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ABSTRACT

The principles of Bayesian reasoning are reviewed
and applied to problems of inference from data
sampled from Poisson, Gaussian and Cauchy
distributions. Probability distributions (priors
and likelihoods) are assigned in appropriate
hypothesis spaces using the Maximum Entropy
Principle, and then manipulated via Bayes’ Theorem.
Bayesian hypothesis testing requires careful
consideration of the prior ranges of any parameters
involved, and this leads to a quantitive statement
of Occam’'s Razor. As an example of this general
principle we offer a solution to an important
problem in regression analysis; determining the
optimal number of parameters to use when fitting
graphical data with a set of basis functions.

INTRODUCTION

At the Calgary meeting two years ago Ed Jaynes gave
a tutorial introduction (Jaynes 1986) that provides the
historical and philosophical background to the principles of
Bayesian inference. Like that paper, which the reader is
strongly encouraged to study, the aim here is to provide a
tutorial guide to Bayesian methods. A short resumé of the
basic principles 1is presented, but the emphasis of this
paper is more technical, showing the application of the
method to a selection of problems that are solved in detail.
We then take a glimpse of the Frontiers of the subject,
where (following Jeffreys) a quantitive statement of Occam’s
Razor is offered. Finally, we turn to the problem of curve-
fitting, a state-of-the-art example of Bayesian methods.

THE GROUND RULES

I want to distinguish clearly three stages that
together make up my Bayesian view of probability theory and
statistics. I believe that all three stages are essential to
the process of inductive reasoning.
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1) Bayes’ Theorem.

In its simplest form this elementary theorem relates the
probabilities of two events or hypotheses A and B. It states
that the joint probability distribution function (p.d.f.} of
A and B can be expressed in terms of the marginal and
conditional distributions:

pr(A,B) = pr(A) pr(BjA) = pr(B) pr(Ai{B).

Bayes '’ theorem is merely a re-arrangement of this
decomposition, which itself follows from the requirement of
consistency for the manipulation of probabilities (Cox
1946). Of course, anyone can prove this theorem, but people
who believe it and use it are called Bayesians. However,
before anyone, even Bayesians, can use it, the Jjoint p.d.f.
has to be assigned. Because Bayes’ theorem is simply a rule
for manipulating probabilities, it cannot by itself help us
to assign them in the first place, and for that we have to
look elsewhere,

2) Maximum Entropy.

The Maximum Entropy principle (MaxEnt) 1is a variational
principle for the assignment of probabilities under certain
types of constraint called Testable Informatation. These
constaints are ones that refer to the probability
distribution directly: e.g. for a discrete p.d.f. {pji}, the
ensemble average of a quantity r <r> = Irijpj constitutes

i

testable information. MaxEnt states that the probabilities
are given by maximising the Entropy

S = -L pj log pj/mj under the constraints ¥ pj = 1 and
i i

<r> given, where {mj} is a suitable measure over the space
of possibilities (hypothesis space). The MaxEnt rule can be
justified as the only consistent variational principle for
the assignment of probability distributions (Shore & Johnson
1980, Gull & Skilling 1984, Skilling 1988). It can also be
derived in a multitude of other ways (Jaynes 1986). In the
simplest case there is no additional information other than
normalisation: MaxEnt then gives equal probabilities to all
events, in accordance with Laplace’s "principle of
indifference". In fact, I believe that MaxEnt is the only
logical method we have for the assignment of probabilities
- but it is so powerful that it may be all we need. Of
course, MaxEnt is rule for assigning probabilities once the
hypothesis space has been defined; to choose the hypothesis
space we have again to look elsewhere.

3) Choosing the hypothesis space
The real art 1is to choose an appropriate '"space of
possibilities", and to date we have no systematic way of
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generating it. Transformation group arguments can often help
us (Jaynes 1968) in problems involving physical quantities;
the appropriate measure space is often wuniform (location
parameters) or uniform in the logarithm (scale parameters).
MaxEnt will then assign a uniform "prior" probability
distribution over this space. However, in many problems one
has no guarantee that our choice is right in any final
sense, and this feeling of ambiguity has led to much soul-
searching. I feel (along with Jaynes, 1986) that our aims
should be different. We should not seek a "final truth" in
our hypothesis space, but use our common sense to capture
enough structure of the real problem being solved so that we
can make useful predictions. If the predictions are useful,
then that is an indication the the hypothesis space is good
enough for now, without prejudice to the possibility of
revising it later. If the predictions are not good, this is
not a disaster, for we then have learnt that the hypotheses
have to be reformulated and the ways 1in which our
predictions are wrong may help us to do this. In any case we
simply have nothing to lose by choosing an interim
hypothesis space and proceeding with the calculation.

