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Abstract

We outline the basic principles of Bayesian probability theory and illustrate its use with reflectivity data. This
approach provides a unified rationale for data analysis, which both justifies many of the commonly used analysis
procedures and indicates some natural extensions that enhance their potency. Thus, for example, we find that the
ubiquitous least-squares apparatus of parameter estimation is easily adapted to tackle the more intriguing question of
model selection. A free-form solution application is also presented, as is a discussion of the difficult but important
question of optimal experimental design. ( 1998 Elsevier Science B.V. All rights reserved.
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1. Introduction

The analysis of reflectivity data, in common with
all experimental investigation, ultimately entails
the drawing of suitable inferences about an object
of interest given a set of incomplete and noisy
measurements. While we may strive to optimise the
collection of the latter, any rationale method of
analysis must take the uncertainties into account
and provide a corresponding measure of reliability
for the conclusions reached.

About three hundred years ago, people like Be-
rnoullis [1], Bayes [2] and Laplace [3] started to
think seriously about the question of how to reason
in situations where we cannot argue with certainty.

*Corresponding author. Fax: #44 01235 44 5720; e-mail:
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Although the origins and context of their deliber-
ations were far removed from our modern experi-
mental facilities, the probabilistic apparatus they
developed to tackle the problem is still highly rel-
evant today. Indeed, more recently, Cox [4] has
shown that any method of plausible reasoning (or
scientific inference) that satisfies simple rules of
logical consistency must be equivalent to the use of
ordinary probability theory.

There are just two basic rules in probability
theory; namely, the sum rule and product rule

prob(xDI)#prob(xN DI)"1, (1)

prob(x, yDI)"prob(xDy, I)]prob(yDI), (2)

where xN represents the proposition that x is false,
the vertical bar “D” means “given” and the comma is
read as the conjunction “and”. Many other rela-
tionships can be derived from Eqs. (1) and (2), with
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Bayes’ theorem and marginalisation being two of
the most useful corollaries

prob(xDy, I)"
prob(yDx, I)]prob(xDI)

prob(yDI)
, (3)

prob(xDI)"Pprob(x, yDI) dy. (4)

While these equations are well known, they become
a particularly potent force (in terms of their wider
applicability) when interpreted from the Bayesian
standpoint. That is to say a probability encodes
a state of knowledge, and all probabilities are con-
ditional. The second point is emphasised above by
the inclusion of the symbol I on every right-hand
side, which denotes the relevant background in-
formation and assumptions.

In this paper, we illustrate the (direct) use of
probability theory for the analysis of neutron re-
flectivity data; a more general tutorial introduction
to this Bayesian approach can be found in Sivia
[5]. We begin with elementary parameter estima-
tion in Section 2, showing both how some familiar
statistical procedures can easily be justified within
our unified framework and how they can be gener-
alised. In Sections 3—5 we move on to increasingly
demanding examples involving model selection,
free-form solutions and optimal experimental de-
sign. We conclude with Section 6.

2. Parameter estimation

Let us begin with the simplest type of data analy-
sis problem, namely the estimation of the values of
M parameters MX

i
N of a certain model given N data

MD
k
N. A two-parameter example relevant to reflec-

tivity data from a bare substrate could be X
1
"b

and X
2
"¼, referring to the average scatter-

ing—length density and (Gaussian) surface rough-
ness of the substrate, respectively. The probability
density function (pdf ) prob(XDD, I), where X"MX

i
N

and D"MD
k
N, then encapsulates what we can say

about the quantities of interest in the light of the
empirical evidence and our background informa-
tion (such as a knowledge of the experimental
setup): the values of the parameters that maximise
this pdf represent a best estimate of X, while its

spread about this optimal point gives a measure of
the reliability.

In order to calculate this so-called posterior pdf,
we can use Bayes’ theorem to relate it to two others
that are easier to assign:

prob(XDD, I)Jprob(DDX, I)]prob(XDI). (5)

The term on the far right is known as the prior pdf,
and represents our state of knowledge (or ignor-
ance) about X before the analysis of the current
data. This is modified by the (new) measurements
through the other pdf on the right, which is called
the likelihood function. We should note that pro-
portionality in Eq. (5) arises from the omission
of prob(DDI) in the denominator; although this is
fine for the parameter estimation problem, because
its just a normalisation constant (not explicitly in-
volve X), it will play a crucial role when we come to
model selection.

