12
Pl HD) = (12)

where b0 = 0.05 and by; = 1.95 are the prior upper and lower limits used in this paper.

1

Pgr*
Pln s

p(P | Hy, 1) = (13)

A Jeffreys prior assigns equal probability per decade of the prior parameter range. See section
3.2 of Paper I for the rationale behind the choice of a Jeffreys prior. We set Pro = 25.0 and
Py = 28.0 days in this analysis.

We will use a normalized uniform prior for the location parameter EO, of the form,

1
p(EO | Hy,1) = AB0’ (14)
where AEQ = EOgy — EOro = (+5) — (—5) = 10 days.
The final term that needs to be specified is p(D | E0, P,b, H,I).
p(D | EO,Pa ba HlaI) = (Zﬂb)? exp(_TXW) H(si)i ) (15)

=1



where X%, is given by equation (6).

Substituting equations (13), (14) and (15) into (11) and rearranging yields,

x 11 1 N
N -1
" ABO In B Iy fu 116

p(D | Hy,I) = (2m)"

bro =1
EO0g; Pur gp rbur N
x / dE0 / dr DBy exp(=Ly2,). (16)
E0r0 Pro P Joro b 2

The last integral in equation (16) can be evaluated in terms of the incomplete gamma function
P(a, ),

1 T

P(2) = 5o /0 et dt. (17)

bar dbh (E) bN 2 X%V _ N N N N
LG WP en(—Toad) = () F TG (PG e - P(Gamo) | (19)

bro 2 2 2 2

where,
bar X2 bro X2

THI = %XW andro = %XW (19)

The reference outburst chosen for H; was number 28.

We are also interested in p(P | D, Hy,I) and p(EO | D, Hy,I) (equation (20) & (21)), the
marginal probability density function of the period and EO for this model. This enabled us to
compute the most probable timing residuals (¢; — ¢,;), to look for any systematics effects in the
residuals of this model.

E0 b N
x [ ago [ D% exp(-"d) /oD | By, D). (20)
b

LO 2

y 11 1 ﬁ(s-)_l
AE0In £2L 1n bt !

bro i=1

p(EO| H,I) = (2m)”

— b2 exp(——-Xiv)- (21)

Pur qp (bur dbh N bN
% / P bro 0 2

Pro
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Fig. 1.— Panel (a) shows the projected probability (see text for definition) of the noise scale
parameter, b. Panel (b) gives the marginal probability density function for the period from
equation (20) and (c) the marginal probability density function of the reference outburst offset,
EQ.
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3.1. Results for Hy

We can extract useful information about what the data and our prior information have to say
about the noise scale parameter, b, by computing the marginal posterior probability density of b.
In figure 1(a) we have plotted what we call the projected probability of b for the prior range of
b=0.00 — 1.95. It is equal to the product of the projection of the multidimensional likelihood,
p(D | P,E0,b,Hy,I) on to the b axis times our prior for b, p(b | H1,I). In this work we use the
projected probability because in practice it is often a reasonable approximation to the marginal
and is much easier to compute. The most probable value of b = 0.18 means that the effective noise
for model Hy, namely everything that can’t be fit by this model, is ~ 1/1/0.18 = 2.35 times the
estimated noise sigma.

Figure 1(b) shows the marginal probability density function of the period computed from
equation (20) based on all the outburst times. The most probable period is P = 26.494 days with
a 68.3 % (“1 sigma”) credible region (CR) extending from 26.488 to 26.499 days.

Figure 1(c) shows the marginal probability density function of the reference offset, EO,
computed from equation (21). The most probable offset is E0 = 1.1 days with a 68.3 % CR
extending from 0.7 to 1.5 days.

Figure 2 shows the most probable timing residuals for hypothesis H; computed from
equation (22) using the most probable values of P and E0. The time axis is in days measured
from the first peak of the first outburst on Julian day 2443382.94.

t — to + EO
resid; = #; — to + 0 — P nint(%). (22)

The global likelihood of this model, p(D | Hy,I) computed from equation (16) is compared to
the global likelihood of Hy, H3 and Hy in section 7. Although it was the least probable hypothesis
it was an important first step in deciding what other models to consider. Examination of the
residuals in figure 2 clearly show a systematic trend especially for the GBI outburst times starting
around a time of approximately 6000 days which was first noted by Ray et al. (1997). The RMS
outburst timing residuals for H; are 2.80 days.

