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We demonstrate the Bayesian spectral analysis approach for analyzing neutron scattering
molecular tunneling data. It is a generalized form of model fitting, which is appropriate when
the number of parameters to be optimized is not known. Specifically, it addresses the question
of how many excitation lines there is evidence for in the data. We review the theory of
Bayesian spectral analysis relevant to our particular application, describe an efficient algorithm
for its implementation, and illustrate its use with both simulated and real data. We believe that

this powerful method of analysis will be a very useful tool in experimental molecular

spectroscopy.

1. INTRODUCTION

The experimental measurement of molecular excitation
lines is obscured by the effects of both the instrumental reso-
lution and finite statistics. The resulting data are essentially
a blurred and noisy version of the spectrum we seek, and are
usually analyzed by the least-squares fitting of a functional
model. A model-independent estimate of the underlying
spectrum can also be obtained, by using the maximum en-
tropy (MaxEnt) method. In a sense, both traditional model
fitting and MaxEnt are a little extreme for this problem.
Traditional model-fitting tends to be too restrictive, by re-
quiring a fully-defined functional model, and implicitly as-
sumes more than we usually know. MaxEnt is somewhat too
liberal because the free-form solution often fails to take into
account all our prior knowledge about the physics of the
situation. Bayesian spectral analysis adopts a middle path. It
is a generalized form of model fitting, which is appropriate
when the number of parameters to be optimized is not
known; the solutions are restricted to a broad class of models
rather than to particular model. The choice of the type of
model encodes more prior knowledge about the nature of the
molecular excitation spectrum than does MaxEnt, while still
allowing considerably more flexibility than does convention-
al model refinement.

We should emphasize, however, that the logic behind
Bayesian spectral analysis is no different to that of MaxEnt:
both rely on the direct use of probability theory for inferring
the spectrum from the data and are Bayesian, therefore. In-
deed, traditional least-squares model fitting can also be justi-
fied within the Bayesian framework. What is different about
the three approaches is the precise question that is being
asked of the data, and the implicit assumptions which under-
lie them. In traditional model fitting, for example, we are
asking a question of the type: Given that the excitation spec-
trum consists of five 8 functions, what is the best estimate of
their positions and amplitudes? In MaxEnt, the correspond-
ing question is: Given that all we know about the excitations is
that they constitute a “‘positive and additive distribution,”
what is the best estimate of the spectrum? In Bayesian spectral
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analysis, we use our prior knowledge about the discrete na-
ture of the excitations but do not restrict their number: Given
that the spectrum consists of a “‘few’”’ 6 functions, how many
excitations is there most evidence for in the data and what are
their positions & amplitudes?

In Sec. II we formulate the tunneling spectroscopy
problem from a data analysis point of view and outline the
theory of the Bayesian spectral analysis approach. In Sec. III
we describe an algorithm for the practical implementation of
the theoretical results. We illustrate its use with both simu-
lated examples and real neutron data in Secs. IV and V, re-
spectively, and conclude with Sec. V1.

. THE METHOD
A. Probability theory and data analysis

In science we are often faced with the task of making
inferences about some object of interest given incomplete
and noisy experimental data. For the case of molecular spec-
troscopy, we are primarily concerned with inferring the
spectrum F(€), where € is the energy of the excitation and F
is proportional to the number of molecules in that state, giv-
enasetofdata {D(€, )} (k= 1,2,3,..,M). Given the experi-
mental measurements, what is our best estimate of F(€) and
how confident are we in our prediction? The answer to this
question is not clear cut since it depends on both the data and
our prior knowledge about F(e). For example, if physics
told us that the spectrum must have a particular functional
form, then we need to consider only a very limited set of
possibilities for F(e) defined by a handful of parameters.
Alternatively, if we did not have any good a priori reason to
assume a functional form, then we must consider a much
larger set of possibilities for F(€) described in a suitable free-
form fashion. Even without a functional form we may know
about the positivity of the spectrum, or its zeroth moment
(normalization), or an asymptotic solution, and so on,
which will restrict the set of allowed possibilities for F(e€).
How, then, should we combine our prior knowledge with the
evidence of the data to obtain our best estimate of the spec-
trum and a measure of its reliability?
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Cox' has shown that any method of inference which
satisfies simple rules for logical and consistent reasoning
must be equivalent to the use of ordinary probability theory,
as originally formulated by Bernoulli,> Bayes,” and La-
place.* Accordingly, the conditional probability distribu-
tion function (PDF) prob[F |D,I] summarizes our infer-
ence about the spectrum given the data and our prior
knowledge I about F(e) and the experimental setup. Since
the numerical value of the probability assigned to any partic-
ular F(€) is a measure of how much we believe that it is the
true spectrum, our best estimate is given by that F(e) which
maximizes prob[ F | D,I]. The width, or spread, of this PDF
about the maximum tells us the reliability of the estimate: if
the PDF is sharply peaked then we are confident of our pre-
diction, but if it is broad then we are fairly uncertain about
the true spectrum.