Some of the most widely used statistical proced-
ures follow immediately from Eq. (5) once we make
some suitable simplifying approximations. First
of all, suppose we assign a uniform prior,
prob(XDI)"constant, to express gross initial ignor-
ance; then the posterior pdf becomes proportional
to the likelihood function, and we have a justifica-
tion for the use of the maximum likelihood esti-
mate. If the noise in the data is assumed to be
(roughly) Gaussian, independent and additive, then
the likelihood function takes the form

prob(D DX, I)Jexp(!s2/2), (6)

where s2 is given by the familiar sum of the squares
of the “datum D

k
minus the fit F

k
over the error-

bar p
k
”.

s2"
N
+
k/1
A
D

k
!F

k
p
k
B

2
. (7)

Thus, the maximum likelihood estimate is given by
the ubiquitous least-squares solution. An obvious
extension to simply minimising s2 is then to include
additional terms, such as the sum of [(X

i
!a

i
)/e

i
]2,

to encode some cogent prior knowledge (like
X

i
"a

i
$e

i
).

As an elementary, but concrete, example of
parameter estimation, Fig. 1 shows the results of
the analysis of neutron reflectivity data from a
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Fig. 1. (a) Neutron reflectivity data from a bare substrate (D
2
O); (b) the posterior pdf for the scattering-length density b and the

interfacial roughness ¼ of the substrate; (c) and (d) The marginal posterior pdfs for b and ¼ (solid line), and the approximations to them
(dotted lines) given by a quadratic Gaussian expansion around the maximum of the joint pdf in (b).

bare substrate (which happens to be heavy water
D

2
O). The contour plot of the posterior pdf

prob(b,¼DD, I) in Fig. 1b defines all that we can
infer about the average scattering-length density
b and roughness ¼ of the substrate; it was gener-
ated by calculating the values of exp(!s2/2) on
a uniform grid of points in the two-dimensional
(b,¼)-space. We often summarise the conclusions
of such an analysis by providing the best estimates,
1!p error-bars and a correlation for the para-
meters: b"b

0
$pb, ¼"¼

0
$p

W
and

S(b!b
0
)(¼!¼

0
)T. This is equivalent to ap-

proximating the posterior pdf by a multivariate
Gaussian, usually chosen by matching up the loca-
tion and curvature of the maximum. While this
may be the most practical thing that can be done,
Fig. 1b highlights its potential inadequacies: not
only does it fail to capture some of the important

characteristics of the shape of prob(b,¼DD, I), it
does not take into account the sharp cut-off ¼*0
imposed by the prior.

If we were only interested in the surface rough-
ness of the substrate, so that its scattering—length
density was nothing more than a nuisance para-
meter (required to compute the fit to the data but of
no intrinsic value), then our inference is defined by
the marginal posterior pdf prob(¼DD, I). This is
obtained by integrating the two-dimensional pdf of
Fig. 1b along the horizontal b-axis, and the result is
shown in Fig. 1c. It tells us that the value of
¼ most probably lies between 0A_ and 2A_ , but is
very unlikely to be bigger than 4A_ ; by contrast, the
Gaussian approximation around the best-fit para-
meters for b and ¼ would have suggested that
¼"1.1$2.3A_ so that ¼ might even be as large
as 8A_ (about 3!p). If, on the other hand, our sole
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interest lay in the average scattering-length density,
then we would integrate the two-dimensional pdf of
Fig. 1b along the vertical ¼-axis to obtain the
marginal posterior pdf prob(bDD, I) of Fig. 1d.