4. Model Hypothesis Hy

The results presented by Ray et al. (1997) suggested a period significantly different from our
earlier period estimates based on the pre-GBI data. We therefore decided to explore the possibility
of hypothesis Ho = “a sudden period change from P4 to Pp sometime during the 485 day data
gap, just prior to the start of GBI monitoring program”.

As before D stands for the proposition representing the entire data set of outburst times. We
now write D = D1, Dy, the logical conjunction of propositions Dy and Ds, where D; represents
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Fig. 2.— The timing residuals assuming a single period for all of the data, hypothesis Hj.
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the pre-GBI data (prior to Julian Day 2,449,000.0) with 12 well determined outburst times, and
Dy the GBI data with 33 well determined outburst times. Applying Bayes’s theorem we can now
compute p(Hs | D, I).

The global likelihood p(D | Hs,I) is given by:

p(D | HQaI) :p(DlaDQ | H23I) :p(Dl | H27I)p(D2 | H2’I)7 (23)
where we assume D; and Dy are independent.

The equations for p(D; | Ha,I) and p(Ds | Ha, I) have exactly the same form as equation (16)
with N, P, EO, b, X%V replaced by Nj, P;, EO;, bj’X%/Vj where 7 =1 or 2 corresponding to data sets
D, and D, respectively. Also equations for p(P; | D;, Hz,I) and p(E0; | Dj, Hy,I) have the same
form as equations (20) and (21), respectively. For D; and D5 the reference outbursts chosen were
5 and 16, respectively, according to Table 1 in Paper 1.

4.1. Results for Hy

The global likelihood of this model, p(D | Hy,I) computed from equation (23) is compared to
the global likelihood of Hy, Hs and Hy in section 7. Keep in mind that our Bayesian calculation
automatically includes a quantitative Occam’s razor penalizing Hy for its extra complexity. The
most probable values of b for the two data sets were b = 0.24 for pre-GBI data and b = 0.55 for
GBI data. Examination of the RMS timing residuals for Hy, show that they have dramatically
decreased for the GBI portion of the data to 1.6 days, while the pre-GBI data RMS residuals are
2.3 days. These need to be compared to the H; residuals of 2.8 days.

Figure 3 shows the marginal probability density function for the two periods on the same
plot. The most probable P4 = 26.509 days with a 68.3 % credible region extending from 26.498
to 26.520 days. The most probable Pg = 26.649 days with a 68.3 % CR extending from 26.632
to 26.661 days. The results for E0 were E0; = —1.00 days (68.3 % CR = -2.4, 0.4 days) and for
EOy = 0.80 days (68.3 % CR = 0.55, 1.00 days).

5. Model Hypothesis Hj

In this section we consider the question of whether the measured timing residuals could be
accounted for by a period derivative. Hs =“outburst times are consistent with a single period P
and period derivative P”. It is more convenient to work in terms of f = P~! and f = —P~2P,

where f = fo+ f(t; — tpo). For this model ¢, is given by the solution to,

fO(tpi - pO) + O-5f(tpi - pO)2 = NVeycles (24)
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the two data sets D; and Do, respectively.
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where again t,0 = g — E0 and Ny is given by,

Ncycle = nint(fO(ti - tpO) + 0-5f(ti - tpO)z)' (25)

The physically meaningful solution to the equation (24) is,

\/(f02 + 2Ncyclef:)
f' .

When f = 0 equation (26) breaks down and we need to use equation (8). In this model we have 4

ty = to — EO +

(26)

parameters f, f , E0,b or equivalently P, P, E0,b. Again we assume independent parameter priors
and use the same priors for £0 and b as in section 3. Like P, frequency f is a scale parameter so
we will use a Jeffreys prior. The frequency derivative can have either sign so we will use a uniform
prior for f. Therefore we write,

1
p(f|H3’I):f]n§:f—é' (27)

and, .
p(f | Hs, 1) = NG (28)

where Af = fryr — fro = (3.0x10°7) = (=3.0 x 1077) = 6.0 x 10~7 d~2. We use a prior range for
f corresponding to the Py; and Ppo used in section 3.

Following equation (16) the global likelihood for Hj is given by,

~ 1 1 1 1 Y fur
p(D D) = (2m) ¥ o ()7 [ " af
Ao it ) g
fHI EOu; bar dp bN
X / i dEO/ —b(%)exp(——xgv). (29)
fLO f EOLO bLO b 2

where X%, is given by equation (6). Again the last integral in equation (29) can be evaluated in
terms of the incomplete gamma function P(a,z) according to equations (17), (18), and(19). The
reference outburst chosen for H3 was number 28.

