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ABSTRACT. I examine two approximate methods for computational implementation of Bayesian

hierarchical models, that is, models which include unknown hyperparameters such as regularization

constants. In the `evidence framework' the model parameters are integrated over, and the resulting

evidence is maximized over the hyperparameters. The optimized hyperparameters are used to de�ne

a Gaussian approximation to the posterior distribution. In the alternative `MAP' method, the true

posterior probability is found by integrating over the hyperparameters. The true posterior is then

maximized over the model parameters, and a Gaussian approximation is made. The similarities of

the two approaches, and their relative merits, are discussed, and comparisons are made with the

ideal hierarchical Bayesian solution.

In moderately ill-posed problems, integration over hyperparameters yields a probability distri-

bution with a skew peak which causes signi�cant biases to arise in the MAP method. In contrast,

the evidence framework is shown to introduce negligible predictive error, under straightforward

conditions.

General lessons are drawn concerning the distinctive properties of inference in many dimensions.

\Integrating over a nuisance parameter is very much like estimating the parameter
from the data, and then using that estimate in our equations." G.L. Bretthorst

\This integration would be counter-productive as far as practical manipulation is
concerned." S.F. Gull

1 Outline

In ill-posed problems, a Bayesian model H commonly takes the form:

P (D;w; �; �jH) = P (Djw; �;H)P (wj�;H)P (�; �jH); (1)

where D is the data, w is the parameter vector, � de�nes a noise variance �2� = 1=�, and �

is a regularization constant. In a regression problem, for example, D might be a set of data
points, fx; tg, and the vectorw might parameterize a function f(x;w). The model H states
that for some w, the dependent variables ftg are given by adding noise to ff(x;w)g; the
likelihood function P (Djw; �;H) describes the assumed noise process, parameterized by a
noise level 1=�; the prior P (wj�;H) embodies assumptions about the spatial correlations
and smoothness that the true function is expected to have, parameterized by a regularization
constant �. The variables � and � are known as hyperparameters. Problems for which
models can be written in the form (1) include linear interpolation with a �xed basis set
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(Gull 1988; MacKay 1992a), non-linear regression with a neural network (MacKay 1992b),
non-linear classi�cation (MacKay 1992c), and image deconvolution (Gull 1989).

In the simplest case (linear models, Gaussian noise), the �rst factor in (1), the likelihood,
can be written in terms of a quadratic function of w, ED(w):

P (Djw; �;H) = 1

ZD(�)
exp(��ED(w)): (2)

What makes the problem `ill-posed' is that the hessian rrED is ill-conditioned | some
of its eigenvalues are very small, so that the maximum likelihood parameters depend unde-
sirably on the noise in the data. The model is `regularized' by the second factor in (1), the
prior, which in the simplest case is a spherical Gaussian:

P (wj�;H) = 1

ZW (�)
exp(��1

2w
Tw): (3)

The regularization constant � de�nes the variance �2w = 1=� of the prior for the components
wi of w.

Much interest has centred on the question of how the constants � and � | or the
ratio �=� | should be set, and Gull (1989) has derived an appealing Bayesian prescription
for these constants (see also MacKay (1992a) for a review). This `evidence framework'
integrates over the parameters w to give the `evidence' P (Dj�; �;H). The evidence is then
maximized over the regularization constant � and noise level �. A Gaussian approximation
is then made with the hyperparameters �xed to their optimized values. This relates closely
to the `generalized maximum likelihood' method in statistics (Wahba 1975). This method
can be applied to non-linear models by making appropriate local linearizations, and has been
used successfully in image reconstruction (Gull 1989; Weir 1991) and in neural networks
(MacKay 1992b; Thodberg 1993; MacKay 1994).

Recently an alternative procedure for computing inferences under the same Bayesian
model has been suggested by Buntine and Weigend (1991), Strauss et al. (1993) and Wolpert
(1993). In this approach, one integrates over the regularization constant � �rst to obtain
the `true prior', and over the noise level � to obtain the `true likelihood'; then maximizes
the `true posterior' over the parameters w. A Gaussian approximation is then made around
this true probability density maximum. I will call this the `MAP' method (for maximum a
posteriori); this use of the term `MAP' may not coincide precisely with its general usage.

The purpose of this paper is to examine the choice between these two Gaussian approx-
imations, both of which might be used to approximate predictive inference. It is assumed
that it is predictive distributions that are of interest, rather than point estimates. Estima-
tion will only appear as a computational stepping stone in the process of approximating a
predictive distribution. I concentrate on the simplest case of the linear model with Gaussian
noise, but the insights obtained are expected to apply to more general non-linear models and
to models with multiple hyperparameters. When a non-linear model has multiple local op-
tima, one can approximate the posterior by a sum of Gaussians, one �tted at each optimum.
There is then an analogous choice between either (a) optimizing � separately at each local
optimum in w, and using a Gaussian approximation conditioned on � (MacKay 1992b);
or (b) �tting Gaussians to local maxima of the true posterior with the hyperparameter �
integrated out.