In order to compute prob{ F | D,I] we need to use an im-
portant result from probability theory, called Bayes’
theorem, which relates the PDF we require tc one which we
can calculate and to another which encodes our prior knowl-
edge,

prob[F |D,I ] «prob[D |F,I ] Xprob[F|I], (1)

where we have omitted the normalization constant,
1/(prob[D |I]), from the right-hand side, for simplicity.
The term on the far right, prob[ F | 1], is called the prior PDF
and represents our state of knowledge (or the lack thereof)
about F(¢) before we have analyzed the experimental data.
Our prior state of knowledge is modified by the data through
the so-called likelihood function, prob[D |F,I], which en-
codes details about the experimental setup. The product of
the prior PDF and the likelihood function yields the posteri-
or PDF we require and represents our state of knowledge
about F(€) after we have analyzed the data.

Let us first consider the likelihood function in more de-
tail. The likelihood function tells us how likely it is that we
would have measured the data that we actually did, if we
were given an F(¢). In order to compute the likelihood func-
tion, therefore, it is essential (but not sufﬁ/c\ient) that we
should be able to compute an ideal data set {D(¢, ) } given a
spectrum. For our case, the data are given by a convolution
of the spectrum with the resolution function of the instru-
ment R(¢€) plus a background signal B(€),

~ +
Diey) =f R(e, — x)F(x)dx + B(€,). 2)

For the moment, let us assume that we have a reasonably
good estimate of the resolution function and the background
signal; later we will see how these conditions can be relaxed.

The other information we need in order to calculate the
likelihood function is some knowledge about the statistical
properties of the errors in the experimental data. If we make
the simplifying assumptions that the data are independent
(so that one measurement does not affect another) and sub-
ject to additive Gaussian noise with a root-mean-square-er-
ror {o,}, then the likelihood function takes the familiar
form,

e‘“Xz/Z
prob[D|Fl}=—0T+——, (3)

H [ 2 77'0'%( ] 172
k
where y? is the usual sum-of-squared residuals misfit statis-
tic,
D(e,) — D(e) ]
Xzzz[ (€x) ()] ' 4)
%

k

It should be noted that this form of the likelihood function
can also be derived very easily by using the principle of maxi-
mum entropy to assign prob[D |F,I] subject to a constraint
on the (expectation value of the) variance of the data:>”’
([D(€x) — D(€&)]?) = 0% '

Next, let us consider the prior PDF prob[F |I]. Before
we can think about assigning the prior PDF, we must decide
what we know about the spectrum a priori. An irrefutable
piece of prior knowledge about F{€) is that it is a positive and
additive distribution. It is positive because F(e, ) is propor-
tional to the number of molecular modes with an excitation
state of energy €, and it is additive because the number of
molecular modes with excitation states of energy €, and €, is
given by the sum F(¢€, ) + F(€, ). The appropriate prior for a
positive and additive distribution is not immediately obvious
but many different types of arguments,>*'? including logi-
cal consistency, information theory, coding theory, and
combinatorial arguments, lead us to believe that it is of an
entropic form: exp(aS), where S is the generalized Shan-
non-Jaynes entropy of the spectrum."® This, in turn, leads
us to the use of the MaxEnt method for data analysis.'*""*