Of course, not everyone sees it that way, but once you are
used to the process there is nothing more painful than the
sight of grown men being psychologically unable to make a
simple Bayesian calculation just because they might be
wrong. They could agonise forever about the hypothesis space
or prior, but unless they make that calculation they will
never know!

WHY I AM A BAYESIAN

I am ashamed to have to admit that, when I was a
physics student, I thought that the lectures on probability
theory and statistics were an unnecessary distraction from
"real physics". Whatever my motives at the time, the result
was that I had an open mind when confronted some years later
by Bayesian statistics. Whilst observing the radio sky (see
example 3) I met Geoff Daniell in a pub to discuss the
analysis of the data. In the course of that evening he
proved Bayes’ theorem to my satisfaction by drawing on a
beer-mat a circle that had two lines across it, and gave me
a few examples. The following is the first example I did for
myself when I returned to the telescope.

Poisson distribution -~ the radiocactive solid

Suppose there is a sample of a radioactive solid that
produces, on average, o decays per second. You have observed
N decays in T seconds: what is «? The Likelihood or sampling
distribution for the Poisson process is well-known as a
limiting form of Binomial distribution:
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o, T) = (aT)N exp-oT / N!.

This distribution can also be derived by MaxEnt (see for
example Skilling & Gull 1984) with a constraint on <N> = oT,
using as a measure the form QN/N! for the number ways of
distributing N objects in a large number Q of cells.

A Bayesian analysis should start with the joint p.d.f.:
pr(a,N) = pr(a) pr(Nja) (T is always known).

To complete the assignment of this joint distribution we
have to specify the hypothesis space sufficiently to
determine the prior distribution pr(w). We can do this by
noting that o 1is a scale parameter: if we were totally
ignorant of the amount of radioactivity, we would be just as
ignorant if there was twice (or half) as much. This leads to
a unform prior in logo, but to be quite complete we should
specify some limits [opip, Qpax] SO that the prior can be

normalised. Let us define a "sensible" range of: Opin =
Hubble’s constant / Avagadro’s number (1 decay per gram
molecule 1in the age of the Universe) and oy = 10~ of a
lethal radiation level {or vyou can find another
experimenter).

We now use Bayes’' theorem by writing the joint p.d.f. in its
alternative form:

pr(a,N) = pr(N) pr(eN).
Renormalising, we get the posterior distrubuton for a:
pr(loga!N) = (aT)N exp-ar / (N-1)1,

The re-normalisation is possible over an infinite range of «
if >0 and N>0. This is entirely reasonable: if N=0 then we
don’t yet know it is radiocactive, and if T=0 we haven't
started looking.

This 1is a very simple, but highly instructive example.
Figure 1 shows the Likelihood and the posterior distribution
for the case T = N =5, a = 1. It is the same function of
the two variables (a,N), but plotted on different axes, so
that there is a remarkable switch of meaning. The Likelihood
gives the probability of different numbers of decays for a
constant wvalue of «o, whereas the posterior gives the
relative probability of different parameter values for the
single value of N that was actually observed. These are
completely different concepts and it is only through Bayes’
theorem that there is any relationship between them.



BAYESIAN INFERENCE AND MAXIMUM ENTROPY 57

Poisson Distribution

- ! T 1 T T ! v v ¥ ) ¥ ' T ' -

0 [ ]

of 7

+ [ g

s | .-

0 L J

o L ]

- :

O_ 1 N 3 1 1 N L 1 L _I]T‘—r—n " 2 )
©0 +5 +10 +15

N

Poisson rate analysis

R
-~ Z
non
N

T T T T T
PSS T (N0 N TN N NS PO NN T SO N G NN NS

Prob(Alpha)
c.0 +0.2 +0.4 +0.6 +0.B +1.0

log(Alpha)

Figure 1. Likelihood and posterior probability
distribution for a Poisson process with a=1, N=T=5.