HYPERPARAMETERS: OPTIMIZE, OR INTEGRATE OUT?

2 The Alternative Methods

Given the Bayesian model de�ned in (1), we might be interested in the following inferences.
Problem A: Infer the parameters, i.e., obtain a compact representation of P (wjD;H) and
the marginal distributions P (wijD;H).
Problem B: Infer the relative model plausibility, which requires the `evidence' P (DjH).
Problem C: Make predictions, i.e. obtain some representation of P (D2jD;H), where D2,
in the simplest case, is a single new datum.

Let us assume for simplicity that the noise level � is known precisely, so that only the
regularization constant � is respectively optimized or integrated over. Comments about �
can apply equally well to �.

The Ideal Approach

Ideally, if we were able to do all the necessary integrals, we would just generate the probabil-
ity distributions P (wjD;H), P (DjH), and P (D2jD;H) by direct integration over everything
that we are not concerned with. The pioneering work of Box and Tiao (1973) used this
approach to develop Bayesian robust statistics.

For real problems of interest, however, such exact integration methods are seldom avail-
able. A partial solution can still be obtained by using Monte Carlo methods to simulate
the full probability distribution (see Neal (1993b) for an excellent review). Thus one can
obtain (problem A) a set of samples fwg which represent the posterior P (wjD;H), and
(problem C) a set of samples fD2g which represent the predictive distribution P (D2jD;H).
Unfortunately, the evaluation of the evidence P (DjH) with Monte Carlo methods (problem
B) is a di�cult undertaking. Recent developments (Neal 1993a; Skilling 1993) now make it
possible to use gradient and curvature information so as to sample high dimensional spaces
more e�ectively, even for highly non-Gaussian distributions. Let us come down from these
clouds however, and turn attention to the two deterministic approximations under study.

The Evidence Framework

The evidence framework divides our inferences into distinct `levels of inference':
Level 1: Infer the parameters w for a given value of �:

P (wjD;�;H) = P (Djw; �;H)P (wj�;H)
P (Dj�;H) : (4)

Level 2: Infer �:

P (�jD;H) = P (Dj�;H)P (�jH)
P (DjH) : (5)

Level 3: Compare models:

P (HjD) / P (DjH)P (H): (6)

There is a pattern in these three applications of Bayes' rule: at each of higher levels 2 and
3, the data-dependent factor (e.g. in level 2, P (Dj�;H)) is the normalizing constant (the
`evidence') from the preceding level of inference.

The inference problems listed at the beginning of this section are solved approximately
using the following procedure.
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� The level 1 inference is approximated by making a quadratic expansion, around a maxi-
mum of P (wjD;�;H), of logP (Djw; �;H)P (wj�;H); this expansion de�nes a Gaussian
approximation to the posterior. The evidence P (Dj�;H) is estimated by evaluating the
appropriate determinant. For linear models the Gaussian approximation is exact.

� By maximizing the evidence P (Dj�;H) at level 2, we �nd the most probable value of the
regularization constant, �MP, and error bars on it, �log�jD. (Because � is a positive scale
variable, it is natural to represent its uncertainty on a log scale.)

� The value of �MP is substituted at level 1. This de�nes a probability distribu-
tion P (wjD;�MP;H) which is intended as a `good approximation' to the posterior
P (wjD;H). The solution o�ered for problem A is a Gaussian distribution around the
maximum of this distribution, w

MPj�MP , with covariance matrix � de�ned by ��1 =
�rr logP (wjD;�MP;H). Marginals for the components of w are easily obtained from
this distribution.

� The evidence for model H (problem B) is estimated using:

P (DjH) ' P (Dj�MP; H)P (log�MPjH)
p
2��log�jD: (7)

� Problem C: The predictive distribution P (D2jD;H) is approximated by using the poste-
rior distribution with �=�MP:

P (D2jD;�MP;H) =
Z
dkw P (D2jw;H)P (wjD;�MP;H): (8)

For a locally linear model with Gaussian noise, both the distributions inside the integral
are Gaussian, and this integral is straightforward to perform.

As reviewed in MacKay (1992a), the most probable value of � satis�es a simple and intuitive
implicit equation,

1

�MP
=

Pk
1 w

2
i



(9)

where wi are the components of the vector wMPj�MP and 
 is the number of well-determined
parameters, which can be expressed in terms of the eigenvalues �a of the matrix �rrED(w):


 = k � �Trace� =
kX
1

�a
�a + �

: (10)

This quantity is a number between 0 and k. Recalling that � can be interpreted as the
variance �2w of the distribution from which the parameters wi come, we see that equation
(9) corresponds to an intuitive prescription for a variance estimator. The idea is that we are
estimating the variance of the distribution of wi from only 
 well-determined parameters,
the other (k�
) having been set roughly to zero by the regularizer and therefore not
contributing to the sum in the numerator.