We can also compute p(f | D, Hs, I), p(f | D,Hs,I) and p(EO | D, H3,I) in a similar fashion
to equations (20) and (21) for p(P | D, Hs,I) and p(E0 | D, Hs, I) in section 3.

5.1. Results for Hj3

The most probable value of b = 0.25 means that the effective noise for model H3, namely
everything that can’t be fit by this model, is = 1/4/0.25 = 2.0 times the estimated noise sigma.
Figures 4(a) and (b) show the marginals for P and f, where, P is related to the computed f by
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P=_p? f assuming the most probable value of P. The most probable period is P = 26.618 days
with a 68.3 % (“1 sigma”) credible region (CR) extending from 26.607 to 26.628 days. The most
probable period P = 1.04 x 10~* d/d with a credible region (CR) extending from 0.98 x 10~* to
1.11 x 10~* d/d. The most probable offset is E0 = 2.2 days. It’s not surprising that with an extra
degree of freedom Hj is able to explain more of the timing residuals than H;, however, the derived
value of P is very large and difficult to account for.

The global likelihood of this model, p(D | Hs, I) computed from equation (29) is compared to
the global likelihood of the other models in section 7.

6. Model Hypothesis Hy

Recall hypothesis H4 stands single period P; for all outbursts plus a periodic modulation
P, of the timing residuals of unknown shape. This hypothesis was considered in spite of the fact
that a cursory examination of the timing residuals for H; (figure 2) failed to indicate any obvious
periodicity. The two arguments in support of such a study were: (a) evidence of a long term
modulation (~ 1600 day period) of the flux density of the outbursts, first proposed by Gregory
et al. (1989) and recently confirmed by Paper I, and (b) the availability of a Bayesian method
for detecting periodicities of unknown shape in nonuniformily sampled time series (Gregory and
Loredo 1992a, b, 1993; henceforth referred to as GL1, GL2 and GL3). For an example of its use in
X-ray astronomy see Gregory and Loredo (1996). Paper I extended the theory of the GL method
to deal with the Gaussian noise case of interest here. Within the range of the search parameter
space the GL method identifies the most organized periodic structure, i.e. the structure having
the least entropy.

In Paper I we used the GL method to analyze the peak outburst flux densities. The data
consisted of the measured peak outburst times and fluxes. In this case the two quantities are
the outburst time and timing residual which depends on the assumed outburst period. The
outburst period P; is believed to correspond to the orbital period which is not accurately known
independent of the radio data. For this analysis we treat P; as unknown parameter as well. Thus
the parameter space being searched for evidence of a periodic structure in the timing residuals is
larger than that considered in the flux modulation problem because of the additional period.

In this analysis we will rewrite the outburst times as,

t; =ty + 7, (30)

where,
tyi = “predicted outburst times for a given choice of P; ", (31)

and,
7; = “outburst timing residuals ", (32)
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where,
Ti = Tpi T €, (33)

where,
Tpi = “predicted outburst timing residuals ”. (34)

Now define the propositions D; = {t,;} and Dr = {r;}. Then D = {t;} is the logical
conjunction of D; and Dg which can be written as the logical statement,
D =D, Dp (35)

As before to determine the probability of H; we need to compute the likelihood function
p(D | Hy,I). Let 0 stand for set of parameters required by Hy4, which includes P;. We have not
included EO0, the reference outburst timing offset because we are looking for a periodic pattern in
the timing residuals and a small DC offset has no effect on this calculation. In addition 6 includes
other parameters associated with the modulation periodicity which will be introduced shortly.
The likelihood can be rewritten as,

p(D| HI) = /dO p(D,0| Hu, T)
— /de p(D1,Dg,0 | Hy, I). (36)
But by the product rule,
p(D1,DR,0 | Hy,I) = p(Dgr,6 | Hs,I) p(D1 | Dg,0,Hs,I). (37)
Since D is deterministically determined from D by the choice of P;, one of the # parameters, then
p(D1 | DR, 0, Hy, I) =1, (38)

and therefore,
p(D | Hi,1) = [ d6 p(Di,6 | Ha, 1) (39)

We now turn to a consideration of the full complement of § parameters and on how to proceed
with the evaluation of equation (39).