I think we should not lose sight of this; the Bayesian
rationale given above is, of course, entirely consistent
with the "Maximum Likelihood" method - in fact it provides a
justification for that method. But when we use the ML method
a natural misunderstanding arises by the word-play inherent
in the very name "Maximum Likelihood" - it makes you think
that the answer you get is the "most likely" one. ©Not so:
you get the parameter for which the observed datum had the
greatest Likelihocod. It 1is only by confronting Bayes’
theorem that one can see that this is indeed (under many
circumstances) the "most likely".
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Poisson rate analysis
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Figure 2. Evolution of the posterior p.d.f. of the rate
parameter o« of a Poisson process as more data become
available.

Additional features

1) Figure 2 shows some results generated by a Poisson
process on my PC. At T=0 the pr(loge) is uniform, and as
T>0, but N remains 0, high values of a becomes less likely,
and the p.d.f. can be allowed to extend over an infinite
upper interval. When the first decay occurs the lower limit
can also be extended to zero,

2) The moments of the posterior distribution are easily
calculated in terms of Gamma functions:

<a> = N/T,
<@?> = N(N+1)/T.
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As T and N increase, this leads to a width Sa = N%/T that
shrinks like T~% as expected.

3) Another useful technique I should mention is to expand
the logarithm of the p.d.f. near its maximum. A Taylor
series about this point will yield an estimator and a width:

log(pr(loga)) = const. - aT + NlogaT.

If we differentiate with respect to loga we get an unbiased
estimate:

d(log pr)/dloga = -aT + N (zero at maximum)
02 (log pr)/dloga? = -aT.
This vyields a maximum probability at o« = N/T and an

approximate width of Sloga = N72.

These features were sufficient to convince me of the
usefulness of Bayesian methods. I was, and still am,
impressed by the way the beautiful result <a> = N/T depends
on the careful consideration of the prior for a. The next
example is even more staightforward, but is still the cause
of heated debate with non-Bayesians in my department.

Cauchy distribution - the lighthouse problem

(Taken from a Cambridge Fart 1A examples sheet). A
lighthouse is somewhere off a piece of straight coastline at
position x( along the coast and a distance y out to sea. It

emits a series of short, highly collimated flashes at random
intervals and hence at random azimuths. These pulses are
intercepted on the coast by photo-detectors that record only
the fact that a flash has occurred, but not the azimuth from
which it came. N Flashes have so far been recorded at
positions {xj, i=1,N}. Where is the lighthouse?

For any one sample the likelihood can be written in terms of
the azimuthal angle 8 , where y tan 6 = x - Xqg:

pr(xixqg,y) dx = pr(e) do6 = de / m.
This gives the Cauchy distribution:
pr(xixg,y) =y / (m (y*> + (¥ - %x0)?).

Different pulses are independent so that the total
likelihood can be written as a product:

pr({xi}|xg.y) = (y/m)N (v + (% - xp)2)~t.

Use the joint p.d.f. again, taking a uniform prior
probability for the position (xg,y) as they are location
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Figure 3. One-dimensional posterioer p.d.f. of the
lighthouse position for various data samples. Note that
the distribution can be multi-modal. The wvertical bar
shows the postion of the sample mean. The correct
position was at xp = 1.

parameters:

Pr({x},%0,Y) = Pr({X}ixX0,yY) Pr(x0,y)
pr(xg,yi{x}) pr{{x})

i

and obtain: pr(xg,yi{x}) « pr({x}ix0,y).

This formula is illustrated by computer example for two
cases:

Case 1: The lighthouse is known to be 1 mile off the coast,
so that we have a one-dimensional probability distribution.

Case 2: ©No such restriction, so that there 1is two-
dimensional plot.

The figures are very revealing.

1) The Cauchy distribution has very wide wings, i.e. there
are many more "bad" data points than, for example in a
Gaussian distribution. For the l-dimensional case (Figure 3)
this can lead to the posterior distribution being bi-modal
if the first few points are sufficiently discordant.
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Figure 4. Two-dimensional plot of lighthouse position as
function of xp and y. The correct position was at xg=y=1.

2) Nevertheless the bulk of "good" data eventually overwhelm
the bad and the allowed range of (x(,y) shrinks (Figure 4).