Finally, before moving on to model selection, let
us consider how systematic uncertainties can be
handled. For example, given that no critical edge is
apparent in the data of Fig. 1d, there might be an
open question with regard to the (absolute, vertical)
scaling of the measurements. Well, this situation
can be dealt with in a straightforward manner, at
least in principle, through marginalisation. That is
to say, if / represents a set of calibration para-
meters (i.e. essential for the calculations but intrin-
sically uninteresting) then they can be eliminated
from the inference problem by integrating them out

prob(XDD, I ) " Pprob(X,/DD, I) d/

J Pprob(/DI)exp(!s2/2) d/,

(8)

where we have used Bayes’ theorem, and assigned
a uniform prior prob(XDI) and a least-squares likeli-
hood prob(DDX,/, I ), in the second line. Thus, for
our bare substrate, we simply compute the values of
exp(!s2/2) on a three-dimensional grid of points
in (b,¼,A)-space and sum-up along the vertical
scale-factor A-axis. This integral must be weighted
by prob(ADI), so that due account is taken of any
previous calibration measurements; the assignment
of d(A!A

0
) indicates certainty, where as gross

ignorance may be expressed with a uniform pdf.
The marginal posterior pdf for b and ¼ under the
latter conditions is shown in Fig. 2; as expected, it is
much broader than the case of Fig. 1b where the
scaling was assumed to be known. The difference
would not have been as striking, however, if the
reflectivity data had been measured to lower Q’s so
that a critical edge was evident. If we were also not
sure about the magnitude of the resolution blurring
*Q/Q, then we would need to compute exp(!s2/2)
on a four-dimensional grid of points in (b,¼,
A,*Q/Q)-space and integrate out the two nuisance
parameter weighted by prob(A,*Q/QDI); in our
present case, the resultant marginal posterior pdf
for b and ¼ would look very similar to that of

Fig. 2. The posterior pdf for b and ¼ resulting from the data of
Fig. 1a when the absolute (vertical) scaling of the measurements
is assumed to be unknown.

Fig. 2 because there are no sharp fringes predicted
or seen in the data. For problems of higher dimen-
sionality, the marginalisation of Eq. (8) is best done
through a Monte Carlo algorithm [6] or estimated
analytically with a multivariate Gaussian approxi-
mation [5].

3. Model selection

In the previous section, the M components of the
vector X referred to the parameters of a particular
model, or hypothesis, H; thus all the pdfs were
implicitly conditional on H, so that prob(XDD, I )
was really shorthand for prob(XDD,H, I) and so on.
Now, suppose that we have competing hypotheses
H

1
and H

2
, each generally having a different num-

ber of associated variables; which one should be
preferred in the light of data D?

Well, to answer this sort of model selection prob-
lem, we need to consider the ratio of the posterior
probabilities for the alternative hypotheses

prob(H
1
DD, I)

prob(H
2
DD, I)

"

prob(DDH
1
, I)

prob(DDH
2
, I)

]
prob(H

1
DI)

prob(H
2
DI)

, (9)

where we have used Bayes’ theorem, top and bot-
tom, on the right-hand side. If this ratio is very
much greater than one (say *100), then H

1
is to be
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preferred; if its a lot smaller than one (say )0.01),
then H

2
is better; and if the ratio is of order unity,

then the measurements are not sufficient to make
an informed judgement. The term on the far right of
Eq. (9) is just the ratio of our prior probabilities for
the two models; unless we have good initial reasons
for preferring one over the other, this contribution
can be set to unity. The data-dependent term looks
rather awkward by comparison, as it involves an
assessment of the probability of the measurements
given the truth of the hypotheses but without
knowing the values of their associated parameters.
A little thought, however, reveals that the so-called
evidence term prob(DDH, I) is just the omitted nor-
malisation constant in the Bayes’ theorem expres-
sion of the posterior pdf in Eq. (5). In other words,

prob(DDH, I)JPP2Pprob(XDH,I)exp(!s2/2)dMX,

(10)

where we have made the least-squares likelihood
assignment of Eq. (6) for prob(DDX,H, I), and impli-
citly assumed that the error-bars for the data Mp

k
N

are known. Thus, the only real difference between
parameter estimation and model selection is that
we must now give some consideration to a suitable
prior-range for the parameters X, even if we are
going to assign a uniform pdf initially, because
prob(XDH, I) needs to be normalised properly.

A very simple example of this type of analysis
concerns the question of whether or not the data in
Fig. 1a have been scaled correctly in terms of abso-
lute reflectivity; if they have not, then we must allow
from the possibility of a multiplicative factor A (be-
tween 0.01 and 100, say). The evidence for the
hypothesis that the scaling is correct (A"1) is then
given by the average value of exp(!s2/2) com-
puted over the two-dimensional grid of points in
(b,¼)-space allowed by the prior probability. The
evidence for the proposition of an unknown scale
factor is given by the correponding average of
exp(!s2/2) computed over the three-dimensional
grid of points in (b,¼, A)-space. Carrying out this
calculation, we find in favour of Fig. 1b by a factor
of about a hundred relative to Fig. 2.