6.1. Evaluation of the Likelihood p(D | Hy,I)

The GL method employs a stepwise (histogram) class of models which is capable of describing
any arbitrary periodic light curve with an accuracy determined by the histogram bin size. Since
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for an unknown light curve the number of bins, m, required is not known, m is treated as a
parameter. Each particular choice of m corresponds to one member, M,,, of the class of periodic
models represented by Hy. The Bayesian posterior probability for a periodic model contains a
term which quantifies Occam’s razor, penalizing successively more complicated periodic models
(increasing m) for their greater complexity even though they are assigned equal prior probabilities.
The calculation balances model simplicity with goodness-of-fit.

Each periodic model has m + 4 parameters: the outburst period, P;, the modulation period,
P,, the phase, ¢, between the start of the first bin and the start of the data, the noise scale
parameter, b, and m shape parameters represented by a vector 7, where r; specifies the height
of the light curve for the i"® bin. A remarkable feature of the stepwise model is that it enables
marginalization of the m shape parameters to be performed analytically, leaving only the two
periods, phase, and noise scale parameter to be marginalized numerically.

The global likelihood for M,, can be obtained from equation (27) of Paper I) after allowing
for the additional parameter P; and is given by equation (41) below. Note the periods have been
expressed as angular frequencies, w; and we to be consistent with the terminology of Paper I where
w = 2w /P. The prior range for the radio outburst period used in this analysis was P; = 25.0 to
28.0 d, the same as for the other hypotheses. Since the w; is a scale parameter we have used a

Jeffreys prior of the form,
1

w1 *
w1 In—HL
Yiro

plwi | Hy, 1) = (40)

Since the prior range of w; is much less than one decade, a uniform prior for w would have done
just as well. The prior range assumed for the modulation period was P> = 800 to 2508 d, as in
Paper 1. The global likelihood for M,, is given by

p(D| Mp,1) = 20 *(An) I () J ) / o / oy / do / 2t

27 In :H’ In £2H1 lan’

Lo Y210
X exp(—= ZXWJ H{W —1/2 lerfe(yjmin) — erfc(yjmaz) |} (41)
] 1 j=1

The meaning of the various terms in this analysis are as follows:

2 (1 — Tw;)?
Xiv; =2 5 (42)
=1 Si
where 7; is the timing residual of the i** outburst that falls in j** bin of the M,, stepwise model
of the P, period, N is the total number of outburst times and n; is the number of outburst times
which fall in bin j for a given choice of w9 and phase, ¢. The value of the subscript j corresponding
to any particular sample time ¢ is given by,

j(t) = int[1 + m{ (w2t + ¢) mod 27} /27], (43)
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where int = integer part of the expression.

We compute the timing residuals from 7; = t; — t,; with ¢,; given by,

— 1o

) (44)
and t¢ is the observed time of the reference outburst number 28 (Julian Day 2,449,850.01). The

t; —
tyi = to + Py nint(=

remaining terms in equation (41) are:

i=1 51
bW, bW
Yjmin = TJ("'mm - W) i Yjmaz = TJ(""max - 7'WJ-), (46)
where,
n; .
_TE
TWj = W, (47)
and 7y = —15, Tmer = 15 days are the prior lower and upper limits on the unknown periodic

timing residual modulation used in his analysis. Ar = 700 — Tmin-

Finally to compute the global likelihood for Hs we simply sum the likelihoods for each M,,

periodic model which were assumed to have equal prior probability.

6.2. Estimating the Periods, P, and P,

The posterior probability of P5, the period of the outburst timing residual modulation, follows

from equations (38) and (39) of Paper L.

C Wigr dwy bni b N_wm [O=27 b )
wy | D, My, T :—/ ant —b—z/ dé exp(—2 |
p( 2| m ) w2 Jun,, wi Joo b _ ¢ P( 2;){ W])
m
X H{Wj*1/2 lerfc(yjmin) — erfe(Yjmaz) 1} (48)
=1

where wg = 2” and C = is a normalization constant, equal to the integral of the right hand side of

above equatlon over ws.