In principle, there may be multiple optima in �, but this is not the typical case for
a model well matched to the data. Under general conditions, the error bars on log � are
�log�jD ' p2=
 (MacKay 1992a) (see section 5). Thus log � is well-determined by the data
if 
 � 1.

The central computation can be summarised thus:
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Evidence approximation: �nd the self-consistent solution fw
MPj�MP ; �MPg such that

w
MPj�MP maximizes P (wjD;�MP;H) and �MP satis�es equation (9).

Justi�cation for the Evidence ApproximationThe central approximation in this scheme can
be stated as follows: when we integrate out a parameter, the e�ect for most purposes is
to estimate the parameter from the data, and then constrain the parameter to that value
(Box and Tiao 1973; Bretthorst 1988). When we predict an observable D2, the predictive
distribution is dominated by the value � = �MP. In symbols,

P (D2jD;H) =
Z
P (D2jD;�;H)P (log�jD;H) d log� ' P (D2jD;�MP;H):

This approximation is accurate as long as P (D2jD;�;H) is insensitive to changes in log�
on a scale of �log�jD, so that the distribution P (log�jD;H) is e�ectively a delta function.
This is a well-established idea.

A similar equivalence of two probability distributions arises in statistical thermodynam-
ics. The `canonical ensemble' over all states r of a system,

P (r) = exp(��Er)=Z; (11)

describes equilibrium with a heat bath at temperature 1=�. Although the energy of the
system is not �xed, the probability distribution of the energy is usually sharply peaked
about the mean energy �E. The corresponding `microcanonical ensemble' describes the
system when it is isolated and has �xed energy:

P (r) =

(
1=
 Er 2 [ �E � �E=2]
0 otherwise

: (12)

Under these two distributions, a particular microstate r may have numerical probabili-
ties that are completely di�erent. For example, the most probable microstate under the
canonical ensemble is always the ground state, for any temperature 1=� � 0; whereas its
probability under the microcanonical ensemble is zero. But it is well known (Reif 1965)
that for most macroscopic purposes, if the system has a large number of degrees of free-
dom, the two distributions are indistinguishable, because most of the probability mass of
the canonical ensemble is concentrated in the states in a small interval around �E.

The same reasoning justi�es the evidence approximation for ill-posed problems, with
particular values of w corresponding to microstates. If the number of well-determined
parameters is large, then �, like the energy above, is well-determined. This does not imply
that the two densities P (wjD;H) and P (wjD;�MP;H) are numerically close in value, but we
have no interest in the probability of the high dimensional vectorw. For practical purposes,
we only care about distributions of low-dimensional quantities (e.g., an individual parameter
wi or a new datum); what matters, and what is asserted here, is that when we project
the distributions down in order to predict low-dimensional quantities, the approximating
distribution P (wjD;�MP;H) puts most of its probability mass in the right place. A more
precise discussion of this approximation is given in section 5.
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The MAP Method

The alternative procedure is �rst to integrate out � to obtain the true prior:

P (wjH) =
Z
d� P (wj�;H)P (�jH): (13)

We can then write down the true posterior directly (except for its normalizing constant):

P (wjD;H) / P (Djw;H)P (wjH): (14)

This posterior can be maximized to �nd the MAP parameters, wMP. How does this relate
to the desired inferences listed at the head of this section? Not all authors describe how
they intend the true posterior to be used in practical problems (e.g., Wolpert (1993)); here
I describe a method based on the suggestions of Buntine and Weigend (1991).

Problem A: The posterior distribution P (wjD;H) is approximated by a Gaussian dis-
tribution, �tted around the most probable parameters, wMP; to �nd the Hessian of the
posterior, one needs the Hessian of the prior, derived below. A simple evaluation of the
factors on the right hand side of (14) is not a satisfactory solution of problem A, since
(a) the normalizing constant is missing; (b) even if the r.h.s. of (14) were normalized, the
ability to evaluate the local value of this density would be of little use as a summary of
the distribution in the high-dimensional space; how, for example, is one to obtain marginal
distributions over wi from (14)?

Problem B: An estimate of the evidence is obtained from the determinant of the covari-
ance matrix of this Gaussian distribution.

Problem C: The parameters wMP with error bars are used to generate predictions as in
(8).