Fig. 3a shows neutron reflectivity data from
a mixture of two polymers taken by Geoghagen

Fig. 3. (a) Neutron reflecivity data from a mixture of two poly-
mers; (b) A scattering-length density profile b(Z), consisting of
five uniform layers with some interfacial roughness, that gives
reasonable agreement with the measurements; the substrate
(silicon) is at Z'0, where as the air interface (b"0) is at about
Z(!5000A_ .

et al. [7]. Such measurements are often analysed in
terms of an average scattering-length density depth
profile b(z) consisting of a few uniform layers of
material with some interfacial roughness; a five-
component profile that gives good agreement with
the data is shown in Fig. 3b. A question that arises
naturally concerns the significance of the features,
particularly the subtle ones to the right of the large
enhancement at the air interface. One way to tackle
this issue is to construct a series of models of
increasing complexity and see which one is most
strongly supported by the data in terms of its prob-
abilistic evidence. Carrying out such an analysis for
the data of Fig. 3a, along the lines outlined in Sivia
et al. [8], we obtain the results shown in Fig. 4.
Thus, we find very strong evidence for the four-
component model, which shows both a depletion
region and slight enhancement bump following the
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Fig. 4. Four best-fit b(Z) profiles, corresponding to models with different numbers of uniform layers, and their probabilistic evidence;
the numbers in the top right-hand corners are the (base-10) logarithms of the probabilities for the models, given the data of Fig. 3a, and
K is a normalisation constant common to all.

huge enrichment at the air surface, but would be
reluctant to put too much faith in any greater
structure. Indeed, we would expect the formal
probabilities to start falling if more complicated
models were considered; this will be so despite the
better agreement with the data because, in accord-
ance with Ockham’s razor [9], the value of
s2 achieved is not the only thing that matters in the
integral of Eq. (10).

4. Free-form solutions

One of the most important things that the
Bayesian view of probability teaches us is that the
results of all analyses are conditional on the as-
sumptions that underlie them. The highly signi-
ficant evidence values displayed in Fig. 4 are
meaningful in an absolute sense, therefore, only in

the context of the specific models that were con-
sidered. It can be useful, then, to check whether our
conclusions change very much when the strong
assumptions implicit in a parametric model are
relaxed. Thus we may be led to think about “free-
form” solutions for the depth profile b(z).

For the problem of Fig. 3, which involves the
mixture of two known polymers with scattering
length densities b

1
and b

2
, it is the volume fraction

profile f (z), rather than b(z), that is of greater inter-
est; the two are related simply by

b(z)"b
1
#f (z)[b

2
!b

1
]. (11)

To obtain a free-form solution, we must define f(z)
by a large number of parameters to allow for a lot
of flexibility. This in turn causes difficulties (such as
having more variables than data) that require the
use of “weak” prior information about f (z) to ensure
stability (and a unique best estimate); for example,
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Fig. 5. The maxent estimate of the volume fraction profile f (Z), given the data of Fig. 3a; the air interface is at Z"0, and the silicon
substrate is (way off) on the far right. The dotted lines show two error-stars, which indicate that the rippling structure is not reliable; (b)
the probabilistic evidence for the smoothness length-scale w for f (Z); (c) the maxent estimate of f (Z) using the optimal value of w"85A_ .

positivity, smoothness, bounds, and so on. A prior
pdf that is appropriate for positive, and additive,
distribution is

prob( f DI)Jexp(aS), (12)

here S is the entropy of the distribution f (z) and a is
a Lagrange multiplier [10]; its use with the data of
Fig. 3a leads to maximum entropy (MaxEnt) esti-
mate of Fig. 5a. While this might be the “best”
solution under the circumstances, how much better
is it than the alternatives? In other words, how
reliable are the features in Fig. 3a? A good way of
answering this question, for our non-parametric
formulation, is to consider the average value of f (z)
over some region

U"

1

z
2
!z

1
P

z2

z1

f (z) dz"U
0
$p, (13)

and see how the error-bar p changes with the limits
of the integration. The uncertainty in U will be large
when z

2
—z

1
is small, and vice versa, indicating that

fine detail in f (z) cannot be inferred reliably but
gross properties can; this information is conveyed
pictorially by the two error-stars in Fig. 5a. Al-
though they correctly warn us not to take the
rippling feature in the volume fraction profile at
face value, can we do anything to discourage it;
after all, intermixing polymers are unlikely to ex-
hibit rapidly varying structure.