In molecular spectroscopy, however, we usually know
more than just that F(€) constitutes a positive and additive
distribution. The physics of the problem often tells us that
the spectrum consists of a “few” discrete excitations. As-
suming, for the sake of argument, that we know that the
excitation lines are all Gaussian in shape with width ¥, the
spectrum can be written as

few —e)?
Fe=73 Aj'exp[——(e—z—u-g—)-]. (5)

=1

The prior PDF for the spectrum is now defined by our prior
knowledge about the value of the parameters for the ampli-
tudes and positions of the excitations prob[{4;,¢}|/].
Since the number of the parameters to be estimated is small
compared with number of data, the likelihood function will
be much sharper than any PDF expressing reasonable a
priori ignorance; therefore, the posterior PDF will be domi-
nated by the likelihood function. In particular, if we make
the algebraically simple assignment of a uniform prior PDF
(prob[F|I]1 = a constant), the maximum of the posterior
PDF becomes coincident with the maximum likelihood so-
Iution. As the likelihood function above is of the form
exp( — y?/2), our best estimate for the spectrum is given by
the set of parameters {4, ,€;} which minimize y. This, then,
provides us with the justification for using the method of
least squares.

An important question which we have glossed over in
the previous paragraph, but is dear to the hearts of experi-
mental molecular spectroscopists, is the numerical value of
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“few”” in terms of the number of excitations. Indeed, we need
to know the number of excitation lines before we can carry
out a least-squares analysis!

B. Bayesian spectral analysis—how many lines are
there?

To estimate the number of excitation lines N, given the
experimental data, we require the posterior PDF
prob[ N | D,I]. To compute this posterior PDF we need to use
two more results from probability theory. The first is essen-
tially a restatement of Bayes’ theorem,

prob(a,b |¢) = prob(a|b,c) X prob(b |c), (6)

and the second concerns marginalization, or the integrating
out, of nuisance parameters,

+
prob(ajc) :J prob(a,b |c)db. @)

The mathematics presented below, to compute the posterior
PDF for the number of excitation lines, is essentially the
same as that found in Chapter 5 of Jeffreys;'® it can also be
found in Gull® and Bretthorst."”

We begin by using Bayes’ theorem,

prob[N|D ] = prob[D |N ] X prob[N ] ’ (8)
prob[D ]

omitting the background information 7, as implicitly given
throughout, for simplicity. The denominator is a (normali-
zation) constant, which cancels out when comparing the
relative probabilities that N has value n, and n,. The prior
probability for &, prob[ V], can be taken as uniform between
Oand afew (say 20) so that a priori we have no preference for
any particular number of lines. Therefore,

prob[N|D] =K-prob[D|N], (€))
where K is a constant. Using Eq. (7), we can write

prob[ D |N] as amarginal distribution over the joint PDF for
the data and the parameters of the model,

prob[D [N ] = JJ fprob[D,{AJ—,ej}lN]dNAdeej.
(10)

Equation (6) then allows us to write the joint PDF,
prob[D, {4 j,ej}|N ], as the product of a conditional proba-
bility and a prior probability (given N throughout),

prob[D,{4,,e}|N ]| = prob[D [{4,,6;},N ]
X prob[{4;,6;}|N]. (1
The first term on the right-hand side is just the likelihood
function, or goodness-of-fit term, which we have approxi-
mated by the familiar exp( — y°/2) form [Eq. (3)]. The
second term is a prior probability over the amplitudes and
positions of the N lines describing the spectrum. We will

make the simple assignment that this prior PDF is uniform
(a constant) in the range,

Eomin <E;<E 0<4; <4 ax

max?

and

Al +A2 + +AN<Amax1 (12)

and zero otherwise. The main reason for using a uniform
prior is that it simplifies the subsequent algebra. Although a
purist could argue that this is not the optimal assignment
(perhaps preferring instead a Jeffreys’ prior, which is uni-
form in the logarithm of the amplitudes), our defense is that
the analysis depends only weakly on the particular form of
the prior since we are trying to estimate a single parameter
(N) from many data. What we are trying to convey by this
assignment is that the positions of the lines lie within the
range €., t0 €., (presumably defined by the energy range
of the data), and that the amplitudes are all positive with no
single or combined magnitude exceeding 4, (defined by
the integrated intensity of the data).
Putting together the various terms above, we obtain

const-N!