A simple example will illustrate that this approach actually gives results qualitatively
very similar to the evidence framework. If we apply the improper prior PImp(log�) = const
and evaluate the true prior, we obtain:1

PImp(wjH) =
Z 1

�=0

e��
Pk

i=1
w2i =2

ZW (�)
d log� / 1

(
P

i w
2
i )

k=2
: (15)

The derivative of the true log prior with respect to w is �(k=Pi w
2
i )w. This `weight decay'

term can be directly viewed in terms of an `e�ective �',

1

�e�(w)
=

P
i w

2
i

k
: (16)

Any maximum of the true posterior P (wjD;H) is therefore also a maximum of the condi-
tional posterior P (wjD;�;H), with � set to �e� . The similarity of equation (16) to equation
(9) of the evidence framework is clear. We can therefore describe the MAP method thus:

MAP method (improper prior): �nd the self-consistent solution fwMP; �e�g such
that wMP maximizes P (wjD;�e�;H) and �e� satis�es equation (16).

This procedure is suggested in (MacKay 1992b) as a `quick and dirty' approximation to the
evidence framework.

1If a uniform prior over � from 0 to 1 is used (instead of a prior over log �) then the resulting exponent
changes from k=2 to (k=2 + 1).
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The Effective � and the Curvature of a General Prior

We have just established that, when the improper prior (15) is used, the MAP solution
lies on the `alpha trajectory' | the graph of w

MPj� | for a particular value of � = �e� .
This result still holds when a proper prior over � is used to de�ne the true prior (13). The
e�ective �(w), found by di�erentiation of logP (wjH), is:

�e�(w) =

Z
d� � P (�jw;H): (17)

In general there may be multiple local probability maxima, all of which lie on the alpha
trajectory. In summary, optima wMP found by the MAP method can be described thus:

MAP method (proper prior): �nd the self-consistent solution fwMP; �e�g such that
wMP maximizes P (wjD;�e�;H) and �e� satis�es equation (17).

The curvature of the true prior is needed for evaluation of the error bars on w in the
MAP method. By direct di�erentiation of the true prior (13), we �nd:

� rr logP (wjH) = �e�I� �2�(w)wwT; (18)

where �e�(w) is de�ned in (16), and the e�ective variance of � is:

�2�(w) = �2(w)� �e�(w)2 =

Z
d� �2 P (�jw;H)�

�Z
d� � P (�jw;H)

�2
: (19)

This is an intuitive result: if � were �xed to �e� , then the curvature would just be the
�rst term in (18), �e�I. The fact that � is uncertain depletes the curvature in the radial
direction ŵ = w=jwj.

3 Pros and Cons

The algorithms for �nding the evidence framework's w
MPj�MP and the MAP method's wMP

have been seen to be very similar. Is there any real distinction to be drawn between these
two aproaches?

The MAP method has the advantage that it involves no approximations until after we
have found the MAP parameters wMP; in contrast, the evidence framework approximates
an integral over �.

In the MAP method the integrals over � and � need only be performed once and can
then be used repeatedly for di�erent data sets; in the evidence framework, each new data
set has to receive individual attention, with a sequence of (Gaussian) integrations being
performed each time � and � are optimized.

So why not always integrate out hyperparameters whenever possible? Let us answer
this question by magnifying the systematic di�erences between the two approaches. With
su�cient magni�cation it will become evident to the intuition that the approximation of
the evidence framework is superior to the MAP approximation. The distinction between
wMP and w

MPj�MP is similar to that between the two estimators of standard deviation on
a calculator, �N and �N�1, the former being the (biased) maximum likelihood estimator,
whereas the latter is unbiased. The true posterior distribution has a skew peak, so that the
MAP parameters are not representative of the whole posterior distribution. This is best
illustrated by an example.



D.J.C. MACKAY

The Widget Example

A collection of widgets i = 1::k have a property called `wibble', wi, which we measure,
widget by widget, in noisy experiments with a known noise level �� =1:0. Our model for
these quantities is that they come from a Gaussian prior P (wij�;H), where �=1=�2w is not
known. Our prior for this variance is 
at over log �w from �w = 0:1 to �w = 10.

Scenario 1. Suppose four widgets have been measured and give the following data:
fd1; d2; d3; d4g = f3.2, -3.2, 2.8, -2.8g. The task is (problem A) to infer the wibbles of
these four widgets, i.e. to produce a representative w with error bars. On the back of an
envelope, or in a computer algebra system, we �nd the following answers using equations
(9) and (16/17):

Evidence framework: �MP = 0:124,w
MPj�MP = f2:8;�2:8; 2:5;�2:5g; each with error

bars �0:9.
MAP method: �e� = 0:145, wMP = f2:8;�2:8; 2:4;�2:4g; each with error bars �0:9.

These answers are insensitive to the details of the prior over �w.

So far so good: w
MPj�MP is slightly less regularized than wMP, but there is not much

disagreement when all the parameters are well-determined.

Scenario 2. Suppose in addition to the four measurements above we are now informed
that there are an additional four unmeasured widgets in a box next door. Thus we now have
both well-determined and ill-determined parameters, as in an ill-posed problem. Intuitively,
we would like our inferences about the well-measured widgets to be negligibly a�ected by
this vacuous information about the unmeasured widgets, just as the true Bayesian predictive
distributions are una�ected. But clearly with k = 8, the di�erence between k and 
 in
equations (9) and (16) is going to become signi�cant. The value of �e� will be substantially
greater than that of �MP.