A simple extension to the traditional MaxEnt
formulation that allows us to combine our prior
knowledge about the positivity of f (z) with a prefer-
ence for its local smoothness is through the use of
“fuzzy pixels” [10]. While we leave the details to
Ref. [5], it will suffice to say that we introduce an
additional nuisance parameter w pertaining to the
length-scale of the spatial correlations. This can be
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dealt with in the usual manner by marginalisation,
but reduces to an optimisation for w when the pdf
prob(wDD, I) is sharply peaked as is in Fig. 5b. Us-
ing a value of w"85A_ yields the MaxEnt solution
shown in Fig. 5c; not only is it aesthetically more
pleasing than Fig. 5a, which is equivalent to using
w"0, it is overwhelmingly favoured in terms of its
formal probabilistic evidence. Also of note is the
fact the volume fraction is now less than unity
everywhere, a known bound that was not encoded
in the entropic prior. The error-stars for Fig. 5c
have not been shown but are fairly small due to the
enforced local smoothness. An examination of the
free form solution for f (z) leads to essentially the
same conclusions as from the model selection anal-
ysis of the previous section.

5. Experimental design

So far, we have considered the analysis of a given
set of data. If we have some choice in the matter,
can we say anything about the optimal design
of the experiment itself? The answer is yes: all
we have to do, in essence, is to make the data
most sensitive to the object of interest. In practice,
however, the implementation of this simple
guiding principle is far from straightforward.
The problem is not just one of messy algebra, but
of a rather more fundamental nature: what’s
best depends on the precise question being asked
and, even worse, what’s best often depends on
the answer! To illustrate the principles, and some of
the difficulties, let’s outline a specific case;
namely, the optimal choice of neutron scattering-
length contrasts for obtaining partial structure fac-
tors [11].

Suppose that a sample is known to consist of
several distinct components, with scattering lengths
b
1
, b

2
,2, b

M
; for example, the solvent, chain and

head group of a surfactant layer on a liquid
substrate. Then, the depth profile b(z) can be
written as

b(z)"b
1
n
1
(z)#b

2
n
2
(z)#2, (14)

where the n
j
(z), for j"1 to M, are the number-

density profiles for the various components. Work-
ing within the kinematic approximation, the

reflectivity data R(Q) are given by

Q2

16p2
R(Q)"b2

1
h
11

(Q)#b2
2
h
22

(Q)#2

#2b
1
b
2
h
12

(Q)#2, (15)

where the partial structure factors h
ij
(Q) are related

to the Fourier transforms of the number—density
profiles MnL

j
(Q)N by

h
ij
(Q)"ReMnL

i
(Q)nL *

j
(Q)N. (16)

The diagonal elements (i"j) tell us something
about the size and spread of the individual compo-
nents, where as the cross terms (iOj) convey in-
formation about their separations.

For any given value of the momentum transfer Q,
Eq. (15) states that the partial structure factors of
interest are related linearly to the data. With a suit-
able redefinition of the variables, therefore, the
problem can be recast in the general form of a noisy
set of simultaneous equations

k
+
i/1

B
ji
X

i
"D

j
$p

j
. (17)

Here the MX
i
N are the k"M(M#1)/2 parameters

about which inferences are to be drawn, and the
matrix B defines the experimental set-up for the
l measurements MD

j
N. Elementary linear algebra

tells us that we require at least l"k data to obtain
a unique solution to Eq. (17); this means that we
must ascertain the reflectivity for several different
sets of b’s in Eq. (14), achieved for neutrons through
isotopic substitution, with each choice of M values
determining a row of the B matrix. The design
question we are trying to answer here is which
combinations of scattering-lengths are best?