3) The sample mean Ix/N is not a good statistic for this
problem, and does not approach the value of xp any more
closely as N increases. For an excellent discussion of this
see Jaynes (1976).

Gaussian distribution

Meanwhile, back at the telescope, I was observing a patch of
sky repeatedly in an attempt to detect a putative "hole" in
the temperature of the Cosmic Microwave Background
Radiation. The depth of this hole is about 0.5mK, and
individual 1 minute measurements had a variance of about
10mK (and cost about $3 each). (Patience has now been
rewarded with 3 results of =10c after 10 years (Birkinshaw
et al. 1985)). Suppose that we model the data collection as
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a Gaussian process with mean p and standard deviation
o. You have N samples {x;}: what are u and o? This simple
problem is worth solving here because it illustrates quite a
few of the mathematical subtleties that will appear later
in the section on Bayesian curve-fitting.

The single-sample likelihood for the Gaussian distribution
can be derived by MaxEnt, using constraints on the first two
moments of pr(x): <x> = uw and <(x - p)2> = o2, and a uniform
measure m(x). The MaxEnt likelihood for multiple samples
{xi} is then independent:

pr({xi}inc} = (2rn0?)"N/2 exp-p(xj-p)2/202.
1

To manipulate this expression it is best to re-write the
exponential as: -(1/202%2) [Nu? - 2u¥xj + IZxi].

Now complete the square, defining the sample mean and
variance % = Ix/N and V = ©Ix2?2 - NR?:

-(1/20%) [N(p - %)z + V].

We are now ready for Bayes’ theorem using the joint p.d.f.
again:

Pr({xi} ko) = pr({xi}iko} pr(uc) = pr({xi}) pr(Ho|{xi}).

The prior for p and o has been much discussed: o is a scale
parameter and should have a uniform prior in logoc; pu 1is a
locaticn parameter and should have a uniform prior. At the
time that this talk was presented I followed conventional
wisdom that this implied a uniform prior pr(pm,logo). But if
we start by allocating the prior in logo over some range
[Omins Smax] then we clearly have to assign the range in p
given the knowledge of o. Perhaps the range in p should be
proportional to o, which would lead rather surprisingly to
pr(u,logc) « 1/0?., Yoel Tikochinsky has another argument
based on a transformation group that yields the same result.
Although I will now assume pr(u,logo) = constant, I think
that Yoel has a good point and that there still seems to be
some life in this old argument!

Write the posterior distribution:
pr(u,logol{xi}) « 0N exp-[N(p-%)2+V]/202.

The marginal distributions are interesting: the distribution
for p is a "Student-t" with N-1 degrees of freedom.

pr(pi{xi}) = Jdlogo pr(u,logoix{;})

x [N(p-x)2 + v]~N/2,
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Figure 5. Marginal posterior distributions of mean and
standard deviation for a Gaussian distribution. There
were 100 samples with p=0 and o=2.

Marginalising the other way we find:
pr(logo}{x;}) x o N*l exp-v/202,
and defining X=V/o?:
pr(Xi{xi}) o x(N=-3)/2 oxp-x/2.

In more conventional language this says that V/o? |is
distributed 1like x? with N-1 degrees of freedom. A good
estimator is therefore o2 = V/(N-1). This can also be seen
by differentiating log(pr(logc)) with respect to logoc. Some
results are plotted as Figure 5.

Note that in these examples I have treated scale parameters
systematically by taking logarithms. This is good practice,
because the pricr is uniform in the logarithm, corresponding
to the suggestion that we use log graph paper to plot the
distribution. If we insist on plotting the parameter itself,
then then prior 1is 1/0, for example. This looks a bit
mysterious, even to a practising Bayesian like myself. But
we don’t need to confuse - take logarithms.

BAYESIAN HYPOTHESIS TESTING

The story of Mr. A and Mr. B

Why do we prefer theories with only a few parameters? The
principle proposed by William of Occam - that there is more
intrinsic merit in simpler theories - is universally
accepted by scientists. But why? The following argument, due
to Harold Jeffreys (1939, Chapter 5) explains that a simple
theory can beccme more probable than a complicated one when
confronted with data.