In the evidence framework the value of 
 is exactly the same, since each of the ill-
determined parameters has � = 0 and adds nothing to the sum in (10). So the value of �MP
and the predictive distributions are unchanged.

In contrast, the MAP parameter vector wMP is squashed close to zero. The precise
value of wMP is sensitive to the prior over �. Solving equation (17) in a computer algebra
system, we �nd: �e� = 79:2, wMP = f0:040;�0:040; 0:035;�0:035; 0; 0; 0; 0g, with marginal
error bars on all eight parameters �wjD = 0:11.

Thus the MAP Gaussian approximation is terribly biased towards zero. The �nal dis-
aster of this approach is that the error bars on the parameters are also correspondingly
small.

This is not a contrived example. It contains the basic feature of ill-posed problems: that
there are both well-determined and poorly-determined parameters. To aid comprehension,
the two sets of parameters are separated. This example can be transformed into a typical
ill-posed problem simply by rotating the basis to mix the parameters together. In neural
networks, a pair of scenarios identical to those discussed above can arise if there are a large
number of poorly determined parameters which have been set to zero by the regularizer,
and we consider `pruning' these parameters. In scenario 1, the network is pruned, removing
the ill-determined parameters. In scenario 2, the parameters are retained, and assume their
most probable value, zero. In each case, what is the optimal setting of the weight decay
rate � (assuming the traditional regularizer wTw=2)? We would expect the answer to be
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unchanged. Yet the MAP method e�ectively sets � to a much larger value in the second
scenario.

The MAP method may locate the true posterior maximum, but it fails to capture most
of the true probability mass.

4 Inference in Many Dimensions

In many dimensions, therefore, new intuitions are needed.

Nearly all of the volume of a k-dimensional hypersphere is in a thin shell near its surface.
For example, in 1000 dimensions, 90% of a hypersphere of radius 1.0 is within a depth of
0.0023 of its surface. A central core of the hypersphere, with radius 0.5, contains less than
1=10300 of the volume.

This has an important e�ect on high-dimensional probability distributions. Consider a
Gaussian distribution P (w) = (1=

p
2��w)

k exp(�Pk
1 w

2
i =2�

2
w). Nearly all of the probabil-

ity mass of a Gaussian is in a thin shell of radius r =
p
k�w and of thickness / r=

p
k. For

example, in 1000 dimensions, 90% of the mass of a Gaussian with �w = 1 is in a shell of
radius 31.6 and thickness 2.8. However, the probability density at the origin is ek=2 ' 10217

times bigger than the density at this shell where most of the probability mass is.

Consider two Gaussian densities in 1000 dimensions which di�er in �w by 1%, and which
contain equal total probability mass. In each case 90% of the mass is located in a shell
which di�ers in radius by only 1% between the two distributions. The maximum probability
density, however, is greater at the centre of the Gaussian with smaller �w, by a factor of
� exp(0:01k) ' 20,000.

In summary, probability density maxima often have very little associated probability
mass, even though the value of the probability density there may be immense, because they
have so little associated volume. If a distribution is composed of a mixture of Gaussians
with di�erent �w , the probability density maxima are strongly dominated by smaller values
of �w. This is why the MAP method �nds a silly solution in the widget example.

Thus the locations of probability density maxima in many dimensions are generally
misleading and irrelevant. Probability densities should only be maximized if there is good
reason to believe that the location of the maximum conveys useful information about the
whole distribution, e.g., if the distribution is approximately Gaussian.

Condition Satisfied by Typical Samples

The conditions (9) and (16), satis�ed by the optima (�MP;wMPj�MP) and (�e�;wMP) respec-
tively, are complemented by an additional result concerning typical samples from posterior
distributions conditioned on �. The maximum w

MPj� of a Gaussian distribution is not
typical of the posterior: the maximum has an atypically small value of wTw, because,
as discussed above, nearly all of the mass of a Gaussian is in a shell at some distance
surrounding the maximum.

Consider samples w from the Gaussian posterior distribution with � �xed to �MP,
P (wjD;�MP;H). The average value of wTw =

P
i w

2
i for these samples satis�es:

�MP =
k

hPi w
2
i ijD;�MP

: (20)
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Proof: The deviation �w = w�w
MPj�MP is Gaussian distributed with �w�wT = �. So

�MPh
P

i w
2
i ijD;�MP = �MP(wMPj�MP+�w)T(w

MPj�MP+�w) = �MPw
2
MPj�MP+�MPTrace� =

k, using equations (9) and (10).
Thus a typical sample from the evidence approximation prefers just the same value of

� as does the evidence.