Mmax
p(w2|DaH47]) = Zp(Mmaw2|m>17DaI)
m=2

Mmax

= Zp M,, | D, 1) p(wa | D, M,,, I), (49)
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where
- p(My, | T) p(D | My, 1)
PO | D) = g o My | 1) p(D | M 1)
p(D | My, 1) (50)

Ymg p(D | My, I)

Equation (49) is a weighted sum of the marginal

and p(w2 | D, Mp,I) from equation (48).
posteriors for all the periodic models being considered, from those with m = 2 to m = mpax = 12

The posterior probability of P; is given by equation (49) replacing wy by w; and with

p(wl | DaM’maI) given bY7

C Wigr dw bridh N_m [P=27 p I
/ 2 b2 / dp exp(—= > X*w;)
$=0 2 =

D,M,,I) = — —
p(wl | ) mo ) w1 w9 blo b

TLOW, 72 fexfe(ymin) — exfe(yymae) T (51)

=1

6.3. Estimating the Shape of the Timing Residual Modulation.

The mean light curve shape for a given M,,, after marginalizing over all the other parameters
follows directly from equations 55 and 50 of Paper I. It is only necessary to marginalize over the

additional period or w;. The mean r(t) is then given by,

(r(2) | m) :/dwl/dm/db/wmp(wl,w,b,qs|D,Mm,z),

where p(wi,ws,b,¢ | D, M,,,I) is given by
(w20) T L(OW) P exp(=4 S i) 59

(52)

plonseonbrd | DM D) = S Ty T g [T, (o0,) Fexp( 8 7 W)}
and,
F= erfc(@(rmm ) — erfc(@(rm — 7)) (54)
Finally we marginalize over m to obtain,
Mmax
(55)

(r(@) | Ha) = (r(t) | m > 1) = Zp My, | D, 1) (r(t) | m),

The calculation of the mean standard deviation of the estimate of 7(¢) proceeds analogously

We simply replace 775 by 1/(bW;)~! in equation (52).
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7. Results for H; and Comparison of the four Hypotheses

The most probable periods, noise scale parameters, b, and timing residuals for the four models
are given in Table 1. It is clear that H4 has a significantly smaller timing residual than the other
three models but it also has more parameters.

To determine whether the greater complexity of Hy is justified we need to compute the
Bayesian odds ratio which is the ratio of the probability of H; to each of the other three models.
The ratio, Os1 = p(Hs | D,I)/p(H: | D,I), is called the odds ratio in favor of model Hy over
model H;. Application of Bayes’s theorem leads to,

Ot = p(Hy | 1) p(D | Hy, I) _ p(Hs | 1)

p(Hy | I) p(D | Hi,I) — p(Hi | )

where the first factor is the prior odds ratio, and the second factor is called the Bayes factor. The

Bayes factor is the ratio of the global likelihoods of the models. As discussed in detail in GL2, the
Bayes factor automatically includes a quantitative Occam’s razor penalizing (through the global

By (56)

likelihoods) Hj for its extra complexity.

The computed Bayes factors are By, = 1.4 x 10!, By, = 2,710 and B3 = 1.4 x 10°. Assuming
equal prior probabilities for the four hypotheses, H, is found to be much more probable than the
other three models. In addition, the gravitational energy release associated with an ~ 1% sudden
change in period required for Hs would be comparable to supernova energies making this model
very unlikely due to an absence of any dramatic change in its other properties and no report of a
Galactic supernova. We can therefore safely claim to have demonstrated a periodic modulation to
the outburst timing residuals and now proceed to examine this in more detail.

Figure 5(a) shows the marginal posterior probability of the modulation period, P», obtained
from equation (49) for the same period range as shown in Figure 2(b) of Paper I. The mean period
is 1580 days with a 68% credible region from 1571 to 1589 days.

The marginal posterior probability for the outburst period, P;, shown in figure 5(b), is given
by equations (49), with the terms involving w; and wsy interchanged, together with equation (51).

Figure 6(a) shows the shape estimate for the outburst timing residual modulation plotted for
two cycles of P, phase, derived from equation (55). The solid curves show +1 standard deviation
estimates. The phase was computed using a modulation period P, = 1580 days and set = 0 at
Julian Day 2,443,366.775 by convention. The individual outburst timing residuals, computed on
the basis of the most probable value of the outburst period, P, = 26.491 days, and are over plotted
together with their error bars.