Suppose we have two competing theories to explain the data
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D. The theory proposed by Mr. B has a parameter A, which has
to Dbe known before the data can be predicted, but Mr. A’s
theory has none, and predicts the data directly. An example
that occurred in physics some time ago was the Brans-Dicke
scalar field theory that included a ratio w of the strength
of scalar and tensor fields (Brans & Dicke 1961). If there
was no scalar component (w = 0) then the theory reduced to
Einstein’s General Relativity. The data in question were the
classical tests of G.R., along with some new measurements of
solar oblateness.

Write the likelihoods pr(DjA) and pr(D!B,)A). There is
presumably a value of A that fits the data best ~ call it
Ap. Let us suppose for the sake of illustration that for our
particular case the likelihood is a Gaussian with width AJ.
Also, we must suppose that Mr. B’'s extra parameter allows
him to fit the data better than Mr. A’'s inflexible one,
which may or may not be a special case of Mr. B’s. (The
Brans-Dicke camp might say G.R. was just a special case of
their theory, but the other side might retort that no such
parameter existed!)

The question to be asked is then: how much bigger should
pr(DiB,Ap) be than pr(D|A) for Mr. B’s theory to be
preferred? We need a guantitative statement of Occam’s
Razor. Let us try to calculate the relative probabilities of
Mr. A and Mr. B’s theories in the light of the data.

pr(aAiD) pr(A(D) ) pr(A) pr(DiA)
pr(B|D) JdA pr(B,A|D) JdA pr(B,A) pr(D|B,A)
pr(a) pr(DiA)
_____ K e
pr(B) fdA pr(Ai{B) pr(D|B,A)

The difficult term is the prior for the parameter A in Mr.
B’s theory. Let us take it as uniform in some range [Ayip,

Amax ] specified by Mr. B. Then, using the assumption of a
Gaussian likelihood we find:
pr(AiD) pr(A) pr(DiA) ( Amax Xnin )
_______ = —_————— X — - —— o X — o —— i ————
pr(B|D) pr(B) pr(D|B, Ap) (2m)% AX

The first term in this product is a prior prejudice in
favour of Mr. A or Mr. B that has nothing to do with the
theory being tested. It might be taken as unity, or might
even reflect their past performances. The second term is the
best-case likelihood ratio, that is expected to favour Mr.



BAYESIAN INFERENCE AND MAXIMUM ENTROPY 65

B. The third term is the "Cccam factor" we are looking for
and is due to the posterior collapse of Mr. B’s hypothesis
space. If A and B were equally probable to start with, then
Mr. B has to spread his share of probability over a bigger
space from Ayinp to Ayax - When the data are given, many of
these possible parameter values perish, and only the range
AX survive.

This analysis is the same as that given by Jeffreys, he then
says that there are difficulties, which indeed there are,
because Apin and JApax are left in an unsatisfactorily
ambiguous state: what stops us taking an infinite range?
That gives an infinite penalty for the parameter, which is
just as bad as having no penalty at all. We have to be fair
to both Mr. A and Mr. B. However, when stated in the
abstract as here, I think that this ambiguity is inevitable
- there can be no panacea to solve all such problems. On the
other hand we can certainly make progress for many specific
problems, when our prior information, whilst still vague, is
not actually zero.

A further note of interest is that the decomposition of the
posterior probability is precisely the same (if you take the
logarithm) as that given by Peter Cheesman and others in
their "minimum message-length" approach.

BAYESTIAN CURVE-FITTING

Suppose that you are given a graph consisting of N
pairs of {x,y} values, and that the values of the ordinate
{yi} are subject to a constant, but unknown, amount of noise
o. The task is to fit a set of M parameters {aj} so that the
{y;i} can be adequately represented in terms of a set of
basis functions {fj(x)}:

~ M
y(xi) & y(xi) = j_?glaj £5 (%)

ort v = f.a, where f is an (N x M) matrix. The functions
{f} might, for example, be a set of polynomials, or a
Fourier series.

I must emphasise that this model problem is one where we
suppose that measurement noise ¢ is added to an exact
underlying relation y = f.a and that the {a4} are unknown,
but with no intrinsic variation from samplé to sample of
{yi}. Another scenario for this sort of problem is the case
where there is very little measurement noise, but the data
{yi} relate to individual objects that have a spread of {as}
values. An example of this latter type of problem 1is the
colour-luminosity relation for main-sequence stars (the
Hertzprung-Russell diagram). Although this other case 1is
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interesting, it is not the problem addressed here.