5 Conditions for the Evidence Approximation

We have observed that the MAP method can lead to absurdly biased answers if there
are many ill-determined parameters. In contrast, I now discuss conditions under which the
evidence approximation works. I discuss the case of linear models with Gaussian probability
distributions. This includes the case of image reconstruction problems that have separable
Gaussian distributions in the Fourier domain.

What do we care about when we approximate a complex probability distribution by
a simple one? My de�nition of a good approximation is a practical one, concerned with
(A) estimating parameters; (B) estimating the evidence accurately; and (C) getting the
predictive mass in the right place. Estimation of individual parameters (A) is a special case
of prediction (C), so in the following I will address only (C) and (B).

For convenience let us work in the eigenvector basis where the prior (given �) and the
likelihood are both diagonal Gaussian functions. The curvature of the log likelihood is
represented by eigenvalues f�ag. For a typical ill-posed problem these eigenvalues cover
several orders of magnitude in value. Without loss of generality let us assume k data
measurements fdag, such that da =

p
�awa+�, where the noise standard deviation is �� = 1.

We de�ne the probability distribution of everything by the product of the distributions:

P (log�jH) = 1

log(�max=�min)
; P (wj�;H) =

�
�

2�

�k=2
exp

 
�1

2
�

kX
1

w2
a

!
; and

P (Djw;H) = (2�)�k=2 exp

(
�1

2

kX
1

�p
�awa � da

�2)
:

In the case of a deconvolution problem the eigenvectors are the Fourier set and the point
spread function in Fourier space is given by

p
�a.

The discussion proceeds in two steps. First, the posterior distribution over � must have
a single sharp peak at �MP. No general guarantee can be given for this to be the case, but
various pointers are given. Second, given a sharp Gaussian posterior over log�, it is proved
that the evidence approximation introduces negligible error.

Concentration of P (log�jD;H) in a Single Maximum

Condition 1 In the posterior distribution over log�, all the probability mass should be
contained in a single sharp maximum.

For this to hold, several sub-conditions are needed. If there is any doubt whether these
conditions are su�cient, it is straightforward to iterate all the way down the � trajectory,
explicitly evaluating P (log �jD;H).

The prior over � must be such that the posterior has negligible mass at log� ! �1.
In cases where the signal to noise ratio of the data is very low, there may be a signi�cant
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tail in the evidence for large �. There may even be no maximum in the evidence, in which
case the evidence framework gives singular behaviour, with � going to in�nity. But often
the tails of the evidence are small, and contain negligible mass if our prior over log� has
cuto�s at some �min and �max (surrounding �MP). For each data analysis problem, one may
evaluate the critical �max above which the posterior is measurably a�ected by the large �
tail of the evidence (Gull 1989). Often, as Gull points out, this critical value of �max has
bizarre magnitude.

Even if a 
at prior between appropriate �min and �max is used, it is possible in principle
for the posterior P (log �jD;H) to be multi-modal. However this is not expected when the
model space is well matched to the data. Examples of multi-modality only arise if the
data are grossly at variance with the likelihood and the prior. For example, if some large
eigenvalue measurements give small da(l), and some measurements with small eigenvalue
give large da(s), then the posterior over � can have two peaks, one at large � which nicely
explains da(l), but must attribute da(s) to unusually large amounts of noise, and one at small
� which nicely explains da(s), but must attribute da(l) to wa(l) being unexpectedly close to
zero. I now suggest a way of formalizing this concept into a quantitative test.

If we accept the model, then we believe that there is a true value of � = �T, and that
given �T, the data measurements da are the sum of two independent Gaussian variablesp
�awa and �a, so that P (daj�T;H) = Normal(0; �2aj�T ), where �2aj�T = �a

�T
+ 1. The

expectation of d2a is hd2ai = �a
�T

+ 1. We therefore expect that there is an �T such that the

quantities fd2a=�2aj�T g are independently distributed like �2 with one degree of freedom.

De�nition 1 A data set fdag is grossly at variance with the model for a given value of �,
if any of the quantities ja = d2a=(

�a
� + 1) is not in the interval [e�� ; 1 + � ]; where � is the

signi�cance level of this test.

It is conjectured that if we �nd a value of � = �MP which locally maximizes the evidence,
and with which the data are not grossly at variance, then there are no other maxima over
�.

Conversely, if the data are grossly at variance with a local maximum �MP, then there
may be multiple maxima in �, and the evidence approximation may be inaccurate. In these
circumstances one might also suspect that the entire model is inadequate in some way.

Assuming that P (log �jD;H) has a single maximum over log�, how sharp is it expected
to be? I now establish conditions under which the P (log �jD;H) is locally Gaussian and
sharp.

De�nition 2 The symbol ne is de�ned by:

ne �
X
a

4�a�MP
(�a + �MP)2

: (21)

This is a measure of the number of eigenvalues �a within approximately e-fold of �MP.