[ (Emax — €min ) .Amax ]N

xff fe‘XZ/ZdNAdeej, (13)

where the marginalization of Eq. (10) has been reduced to a
multiple integral over the likelihood function times a prefac-
tor arising from the normalization of the prior probability
for the amplitudes and positions of an N-line model for the
spectrum. If we assume that there is only one significant
maximum in the likelihood function, and make a quadratic
Taylor series expansion around it,

R IR P (5€j5AJ)T'VV;{;‘6616A}/4’ (14)

prob{N|{D] =

then we can do the Gaussian multiple integral analytically
and obtain,

prob[N|D]
_ const'N! . (47T)N'97X§"i"/2 (15)
[ (emax - e-min ) 'Amax ]N 1 ’
[Det(VVy*H]?

where Det( VV)(Z) is the determinant of the Hessian matrix.

Equation (15) tells us how to compute the posterior
PDFprob[ N | D], and thereby allows us to estimate the num-
ber of lines for which there is most evidence in the data. The
closed form of the solution does depend, of course, on the
validity of the approximations and assumptions, such as that
of the quadratic expansion of Eq. (14), but they are not
unusual in the sense that they are always implicit when using
the traditional least-squares analysis. An algorithm for the
practical implementation of the theoretical results is de-
scribed in Sec. I and a discussion of the meaning, and per-
formance, of Eq. (15) is given in Sec. IV, following an illus-
tration of its use with simulated data.

C. Dealing with systematic uncertainties

Equation (2) shows how the excitation spectrum is re-
lated to the data through the resolution function and the
background signal. It is a relationship we require for doing
any kind of data analysis and assumes that we know the
resolution function and the background. Usually we try to
obtain a fairly good estimate of both, perhaps by collecting
some data using a standard elastic scatterer and an empty
cell, but can we do anything if we are not quite so fortunate?
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The answer is that we can, at least in principle.

In order to deal with systematic uncertainties, we must
be able to characterize their nature in terms of just a few
parameters: a linear background, the width of the resolution
function given its shape, and so on. These parameters neces-
sarily enter our analysis, because they are needed to compute
the likelihood function [Egs. (2)-(4) ], but we are not really
interested in their actual value when estimating the posterior
PDF for the number of lines—they are nuisance parameters.
We eliminate them by using marginalization and Bayes’
theorem [Eqgs. (1), (6),and (7) ], just as we removed the set
of parameters {4 j,ej} from the analysis in the previous sec-
tion [Eqgs. (10)-(15)]. Suppose, for example, that we did
not know the value of a constant background B. Then, Eq.
(10) would become

prob[D [N ] =
JJ...fprob[D,{Aj,ej},B;N]dNAdeej dB. (16)

The analysis would follow along the same lines as before,
leading to Eq. (15), but with B now contributing to both
% and the Hessian matrix. Since the prior PDF for B [at
Eq. (12) 1 does not depend on the number of lines, its norma-
lization factor can be incorporated into the existing con-
stants in Egs. (13) and (15).

Systematic uncertainty does not only arise from the
background and resolution functions, but also from the
width W of the excitation lines [ Eq. (5) ] if this is not known.
This can be dealt with by optimization and marginalization
in exactly the same way as above. Although probability theo-
ry provides us with the principles to deal with systematic
uncertainties, we should not take this to mean that there is
no need or value in trying to obtain an estimate of the resolu-
tion function and background. Even when we can use the
theoretical apparatus in practice, systematic uncertainties
still lead to a (significant) reduction in the reliability of the
inferred spectrum.