The ultimate goal of our analysis is to answer the question
of how many parameters M we should use. However, we start
with the relatively straightfoward task of determining the
parameters {ag) when M and o are known in advance. Write

the joint p.d. as:
pr({y},{a}rio,M) = pr({a}io,M) pr({y}i{at,o,M).

(In all of what follows the values of {x3;} and N are known
as well, but will be omitted to avoid cluttering the
conditioning statements.) For the moment take the prior
pr({a}) as uniform over some large hypervolume 8&Ma. The
likelihood (which can be derived by MaxEnt) can be taken as
an independent Gaussian:

pr({y}i{a}r,o,M) = (2n02) N2 exp -5(y; -zfjjaq)?/202.
L J

We can make life easier by a little rearrangement of the
exponential; write it as - V/20?, where:

V=1=x(y - fa)z = vp - 2 at.B + at.A.a,

Vo = Iyi®. By = Byifj(xi), Ryl = BEy(xi)f1(x) = £OF.
The (MxM) A matrix tells us about the structure of the space
spanned by the {f}; it is strictly positive definite if the
{f} are linearly independent. If the basis functions are
dependent or M>N then we don‘t really deserve to solve the
problem. A further definition we will need is the Maximum

Likelihood estimator a, which is the solution of the
equation: A.a = B. We then have:

V= V(M) + (a-a)t.a.(a-a,
V(M) = Vg - at.B

The minimum of V, namely V(M), occurs at a = a.

We now use Bayes’ Theorem to obtain the posterior
distribution:

pr({a}i{y},o,M) x exp-V(M)/20? exp-(a-a)tA(a-d)/202.

This 1is a multivariate Gaussian distribution for the
variables {a}, with best estimator <a> = a and covariance:

<gajfay> = fdMa sajsa) pr({a}i{y})= o2 [A 1]y,
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~

where Sa = a - a.

It is worth dwelling for a while on these formulae,
particularly that for the covariance. This result is
"obvious" if you "diagonalise" the matrix A (in imagination
only!), because the individual dimensions in the integral
then separate. Another thing we can do with the formula is
to use it for prediction of y(x):

<y> = f(x) . a,

<sy2> = oz 3 [A"1]41 £4(x) f1(x).
jl

A final note is that the practical soluticon of the equation
for a is best done by least-squares solution of |[B-f.a;?,
not by solving the normal equations directly. The numerical
conditioning of the least-squares solution is determined by
the singular values of £, which are the square roots of the
eigenvalues of A itself.

The determination of o

We now turn to the next easiest problem: M is given but the
noise o 1is unknown. To do this we expand the hypothesis
space to include o as a parameter, taking a uniform prior
for logc because ¢ is a scale parameter. To be definite we
take this over a range [Opin:%max)s but the range will not
matter if N>M. This procedure is equivalent to "forgetting”
¢ - the posterior distribution for o will then single out
the most likely value of ¢ consistent with the data. We now
should be careful about all the factors of ¢ that appear in
the normalisation of the joint p.d.f, and find:

pr(logo,{a}!{y},M) x o=N exp-v(M)/2c? exp -&atnsa/202.
( )

We now integrate this over {a} to find the marginal
distribution:

pr(logo {y}) = fdMa pr(logo,a{y})
x oM-N  exp-v(M)/2c2.

This means that the posterior distribution of V(M)/oc? 1is
like x?% with N-M degrees of freedom. If we have to choose a
single value of o, then o? = V(M)/(N-M) is a pretty good
guess. As might be expected, we lose a degree of freedom for
each parameter estimated.

The real problem: which M to use?

Figure 6 shows some data kindly provided to me by colleagues
as a blind test. It is (I was assured) a polynomial, with
added noise, though not much. Also plotted is the fit for
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Figure 6. Best-fitting polynomial curves of order 4,5 and
8 <compared with a sample of 100 {x,y} values. The
residuals are shown for polynomial orders 8,9 and 10.