In the following, I will assume that ne � 
, but this condition is not essential for the
evidence approximation to be valid. If ne � 
, and the data are not grossly at variance
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with �MP, then we �nd on Taylor-expanding logP (�jD;H) about �=�MP, that the second
derivative is large, and that the third derivative is relatively small:

@ log P (Dj�;H)
@ log�

����
�MP

=
1

2

�

 � �w2

MPj�MP
�

= 0

@2 log P (Dj�;H)
@(log�)2

�����
�MP

' ��w2
MPj�MP = �


2

@3 log P (Dj�;H)
@(log�)3

�����
�MP

' ��w2
MPj�MP = �


2
:

The �rst derivative is exact, assuming that the eigenvalues �a are independent of �, which
is true in the case of a Gaussian prior on w (Bryan 1990). The second and third derivatives
are approximate, with terms proportional to ne being omitted. The third derivative is
relatively small (even though it is equal to the second derivative), since in the expansion
P (l) = exp(� c

2 l
2 + d

6 l
3+ : : :), the second term gives a negligible perturbation for l � c�1=2

if d � c3=2. In this case, since d=c=
�1, the perturbation introduced by the higher
order terms is O(
�1=2). Thus the posterior distribution over log� has a maximum that is
both locally Gaussian and sharp if 
 � 1 and ne � 
. The expression for the evidence (7)
follows.

Error of Low-dimensional Predictive Distributions

I will now assume that the posterior distribution P (log �jD;H) is Gaussian with standard
deviation �log�jD = 1=

p
�
, with �
 � 1, and � = O(1).

Theorem 1 Consider a scalar which depends linearly on w, y = g � w. The evidence
approximation's predictive distribution for y is close to the exact predictive distribution, for
nearly all projections g. In the case g = w, the error (measured by a cross-entropy) is of
order

p
ne=�
. For all g perpendicular to this direction, the error is of order

p
1=�
.

A similar result is expected still to hold when the dimensionality of y is greater than
one, provided that it is much less than

p

.

Proof: At `level 1', we infer w for a �xed value of �:

P (wjD;�;H) / exp

8<
:�1

2

X
a

(�a + �)

 
wa �

p
�ada

�a + �

!2
9=
; : (22)

The most probable w given this value of � is: w
MPj�
a =

p
�ada=(�a + �): The posterior

distribution is Gaussian about this most probable w. We introduce a typical w, that is, a
sample from the posterior for a particular value of �:

wTYPj�
a =

p
�ada

�a + �
+

rap
�a + �

; (23)

where ra is a sample from Normal(0,1).
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Now, assuming that log� has a Gaussian posterior distribution with standard deviation
1=
p
�
, a typical �, i.e., a sample from this posterior, is given to leading order by

�TYP = �MP

 
1 +

sp
�


!
; (24)

where s is a sample from Normal(0,1). We now substitute this �TYP into (23) and obtain
a typical w from the true posterior distribution, which depends on k+1 random variables
frag; s. We expand each component of this vector wTYP in powers of 1=
:

wTYP

a =

p
�ada

�a + �MP

 
1� sp

�


�MP
�a + �MP

+
s2

�


�2
MP

(�a + �MP)2
+ : : :

!
+

rap
�a + �MP

 
1� 1

2

sp
�


�MP
�a + �MP

+
3

8

s2

�


�2
MP

(�a + �MP)2
: : :

!
(25)

We now examine the mean and variance of yTYP =
P

a gaw
TYP

a . Setting hr2ai = hs2i = 1
and dropping terms of higher order than 1=
, we �nd that whereas the evidence approxi-
mation gives a Gaussian predictive distribution for y which has mean and variance:

�0 =
X
a

gaw
MPj�MP
a ; �20 =

X
a

g2a
�a + �MP

;

the true predictive distribution is, to order 1=
, Gaussian with mean and variance:

�1 = �0 +
1

�


X
a

gaw
MPj�MP
a

�2
MP

(�a + �MP)2
;

�21 = �20 +
1

�


8<
:
 X

a

gaw
MPj�MP
a

�MP
(�a + �MP)

!2

+
X
a

g2a
�a + �MP

�2
MP

(�a + �MP)2

9=
; :

How wrong can the evidence approximation be? Since both distributions are Gaussian, it is
simple to evaluate various distances between them. The cross entropy between p0 =Normal(�0; �

2
0)

and p1 =Normal(�1; �
2
1) is

H(p0; p1) �
Z
p1 log

p1
p0

=
1

2

(�1 � �0)
2

�20
+

1

4

 
�21 � �20

�20

!2

+O

8<
:
 
�21 � �20

�20

!3
9=
; :

We consider the two dominant terms separately.