lil. AN ALGORITHM

In order to make use of the analysis of the previous sec-
tion, we need an algorithm for its practical implementation.
Before we describe such a procedure, let us first state some
assumptions which are implicit in this implementation. First
of all, the background is assumed to be linear so that it can be
described by two parameters. The resolution function is tak-
en to be known, and tabulated on a fine-enough grid to allow
subsequent linear interpolation as required. Although it is
also assumed to be invariant in energy transfer in the exam-
ples given in this paper, a known variation in the width of the
resolution function (keeping the same shape) can be accom-
modated with some loss in speed. All the excitation lines are
assumed to have the same intrinsic width. The examples in
this paper use a Gaussian profile, although a Lorentzian or
other lineshape could be used just as well. In principle, prob-
ability theory will tell us which intrinsic line shape is to be
preferred, on the basis of the data, if we have two or more
alternatives. It should be emphasized that none of these as-
sumptions is central to the use of Bayesian spectral analysis,

but instead they are made to improve computational speed
and robustness; they can be relaxed, but at some cost in al-
gorithmic efficiency. Such simplifications are in keeping
with the spirit of Bayesian spectral analysis, where we are
trying to estimate the parameters of a simple but adequate
type of model when the number of parameters is not known.

The formula for computing the most probable number
of excitation lines, in the light of the data, is given in Eq.
(15). It requires us to find the best-fit solution for any speci-
fied number of lines, but we also need an initial estimate for
the range of the position and amplitude parameters €, ,
€maxs and A4, . Let us deal with the question of the prior
range first. Ideally this should come from the results of pre-
vious data or theory but, in practice, a reasonable estimate is
provided by the energy range and integrated intensity of the
data we wish to analyze. So, we set €., to the energy of the
datum with the smallest energy and €,,,, to the correspond-
ing value for the datum with the highest energy. 4., re-
quires an initial estimate for the linear background (ob-
tained by using the average of the data at either end of the
energy range, for example), as well as the integrated intensi-
ties of the data and the resolution function (if it is not nor-
malized). Parseval’s theorem then tells us that the total in-
tensity of the excitation lines, or 4,,,, is given by the
difference between the intensity of the data and background
divided by the intensity in the resolution function. As a mat-
ter of computational efficiency, we should work with a “re-
sultant” resolution function which combines the broadening
effects of the instrumental resolution and the intrinsic shape
of the excitation lines; this relies on the associativity of the
convolution function: a* (b *¢) = (a%b)*c.

Next, we must consider a procedure for obtaining the
best-fit solution for any specified number of lines. Although
it is difficult to give absolute guarantees, because the data are
not linearly related to the positions of the excitation lines, we
describe a simple algorithm with which we have had consid-
erable success. (i) Start by obtaining an initial estimate for
the two parameters describing the linear background (by
eye-ball fitting the data with a ruler if necessary). If the
background is very small, the initial guess could be zero. (ii)
Taking the background as given, do a fairly thorough two-
dimensional (2D) search, on a rectangular grid (0<A<A4,,,,
and €., <€<€,., ), for the amplitude and position of the
first (and presumably strongest) excitation line. This 2D
search actually reduces to just a 1D search for the position of
the line, since the amplitude of the line is linearly related to
the data (given its position). (iii) Refine the parameters of
the background and the excitation line simultaneously. It is
often helpful to do this by first using a robust simplexlike
algorithm,® to be followed by a gradient Newton—Raphson-
type algorithm.'® In any case, the second derivatives need to
be computed at the optimal solution (by finite differences,
for example) since both y2., and the determinant of the
Hessian matrix are required to calculate the posterior PDF
prob{N = 1|D]. (iv) Taking the background and the first
excitation line as given, do a fairly thorough two-dimension-
al search for the amplitude and position of the second line;
again, the linearity of the amplitudes can be exploited to
reduce this to a 1D search for the position [asin (i) ]. Refine
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the parameters of the background and both lines simulta-
neously, and calculate prob[ N = 2|D]. Continue this cycle,
with one additional line in each go, until a maximum in the
posterior PDF for the number of lines is evident.