M=4,5,8 and the residuals for M=8,9,10. The graph of the
minimum Variance V(M) against polynomial order M is shown in
Figure 7. We see now the real problem: the V(M) curve
decreases monotonically, quickly at first, but then more
slowly. But how much decrease of V(M) must we have before it
is worth adding a new parameter? We need to be fair: if we
accept any decrease, then we approach the dreaded "Sure
Thing" Theory (Copyright (c) E.T. Jaynes), if we are over-
cautious we will miss true structure. In Bayesian terms,
this problem is related to the hypervolume &Ya associated
with any M. We must complete the assignment of priors:

pr({a},M) = pr(M) pr({a};¥).

The final prior pr(M) scarcely matters and we take it as
constant in 1<M<Mpax-
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Figure 7. Minimum variance V{M) as a function of
polynomial order for the example of Figure 6.

The important factor is, of course, pr({a}iM); we need a
prior that ties together the different wvalues of M. A
possible way in which we can do this is by referring
everything to the N-dimensional space of the ordinates
{y(xi)}. Suppose that the points {x,y} are drawn on a piece
of graph-paper, and that the y-axis extends from -R to +R.
We know that the ordinates will be somewhere on this graph-
paper (and so are the samples {yi} to within the noise o),
but we want to encode this information gently, in a way that
does not prejudice the shape of the curve. If we knew R, we
could accomplish this rather neatly by an ensemble average
constraint of the variance:

<gy?> = N R2,

Note that this 1is a statement only about the average
variance, we are not constraining the variance itself. But

<zy2> = [dMa » (2fj(xi)aj)? pr({a}!R)
r ]

is testable information; it relates directly to pr({a}). We

can therefore derive pr({a}) using MaxEnt, maximising
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§ = -|da pr(a) log(p(a)/m(a))

over some large measure space m(a) (taken as constant
because the {a} are location parameters in a M-dimensional
vector space). We use the Partition function:

Z2(B) = Ida exp-(R/2)ataa = (2n/ﬁ)M/2 (det A)"%,

where the constraint is satified by: NR2 = M/f. This Ileads
to the prior:

pr({a}!M,R) = (B/2m)M/2 (det A)% exp -(B/2)atna.

This prior neatly incorporates all the properties of
orthogonality and normalisation of the basis functions, and
relates everthing to the same N-dimensional hypervolume NR2.
In that sense we are being fair. But what should be be the
size of this hypervolume? We face the same problem as
before; if the hypervolume is to big, we pay too great a
price for a new parameter and will miss real structure; if
the hypervolume is too small we take too many parameters and
have the additicnal disadvantage that the prior biases the
answer too much. The hypervolume has to be "just right",
which means NR2 = Zy? (of the data set). We can show this by
expanding our hypothesis space yet further to include
different values of R (or B). R and B are scale parameters,
so we take uniform prior in logR or logf. By doing this we
essentially “"forget" the size of the graph-paper (which we
didn‘t know anyway!), yet retain the "fairness" property
between the different wvalues of M. The posterior
distribution of pr(logR) will then automatically select the
best hypervolume for our purposes, Jjust as previously
happened for the case of pr(logo). We could, of course,
simply integrate R out of the problem here and now, and
obtain a nice-looking prior:

pr(a M) « (atna)—M/2

The proportionality warns us that this is an improper prior,
still depending on the limits of 1logR, with weak
(logarithmic) singularities at both large and small values
of a. However, this integration would be counter-productive
as far as practical manipulation is concerned; we will keep
the Gaussian distributions around as long as possible,
because we can always integrate them exactly. The difficult
functional forms are those involving R and o, and we will
delay their determination until last. For the moment we note
that the consequence of the prior (at fixed ) is to change
our estimate of the parameters:

”~
<a> = k a,



BAYESIAN INFERENCE AND MAXIMUM ENTROPY 71

with k = 1/(1 + o2B), the fractional weight of the data
versus the prior. There is thus a (small) bias of the
parameters towards zero {very small in the example given).

Our final formula for the posterior distribution is:

pr(M,logo,logBi{yi}) «
BM/2 =N (g + 1/02)"M/2 oxp[-v(M)/202 -(Pk/2)BE.4].