The agreement is remarkably good, although around phase 0.35 the estimated shape sigma
is larger due to a paucity of data in this region. Note that the shape estimate is essentially a
weighted superposition of stepwise light curves with different numbers of bins, each with different
phase, noise scale factor and periods P, and P,, with weights given by the probability densities for
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of the LS T +61°303 outbursts and (b) the outburst period, P;.
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Fig. 6.— In (a) the two solid curves are the estimated mean light curve, +1 standard deviation, of
the periodic modulation (P, = 1580 days) of the LS I +61°303 outburst timing residuals for two
cycles of phase. The individual timing residuals computed for the most probable outburst period
(P; = 26.491 days) are also shown. The lower panel (b) shows the marginal posterior probability
of the number of bins for model Hy.
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these parameters. It is thus not a stepwise function, but rather a somewhat smoothed version of
a stepwise function. The underlying shape suggested by this result is a roughly sawtooth pattern
with a gradual rise and rapid fall.

Figure 6(b) shows the marginal posterior probability of the number of bins, m. For the
present state of information the maximum occurs for m = 6. We anticipate that as further data is
acquired the evidence will overcome the higher Occam penalty associated with larger values of m,
resulting in a further shift to the right and a more accurate delineation of the modulation.

8. Joint Analysis of Outburst Phase and Flux Modulations

Paper I provided convincing evidence for a long term modulation of the peak outburst flux
with a mean period of 1632 days and a 68% credible region of 1599 to 1660 days. In this paper we
have found convincing evidence for a long term modulation of the outburst timing residuals. The
two modulation period probability distributions overlap just outside their 68% credible regions. It
therefore appears very likely that these two phenomena are related and more than likely that they
have the same period.

We now introduce a fifth hypothesis H; = “Both timing residuals and flux are periodically
modulated with the same period”. We let D = {S(¢;)}, the set of outburst peak flux densities for
outbursts occurring at a set of times {¢;}. It is not necessary that this set of outbursts be exactly
the same as the set of outburst defined by D in equation (2), because the accuracy required to be
useful in inferring a value of the long term modulation period, P, from flux modulation data is
less than that required for estimating P from the timing residuals associated with a much shorter
outburst period.

We can readily compute the most probable value of a common modulation period and explore
the possible relationship between outburst flux and timing modulation in orbital phase. The
posterior probability of P, the period of the outburst timing residual modulation, follows from a
simple modification of equations 38 and 39 of Paper 1.

p(D | wQ,DF,Mm,I)
p(D | Dp, My, I)

p(D | wg, M, I)
p(D | M, I)

p(“‘)2 | DaDFaMTmI) = p(“‘)2 | DFaI)

= p(w2 | DFaj) (57)

where p(we | Dp,I) = the posterior probability density function for wy obtained from an analysis
of Dp in Paper I. Thus p(ws | Dr,I) replaces the earlier Jeffreys prior for we in equation 10 of

Paper I. In these equations M, stands for the m bin periodic model used to describe the shape

of the timing residual modulation and not the flux modulation. In equation (57), p(D | My, I),

merely plays the role of a normalization constant. The result is,
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w1 bur dh  Nm [P=27 b
P | D.Dr M 1) = Coplwn| D) [ [T [7 g expl—5 o xw)
j=1

Wiy o LO

X H {Wj_l/z [e'rfc(yjmin) - e'rfc(yjmaw) ]}a (58)
j=1

where C' = is a normalization constant, equal to the integral of the right hand side of above
equation over wy and the other terms are the same as in section 6.1. The remainder of the
calculation follows from section 6.2

Mmax
p(w2|D7DFaH5aI) = Zp(MmaWZ‘m>1aDaDFaI)
m=2
Mmax
= Y p(Mp|D,Dp,I) p(ws | D, Dp, My, 1)
m=2

Mmax

= Zp My, | D, 1) p(ws | D, D, My, I), (59)

where

(M, | 1) p(D | My, 1)
meg P(Mm | I) p(D | My, I)

_ p(D | M, I)
- mmaw (D | Mm,I) (60)

m=

p(Mp, | D, 1)

and p(wq | D, Dp, M,,,I) is from equation (58). Equation (59) is a weighted sum of the marginal
posteriors for all the periodic models being considered, from those with m = 2 to m = mpyx = 12.

Figure 7(a) shows the marginal posterior probability of the outburst timing residual
modulation period, obtained from equation (59). The location of the maximum is unchanged but
the probability density has increased toward larger values of P» than before with a new mean of
1584 days. The new 68% credible is from 1573 to 1598 days. There was no significant change in
the posterior probability o P; and so this was not replotted. The mean P; only changed from
26.4911 to 26.4917 days. The 68% credible error for P; is +0.0025 days.