Well, according to Bayes’ theorem of Eq. (5), the
information content of the data is encapsulated
in the likelihood function; with the least-squares
assignment of Eqs. (6) and (7), its logarithm
¸"log

%
[prob(DDX, B, I)] is given by

¸"Constant!
1

2

l
+
j/1

1

p2
j
ADj

!

N
+
i/1

B
ji
X

iB
2
. (18)

The congenial properties of Eqs. (17) and (18) en-
sure that prob(DDX,B, I) is a unimodal multivariate
Gaussian, whose orientation and spread about
the maximum (at +¸"0) is governed by the
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eigen-characteristics of the second-derivative Hes-
sian matrix

­2¸

­X
i
­X

i{

"!

l
+
j/1

B
ji
B
ji{

p2
j

, (19)

the situation being shown graphically in Fig. 6. In
a more general context, the likelihood function for
b(z) from a single set of reflectivity measurements
could well be multimodal; an optimal design might
then entail the collection of several data-sets to
eliminate the source of the ambiguities (examples of
such experiments can be found in Refs. [12—14]).
For our present case, however, increasing the sensi-
tivity of the measurements to the object of interest
simply means making prob(DDX,B, I) as sharply
peaked as possible.

Although the above objective is easy to state, two
difficulties immediately confront us when we con-
sider its implementation. First of all, how should we
assess a potential improvement if a proposed de-
sign change makes the likelihood function nar-
rower in one direction but wider in another? There
is no real answer to this except to say that we must
think more deeply about exactly what we are after,
and use the eigenvalues Mj

i
N (and the eigenvectors)

appropriately in coming to a decision. One
straightforward criterion is to maximise the
(square-root of the modulus of the) determinant of
the ++¸ matrix in Eq. (19), which is equal to the
product of the j’s, since this will minimise the
hyper-volume in parameter-space that gives rea-
sonable agreement with the data. The second prob-
lem is that the error-bars Mp

j
N in the summation of

Eq. (19) depend on the actual values of the partial
structure factors that we are trying to infer! This
is because for Poisson counts, such as the number
of neutrons reflected, the variance of the meas-
urements is equal to the data MD

j
N and this, in turn,

is determined by the answer we seek. Short of
conducting a brief experiment, or carrying out
computer simulations, we must make some gross
simplifying approximations to continue further
analytically. The easiest assumption is to presume
that all the error-bars will be roughly the same magni-
tude, for a given value of Q, and remove them from
Eq. (19) as a proportionality constant; we could
even set p

j
J1/Jt

j
if we wanted to optimise the

Fig. 6. A schematic illustration of the likelihood function for
a linear least-squares inference problem. The principle axes and
spread of the ellipsoid are given by the eigenvectors Me

i
N and

eigenvalues Mj
i
N of (minus) the second-derivative Hessian matrix

++¸.

times for the different experimental runs (with the
constraint that &t

j
"¹), but omit this level of com-

plexity here.
Finally, let us consider the case of a two-com-

ponent system as the simplest non-trivial example.
Suppose that there is a monolayer of a surfactant
with a dominant chain, and a negligible head
group, on top of a solvent substrate. Then, depend-
ing on whether the chain is hydrogenated (H) or
deuterated (D), the neutron scattering-length c (or
b
1
) can be either !1.0 or 24.0A_ (]10~4); with

suitable H/D mixing, the solvent contribution s
(or b

2
) can lie anywhere in the range !0.17—

1.91A_ (]10~4). Since M"2, there will be
k"3 MX

i
N of interest: namely, the partial structure

factors h
cc
, h

ss
and h

cs
. Using the minimum number

l"3 of data-sets required for a solution to
Eq. (17), our quality factor of the “square-root of
the modulus of the determinant of the ++¸ matrix
in Eq. (19)” reduces to Ddet(B)D, where

BJA
c2
1

s2
1

c
1
s
1

c2
2

s2
2

c
2
s
2

c2
3

s2
3

c
3
s
3
B. (20)

With only the H or D options for the chain, there
are just four possibilities for the three c’s to be

D.S. Sivia, J.R.P. Webster / Physica B 248 (1998) 327—337 335



Fig. 7. (a) Simulated neutron reflectivity data: the dotted and dashed lines are both for deuterated surfactant chains, but on H
2
O and

D
2
O respectively; the solid circles (v) are from a hydrogenated chain on D

2
O, and the open squares (h) are from a deuterated chain on

a 50 : 50 mixture of H
2
O&D

2
O; (b) and (c) the inferred partial structure-factors h

cc
, h

ss
and h

cs
, and their 1!p error-bars (open-square on

the left and solid circle on the right); the dotted lines show the answer used to generate the simulated data sets.