This formula 1is the basis of the computer program that
produced the figures. For each M, the maximum posterior
probability was found and a numerical “"steepest descents”
integration performed to get the marginal distribution
pr(M;{y}). However, with the caveat explained in the next
section, we can proceed further analytically for the
limiting case V(M) << Vg (i.e. good data!). For this case
can set k = 1 and Bt.a = v, and find that the integral
over [ and o separates into two Gamma function integrals:

pr(logoc,logP, M) « ﬁM/z exp~fVy /2 ot1-N exp-V(M)/2c2,

This implies chi-squared distributions for 3 and 1/02 and
estimators:

<g?> = V(M)/(N-M)
as before, and
<l/p> = Vo/M,
leading to Vg = NR? as predicted.
Further, integrating over logc and logp we find:
log pr(M) = const. + log(T'(M/2)) + log(T((N-M)/2)) +.
.+ (N=M)/2 log (Vp/V(M)).

The error in this formula is O(MV(M)/Vg), which is small for
V(M)<<Vg.

The performance of this formula can be judged by Figure 8§,
which shows the posterior distribution as a function of M.
It is instructive to look again at the residuals shown in
Figure 6: most people agree that there is clear evidence for
a new parameter at M=9, but it would be a brave man that
suggested one at M=10.
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polynomial expansion order for the example of Figure 6.
There is a maximum at M = 10.

Sermon on the spike
When we perform the integral over [ more carefully, by
changing to kB as a new variable, we encounter a
singularity:
l/02-¢ .
fo d(kB) (kB)M/2-1 exp(-kBBL.4/2) (1 - kpo2)-l

where o is related to the maximum allowed prior range of f:

€ = 1/02Bpax- There is, therefore, a tiny “"spike" which
gives a logarithmically divergent contribution to the
integral. This behaviour is related to the fact that we took
the range parameter [ (or R) to be a scale parameter, and is
again a warning that some aspect of that prior assumption
remains relevant in the posterior distribution. Rather than
being frightened of these spikes that occur in problems of
this type, let us instead make a simple calculation to see
just how relevant our prior information is, after the data
have arrived. We can do this by calculating what the cutoff
Bpax would have to be in order to make a 50 per cent
contribution to the integral. The main part of the integral
is approximately T'(M/2) (2/V0)M/2'1, and the spike involves
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the value of the cutoff. Making suitable approximations we
find that the fraction in the spike

~ (Vg/202 )M/ 2-1 exp(-vy/202) log(o2Pnax) / T'(M/2)

For our example, with Vg = 4 x 103, ¢ = 10-4, M=10, we find
that the spike is important if:

o2Bnax ™~ exp(exp(2x1011)),

where we are Jjustified in ignoring a factor of 1042  as
"small"! Such values of PBpax are, of course, quite
incomprehensible even to an astronomer, and indicates that
our integral does indeed converge for all practical
purposes.

However, let us think for a moment about the origin of this
divergence. The data provide us with likelihood factors of
about exp(-Vg/20?), which are certainly large (see above),
but nevertheless finite. The prior contains the range
parameter f as a scale parameter, and in particular allows
us to think of the limit Bpax ==> ®, which corresponds to
reducing the allowed range to zero. Eventually we arrive at
the case where the prior is so sure that a = 0 that it 1is
incapable of learning from the data. If this situation is
permitted without limit, then the finite likelihood factors
will not be able to overwhelm the prior. The purpose of the
above calculation was to show just how pig-headed one would
have to be in order to ignore the data completely. In that
respect it is telling us something useful. We note, finally,
that there is no corresponding problem with the limit Ppinp
==> 0.

CONCLUSTIONS

We have given a selection of examples that
illustrate the simplicity and power of Bayesian methods.
Bayes’ rule is used to manipulate probabilities in the light
of experimental data; MaxEnt is used to assign probability
distributions given testable information. However, it is wup
to us to choose a hypothesis space that is suitable for our
problem, and this not only requires us to assign an
appropriate measure in the space of possibilities, but to
define a range of allowed wvalues for any parameters
involved.

The collapse of hypothesis space hyper-volume leads to a
penalty for introducing a new parameter. This was first
described by Jeffreys, but it is a very general phenomenon
that deserves to be better known.

A tentative solution has been offered to the problem of
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determining the optimal number of parameters in regression
analysis. The essential feature of this solution 1is the
attempt to treat all expansion orders equally, by relating
their available parameter-space hyper-volumes to a common
range parameter.
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