Before we go on to illustrate the use of this algorithm, we
should make a couple of additional remarks. It is helpful to
use the prior range parameters 4,,,,, and €, (and
the initial estimate of the background) to scale the param-
eters to be optimized. That is to say, if we work in dimension-
less units like A;/A,,,,, the optimal parameters will all be of a
similar order. Working in these dimensionless units, we can
improve the stability of matrix calculations, such as the in-
version of the Hessian matrix to obtain the variance of the
inferred parameters, by adding (twice) the identity matrix
to the Hessian matrix. Adding the identity matrix does not
change the eigenvectors of the Hessian matrix, and so does
not change the correlations between the inferred parameters.
It does, however, put a lower bound on the eigenvalues,
thereby encoding our prior knowledge that the uncertainty
in any parameters cannot exceed the order of the prior range
assigned to it. Finally, it might have been noted that the
intrinsic width W of the excitation lines was not treated as an
unknown parameter in the same way as the linear back-
ground. In principle it could be, but in practice we have
found it more stable to run our program several times over
using different given widths. We can then plot the two-di-
mensional posterior PDF for the number of lines and the
intrinsic width, integrating with respect to W to obtain
prob[N|D] (or integrating with respect to N to obtain
prob[ W |D], if desired).

max — €min

V. AN EXAMPLE USING SIMULATED DATA

We begin our illustration of the use of the theory and
algorithm described in Secs. II and III with the aid of data
generated in a computer simulation. These data are shown in
Fig. 1(a) and result from the convolution of a spectrum con-
sisting of a “few” excitation lines, having a Gaussian profile,
with a Gaussian resolution function of full width at half-
maximum (FWHM) 2.0 ueV. As can be seen from Fig.
1(a), the data are corrupted by a linear background and
statistical noise. Given this information alone, how many
lines is there most evidence for in the data?

Carrying out the analysis, as described in the previous
sections, we obtain the (logarithm of the) posterior PDF for
the number of excitation lines shown by the continuous line
in Fig. 1(b). There is most evidence for two lines, therefore.
The FWHM of the intrinsic Gaussian width of the lines is
estimated to be 1.03 + 0.08 peV, and the best estimate of
their positions is 13.98 4+ 0.03 and 15.47 4+ 0.02 ueV. The
spectrum which was used to generate the data in Fig. 1(a)
did indeed contain two lines, with a FWHM of 1.0 ueV,
centered at 14.0 and 15.5 ueV. The amplitudes of both lines
were the same, and were recovered correctly to within 5%.

The example above provides us with a good opportunity
to comment on the meaning and performance of the theory
presented in Sec. II. The shape of the posterior PDF for the
number of lines, shown in Fig. 1(b), is characteristic of this
type of Bayesian analysis: (a) there is sharp falloff from the
maximum on the left, because there is not enough structure
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FIG. 1. (a) Data generated by a computer simulation, from a molecular
excitation spectrum consisting of a “few” excitation lines (of Gaussian pro-
file). The data are corrupted by statistical noise, in addition to a linear back-
ground and an instrumental resolution broadening by a Gaussian of
FWHM 2.0 zeV. (b) The continuous line shows the logarithm (to base 10)
of the posterior probability for the number of excitation lines, given these
data, computed using the formula in Eq. (15). The dashed line shows the
results of the corresponding analysis when the data were corrupted by sta-
tistical noise whose magnitude was three times larger than in (a); the dotted
line is also for the noisier data, but the intrinsic width of the excitation lines
(1 ueV) was used as prior knowledge.

in the model to account for the data; (b) there is a slow
falloff on the right, as the models become unnecessarily com-
plicated. What we have, in essence, is a guantitative state-
ment of Ockham’s Razor. This is the qualitative statement,
named after William of Ockham?® (who died ~ 1349), that
when several theories exist to describe some phenomenon,
we prefer the simplest one consistent with the empirical evi-
dence. In our case, we choose the model with the least num-
ber of lines which fits the data. Although this is exactly what
we would have done using our “common sense,” the value of
the analysis is that it sharpens and refines our common sense
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far beyond our qualitative intuition. It would be difficult for
our common sense to match the formal analysis and state
that the two-line model for the spectrum is 10 orders of mag-
nitude more probable than a one-line model, and that the
two-line model is 30 times more probable than a three-line
model!