Table 1
The four combinations of hydrogenated (H) and deuterated (D)
surfactant chains, for the three partial structure-factor data sets,
and the corresponding optimal scattering-lengths of the solvent
(achieved through H/D mixing)

Chain Solvent Det(B)

H H H !0.17 0.87 1.91 2
D H H 1.91 1.91 0.93 1134
D D H !0.17 1.91 1.91 108860
D D D !0.17 0.87 1.91 31 099

investigated: (H,H, H), (D,H, H), (D,D, H) and
(D,D, D). For each of these cases, the optimal
choice of the solvent combination (s

1
, s

2
, s

3
) , and

resultant maximum value of Ddet(B)D, is given in

Table 1. This indicates that it is well worth the
effort of deuterating the chain, with the best triplet
of c and s being (D,!0.17), (D, 1.91) and (H, 1.91).
We must remember, of course, that this predic-
tion is based on at least one gross approximation
(p

j
"p), so that the reality may be a little

different; nevertheless, we do not expect to be
too far wrong. To test our proposed optimal set
of scattering-length contrasts, we simulated one
triplet of reflectivity data under our preferred
option and another using only a deuterated chain
(the second best alternative); these are shown
in Fig. 7a. The analysis of these computer-
generated measurements, to obtain the three partial
structure factors, is also shown in Fig. 7 and con-
firms that our prediction of the optimal choice was
correct.
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6. Conclusions

Bayesian probability theory gives a logical and
unified approach to data analysis: it provides the
justification for many conventional statistical pro-
cedures, and gives improved prescriptions when
they fail. We have tried to illustrate this point with
a broad spectrum of examples from reflectivity data
analysis, ranging from elementary parameter es-
timation to optimal experimental design, and hope
that the reader will come to share Laplace’s view
that “probability theory is nothing but common
sense reduced to calculation”.

References

[1] J. Bernoulli, Ars conjectandi (Thurnisiorum, Basel,
1713).

[2] T. Bayes, Phil. Trans. Roy. Soc. London 53 (1763)
370.

[3] P.S. Laplace, Theorie Analytique des Probabilités, Cour-
cier, Paris, 1812.

[4] R.T. Cox, Am. J. Phys. 14 (1946) 1.
[5] D.S. Sivia, Data Analysis: a Bayesian tutorial, Oxford

Univ. Press, Oxford, 1996.
[6] J.J.K. O. Ruanaidh, W.J. Fitzgerald, Numerical Bayesian

Methods Applied to Signal Processing, Springer, London,
1996.

[7] M. Geoghegan, R.A.L. Jones, D.S. Sivia, J. Penfold, A.S.
Clough, Phys. Rev. E 53 (1996) 825.

[8] D.S. Sivia, W.A. Hamilton, G.S. Smith, Physica B 173
(1991) 121.

[9] W.M. Thorburn, Mind 27 (1918) 345.
[10] J. Skilling, Maximum Entropy, In: B. Buck, V.A. Macaulay

(Eds.), Action, Oxford University Press, Oxford, 1991.
[11] E.A. Simister, E.M. Lee, R.K. Thomas, J. Penfold, J. Phys.

Chem. 96 (1992) 1373. Also see Thomas et al. in these
Proceedings (SXNS-5), Physica B 248 (1998).

[12] D.S. Sivia, W.A. Hamilton, G.S. Smith, T.P. Rieker, R.
Pynn, J. Appl. Phys. 70 (1991) 732.

[13] V.O. deHaan, A.A. vanWell, S. Adenwalla, G.P. Felcher,
Phys. Rev. B 15 (1995) 10830.

[14] C.F. Majkrzak, N.F. Berk, Phys. Rev. B 15 (1995) 10 827.
Also see their paper in these Proceedings (SXNS-5),
Physica B 248 (1998).

D.S. Sivia, J.R.P. Webster / Physica B 248 (1998) 327—337 337