In a similar way the equations, given in section 6.3, for the mean shape and standard deviation
of the timing residuals modulation were modified to make use of the prior p(ws | Dp, I). This did
not result in a significant change to the mean timing residual light curve and is not replotted.
In addition the mean shape of the peak outburst flux modulation (Paper I) was recomputed
marginalizing over the resultant P, probability density function given in figure 7(a). This was to
enable a detailed comparison to be made between the flux and timing residual modulations to
provide insight into the underlying mechanism giving rise to the modulation. Figure 7(b) shows
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this resulting flux modulation light curve for two cycles of phase. For both figures the phase was
set = 0 at Julian Day 2,443,366.775 by convention.

Figures 8(a) and (b) show the predicted outburst timing residuals and peak flux +1 standard
deviation versus time compared to the data. In these plots the zero point of the time axis
corresponds to Julian Date 2,443,366.775 by convention. Figure 8(a) indicates that we are about
to see a rapid increase in the peak flux with the next maximum occurring between Julian Day
2,451,233 and 2,451,633.

9. Discussion

We have succeeded in demonstrating that both the outburst timing residuals and peak flux
density exhibit a periodic modulation on the same time scale. The mean value of timing residual
or phase modulation period, P, is 1584 days with a 68% confidence interval of 1573 to 1598 days.
The timing residuals reach a maximum of ~ +5 days around P, phase of 0.6 and a minimum of
~ —6 days at P, phase of 0.85. The flux on the other hand is a minimum in the range 0.6 to 0.7,
climbing thereafter to reach a broad maximum in the range of P, phase between 0.95 to 0.25 .

It is of great interest to relate the current results to previous observations at other wavelengths
within the framework of an overall model for the system. We will use as our starting point the
supercritical accretion model (Taylor and Gregory 1982, Taylor et al. 1992, Marti and Paredes
1995) and suggest the needed modifications towards the end of this section. We will also use the
orbital model proposed by Marti and Paredes (1995) based on near infrared observations. Their
analysis suggests an eccentric orbit (e = 0.7) with periastron passage at radio outburst phase of
0.53 and apastron at 0.03. The radio phase is computed from the orbital period with radio phase
set = 0 at Julian Day 2,443,366.775 by convention. The timing residuals in this analysis are based
on our most probable orbital period of 26.491 days and are measured with respect to outburst 28
(Julian Day 2,449,850.01) which corresponds to a radio phase of 0.74. Thus the timing residuals
range from -6 to +5 days corresponds to a radio phase range from = 0.52 to 0.93 or from around
periastron to close to apastron.

Taylor et al. (1992) computed the accretion rate on to a neutron star secondary in orbit
within the equatorial wind of the Be star primary for a variety of eccentricities. For e > 0.4
two accretion peaks occur. The biggest corresponds to periastron passage through the densest
portion of the wind and a second smaller peak occurs at a later phase when the relative velocity of
receding neutron star and the Be star wind is a minimum. Marti and Paredes (1995) investigated
the variation of this structure with Be star wind velocity and found that both the height and delay
of the second peak is a function of the Be star wind velocity. A variation of wind velocity from
20 to 2 km/s results in a variation in the radio phase of the peak from 0.62 to 0.92 for e = 0.7.
Also the secondary peak is higher and narrower the larger the wind velocity. For accretion on to
a naked neutron star the accretion rate becomes supercritical for a narrow range of phase about
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both peaks and this situation is very likely to give rise to the acceleration of relativistic electrons
through the production of shock waves.

Since the wind is opaque at radio wavelengths the relativistic electrons must propagate out
of the orbital plane to give rise to radio outburst. Relativistic electrons produced near periastron
will suffer severe inverse Compton losses, due to proximity to the Be primary (Marti and Paredes
1995) and lose their energy before they can propagate out of the opaque wind to produce a radio
outburst. Thus we expect an X-ray and possible gamma-ray outburst but no radio outburst.
Simultaneous X-ray and radio observations for one orbital cycle (Taylor et al. 1996) found an
X-ray outburst at radio phase 0.5 (periastron) and a delayed radio outburst around phase 0.95
(Julian Day 2,448,850.07). For the second accretion peak the neutron star is much further from
the primary and inverse Compton losses will be much less and the wind less opaque at radio
wavelengths.