We should emphasize, however, that the results are con-
ditional on the particular data which we are analyzing and
on our prior knowledge. For example, if the statistical noise
on the data of Fig. 1(a) had been three times larger (corre-
sponding to an experiment run for only one tenth of the
time), we would have obtained the posterior PDF for the
number of lines shown by the dashed line in Fig. 1(b). There
is then most evidence for only one line (at ~ 14.8 ueV), with
an intrinsic width of about 2 ueV, although the possibility of
two lines could not be ruled out at the 90% confidence level.
This is because the data of poorer quality can be more sim-
ply, but sufficiently, explained by a broader single line than
by two narrower ones. Indeed, the maximum of the posterior
PDF would occur at zero if the quality of the data was so
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poor that they could be adequately explained by just a linear
background! In that case the maximum would also be very
shallow, and so probability theory would be warning us that
it was unwise to make too decisive a judgement on the basis
of such poor data. Even for the lower quality data, with three
times the statistical noise as Fig. 1(a), we would still find
most evidence for two lines if we had used the fact that the
FWHM of the lines was known to be 1.0 ueV as prior knowl-
edge; the corresponding posterior PDF is shown by the dot-
ted line in Fig. 1(b).

V. EXAMPLES USING REAL EXPERIMENTAL DATA

We now demonstrate the use of the theory and algo-
rithm described in Secs. II and III for analyzing real experi-
mental neutron tunneling data. The data were taken on the
IRIS spectrometer at the pulsed neutron facility ISIS,* and
on the IN10 spectrometer?” at the reactor source at the ILL;
the sample was 2,6 dimethyl pyridine, or lutidine. The data
from IRIS have been analysed previously by Mukhopad-
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FIG. 2. (a) Data for lutidine taken with the (002) graphite crystal analyser on the IRIS spectrometer at ISIS. (b) The “resultant™ resolution function, which
includes the broadening contributions of both the instrumental resolution function and (the optimal estimate of) the intrinsic width of the excitation lines.
(¢) The posterior probability for the number of excitation lines, on a logarithmic scale (to base 10). (d) The best estimate of the amplitudes and positions of

the (optimal number of) excitation lines, with their 1-o error bars.
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hyay et al.”® using MaxEnt, who show a threefold improve-
ment in the inferred detail over the instrumental resolution.
Our results are consistent with theirs, but have the advan-
tage that they can be presented in a more clean and precise
way. This improvement does, of course, stem from the
greater prior knowledge about the spectrum which is encod-
ed in the Bayesian spectral analysis formulation of the prob-
lem (as compared with MaxEnt).

Figure 2(a) shows the lutidine data, from IRIS, using
the pyrolytic graphite (002) crystal analyzer reflection. The
resolution function was determined from a measurement of
the elastic line from vanadium, and was roughly symmetri-
cal with a FWHM of about 15 ueV. We used MaxEnt, with
an intrinsic correlation function,"*** to fit a smooth (but
nonparametric) line through the vanadium data, in order to
tabulate the resolution function on a fine grid for subsequent
numerical manipulation in the Bayesian spectral analysis.
The “resultant” resolution function, including the contribu-
tion from the optimal estimate of the intrinsic width of the
excitation lines, is given in Fig. 2(b). The logarithm of the
posterior PDF for the number of lines is shown in Fig. 2(c),
and indicates most evidence for eight lines. The best estimate

Data
l(')o T T T * T T T §
X | (a)
f
- r T o
“ f 3.1
So T £ 8
8% b I
¥ MM ]
N VW,
- ] W ~
M ) . 1 L N o
-0.04 -0.02 0 0.02 0.04
Energy Transfer (meV)
Posterior probability for the number of lines
o+ —
~
i
= o
| .
88l 13
=t £
N £
a [ <
g8l i
i (T n
I | RIS SRR o

0 5 10

Number of lines N

for the amplitudes and positions for these eight lines, with
their 1-o error bars, is shown in Fig. 2(d). It should be noted
that the spectrum in Fig. 2(d) is shifted to the left by about 3
1eV; this is because no attempt was made to center the data,
or the resolution function, to compensate for any experimen-
tal misalignment.

The data in Fig. 3(a), also for lutidine, are from IRIS
using the mica (004) analyzer. The resolution function for
mica (004) is much narrower than for graphite (002), hav-
ing a FWHM of only ~35 ueV. We can now clearly see evi-
dence for two pairs of excitation lines which were indicated
by the analysis of the data in Fig. 2(a), but were not visible to
the naked eye. Analyzing the data in Fig. 3(a), as before, we
obtain the “resultant” resolution function of Fig. 3(b), the
(logarithm of the) posterior PDF for the number of lines in
Fig. 3(c) and the best estimate of their amplitudes and posi-
tions (with their 1-o error bars) shown in Fig. 3(d). The
substructure of the spectrum indicated by the analysis, over
the visible peaks in Fig. 3(a), is again confirmed by the high-
er-resolution measurements shown in Fig. 4(a). These data
were taken on the IN10 spectrometer and are the highest
resolution measurements of lutidine to date, with a FWHM
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FIG. 3. (a) Data for lutidine taken with the (004) mica crystal analyser on the IRIS spectrometer at ISIS. (b) The “resultant” resolution function. (c) The
(logarithm of the) posterior probability for the number of excitation lines. (d) The best estimate of the amplitudes and positions of the excitation lines, with

their 1-o error bars.
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of less than 1.5 ueV. Figure 4 shows that an analysis of these
(very noisy) data yields evidence for yet more substructure
in the tunneling spectrum for lutidine, if we fix the intrinsic
width of all the excitation lines to be that which is optimal for
the narrow and isolated peak at about 9 ueV.

Before finishing with the conclusions, we should make
some additional remarks about systematic uncertainties. In
Sec. II C we indicated how these could be dealt with by prob-
ability theory, in principle. In practice, however, this is often
difficult because we are unable to characterize the systematic
uncertainties in terms of a few parameters. For example, the
analysis can deal with an unknown linear background in a
straightforward manner; the more awkward question is,
“how well do we know it’s linear?” To start to answer that
question in a formal way requires us to present a set of possi-
ble alternatives for comparison, and the problem rapidly be-
comes intractable in a finite amount of time. Our philosophy
is to make simplifying, but adequately correct, assumptions
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to enable us to solve the problem, but to remember that the
results are always conditional on the validity of the assump-
tions. We might, then, include systematic uncertainties into
our analysis in a pragmatic way by being conservative in our
statements. For the analysis of Fig. 4, for example, we might
say that, “there is strong evidence for eight lines, and some
evidence for a ninth.” The somewhat dubious ninth line is
characterized by having the largest absolute error bar for its
inferred position and the largest relative uncertainty in its
estimated amplitude (and the smallest absolute amplitude).
This conservatism can be crudely quantified by using slight-
ly larger error bars for the data to compensate for the system-
atic errors. An optimal rescaling constant for the error bars
can be estimated from the maximum of the posterior PDF
prob|rescaling constant |{Data}], computed according to
the rules in Sec. IT C, and will be given roughly by that value
which makes “y? equal to the number of data” (when the

X
number of lines being fit is sufficiently large).
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FIG. 4. (a) Data for lutidine taken on the IN10 spectrometer at the ILL, using the temperature scanning monochromator. (b) The “resultant” resolution
function, where the intrinsic width of the excitations has been fixed to that value which is optimal for the narrow and isolated peak at ~9 ueV in (a). (¢) The
(logarithm of the) posterior probability for the number of excitation lines. (d) The best estimate of the amplitudes and positions of the excitation lines, with

their 1-o error bars.
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VI. CONCLUSIONS

We have demonstrated the Bayesian spectral analysis
approach for analyzing neutron scattering molecular tunnel-
ing data. This method of analysis is most appropriate for
molecular spectroscopy because we often know that the
spectrum consists of a few discrete excitations, but we do not
know how many. Probability theory enables us to answer the
question “how many lines is there most evidence for in the
data” in a quantitative manner, and allows us to present the
results in a very clean and precise way.

We have reviewed the theory of Bayesian spectral analy-
sts, putting it in the broader context of probabilistic data
analysis, and have given details relevant to our particular
application. We have described an efficient algorithm for the
practical implementation of the theoretical results, and illus-
trated its use with both simulated and real experimental
data. We believe that this powerful method of analysis will
be a very useful tool in experimental molecular spectroscopy
and in crystal field spectroscopy.
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