The main problem with the above model is that the peak X-ray luminosity of LS I +61°303 of
~ 10** erg s (Taylor et al. 1996) is much less then the > 103® erg s~! expected for accretion to
the surface of a neutron star but still much greater than that expected for a white dwarf secondary
at a distance = 2 kpc (Frail and Hjellming 1991). If the COS B and GRO ~v-ray emission is
associated with LS I +61°303, then luminosities of 1036 - 1037 erg s~! are inferred. Campana et
al. (1995) have suggested that the accreting matter is stopped at the magnetospheric radius by
the centrifugal barrier produced by a magnetosphere rotating at a super-Keplerian rate resulting
in a much lower accretion luminosity of order 103> erg s—!. In any case there will still be two
peaks in the accretion rate one associated with periastron and the another when the neutron star
is moving towards apastron and its relative velocity to the wind is minimum. Modulation in the
wind velocity could then give rise to variations in the size and location of this second peak which
is associated with the radio emission for the reasons described above.

Our analysis of the timing residuals suggest that the location of the secondary accretion peak
can vary from close to periaston to close to apastron and that outbursts have a maximum flux
when the secondary peak is around P» phase 0.95 to 0.28 or radio phase 0.6 to 0.7 . If we assumed
accretion to a fixed magnetosphere radius then the calculations of Marti and Paredes (1995) would
suggest variations in the Be star wind speed ranging from < 2 km s~! to > 20 km s~ ! at the
surface of the star. This velocity range is typical of the high density equatorial disc wind region
according to a study of the UV line profiles and IR excess of 10 Be stars carried out by Lamers and
Waters (1987). The UV line emission is formed in the high velocity low density polar region and
the IR excess is mainly due to th disc region. The exact radius at which the magnetosphere stops
the accreting matter will be a function of accretion rate. Now that we have the timing residual and
flux modulation light curves it is worth carrying out more detailed calculations to compare with
these. We might even be able to distinguish transitions between the different accretion regimes
(e.g. Lipunov 1992; Zamanov 1995).

In the context of the variable Be wind model, the shape of timing residual modulation
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indicates a rapid transition from a low velocity wind of a high wind velocity occurring between P,
phase 0.6 and 0.85. This suggests a rather sudden onset to each new cycle of mass loss by the Be
star.

Finally we note that within many of the 26.5 day radio outbursts there is evidence for
considerable modulation of the radio emission (referred to in Paper I as shorter duration flaring).
The neutron star is always in motion relative to the Be star wind and thus the modulation of
the radio emission within individual outbursts may reflect a modulation in the wind density and
or velocity on relatively short distance scales. This possibly indicates some form of streaming
motion or shell structure within the equatorial wind. If the Be star’s equatorial mass loss rate was
dependent on longitude then this would give rise to a spiral steaming motion in the wind. A more
detailed analysis of the radio structure might yield a map of the wind geometry.

10. Conclusions

In this paper we considered four hypotheses to explain the outburst phase variations. From
an analysis of over 20 years of radio measurements of LS I +61°303 we conclude that the phase
of the periodic radio outbursts varies periodically with the same period as the outburst peak flux
modulation. Combining the outburst phase and flux data we derive a phase and flux modulation
period of 15844_'% days as well as a more accurate outburst period of 26.4917 + .0025 days.
From the shape of the outburst timing residual modulation (outburst phase modulation) and flux
modulation we find that larger outbursts occur at an earlier orbital phase, closer to periastron,
probably as a result of variations in the wind from the rapidly rotating Be star primary. The
phase modulation also suggests a rather sudden onset to each new cycle of mass loss by the Be
star. The outburst phase and flux modulation light curves derived here provide scope for more
detailed modeling of the interactions between the Be star wind and the orbiting neutron star.

Our analysis predicts that next maximum in the outburst peak flux modulation will occur
between Julian Day 2,451,233 to 2,451,633. Continuation of the GBI monitoring program of LS 1
+61°303 for another 2 years would permit the predictions of this work to be tested and provide
the needed regular high quality measurements required to disentangle the next level of source
properties which are beginning to emerge.
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Associated Universities, Inc., under contract with the National Science Foundation. This research
was supported in part by grants from the Canadian Natural Sciences and Engineering Research
Council at the University of British Columbia and the University of Calgary.
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Table 1. Periods, b values and RMS residuals.

Model Periods (days) b Value RMS Residuals (days)
Hy P =26.4947-305 d 0.18 2.8
H, P, =26.509 +£.011 d 0.24 2.3
P, = 26.6497912 d 0.55 1.6
Hs  P=26618"01%d 0.25 2.4

P =1.0470% x 107* d/d

H, P, =26.491 +.0025 d 1.13 1.4
P, =1580+9d