(�1 � �0)
2

�20
=

1

�2
2

 X
a

haw
MPj�MP
a

�2
MP

(�a + �MP)3=2

!2,X
h2a; (26)

where ha = ga=
p
�a + �MP. The worst case is given by the direction g such that ha =

w
MPj�MP
a

�2
MP

(�a+�MP)3=2
. This worst case gives an upper bound to the contribution to the cross

entropy:

(�1 � �0)
2

�20
� 1

�2
2

X
a

w
MPj�MP
a

2
�4
MP

(�a + �MP)3
(27)

<
�MP
�2
2

X
wMPj�MP
a

2
=

1

�2

� 1 (28)
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So the change in � never has a signi�cant e�ect.
The variance term can be split into two terms:

 
�21��20
�20

!2

=
1

�


8<
:
 X

a

haw
MPj�MP
a �MPp
�a + �MP

!2

+
X
a

h2a
�2
MP

(�a + �MP)2

9=
;
,X

a

h2a;

where, as above, ha = ga=
p
�a + �MP.

For the �rst term, the worst case is the direction ha = w
MPj�MP
a

�MPp
�a+�MP

, i.e., the radial

direction g = �MPwMPj�MP . Substituting in this direction, we �nd:

First term � 1

�


X
a

wMPj�MP
a

2 �2
MP

�a + �MP
(29)

<
�MP
�


X
a

wMPj�MP
a

2
=

1

�
= O(1) (30)

We can improve this bound by substituting for w
MPj�MP
a in terms of da and making use of

the de�nition of ne. Only ne of the terms in the sum in equation (29) are signi�cant. Thus

First term <�
ne
�


: (31)

So this term can give a signi�cant e�ect, but only in one direction; for any direction or-
thogonal (in h) to this radial direction, this term is zero.

Finally, we examine the second term:

1

�


X
a

h2a
�2
MP

(�a + �MP)2

,X
a

h2a <
1

�

� 1: (32)

So this term never has a signi�cant e�ect.

ConclusionThe evidence approximation a�ects the mean and variance of properties y of w,
but only to within O(
�1=2) of the property's standard deviation; this error is insigni�cant,
for large 
. The sole exception is the direction g = w

MPj�MP , along which the variance is
erroneously small, with a cross-entropy error of order O(ne=
).

A Correction Term

This result motivates a straightforward term which could be added to the inverse Hessian
of the evidence approximation, to correct the predictive variance in this direction. The
predictive variance for a general y = gTw could be estimated by

�2y = gT
�
�+ �2log�jDw

0
MPj�w

0
MPj�

T

�
g; (33)

where w0
MPj� � @w

MPj�=@(log�) = ��w
MPj�, and �2log�jD = 2


 . With this correction,

the predictive distribution for any direction would be in error only by order O(1=
). If
the noise variance �2� = ��1 is also uncertain, then the factor �2log�jD is incremented by

�2log�jD = 2
N�
 .



HYPERPARAMETERS: OPTIMIZE, OR INTEGRATE OUT?

W_MP

True posterior
MAP approximation

Evidence approximation

Figure 1: Approximating complicated distributions with a Gaussian
This is a schematic illustration of the properties of a multi-dimensional distribution. A typical

posterior distribution for an ill-posed problem has a skew peak. A Gaussian �tted at the MAP

parameters is a bad approximation to the distribution: it is in the wrong place, and its error bars

are far too small. Additional features of the true posterior distribution not illustrated here are that

it typically has spikes of high probability density at the origin w=0 and at the maximum likelihood

parameters w = wML. The evidence approximation gives a Gaussian distribution which captures

most of the probability mass of the true posterior.

6 Discussion

The MAP method, though exact, is capable of giving MAP parameters which are un-
representative of the true posterior. In high dimensional spaces, maxima are misleading.
MAP estimates play no fundamental role in Bayesian inference, and they can change arbi-
trarily with arbitrary re-parameterizations. The problem with MAP estimates is that they
maximize the probability density, without taking account of the complementary volume
information. Figure 1 attempts, in one dimension, to convey this di�erence between the
two Gaussian approximations.

When there are many ill-determined parameters, the MAP method's integration over �
yields a wMP which is over-regularized.2

There are two general take-home messages.

(1) When one has a choice of which variables to integrate over and which to maximize
over, one should integrate over as many variables as possible, in order to capture the
relevant volume information. There are typically far fewer regularization constants and
other hyperparameters than there are `level 1' parameters.

(2) If practical Bayesian methods involve approximations such as �tting a Gaussian to a
posterior distribution, then one should think twice before integrating out hyperparameters
(Gull 1988). The probability density which results from such an integration typically has
a skew peak; a Gaussian �tted at the peak may not approximate the distribution well. In

2Integration over the noise level 1=� to give the true likelihood leads to a bias in the other direction.
These two biases may cancel: the evidence framework's wMPj�MP;�MP coincides with wMP if the number of
well-determined parameters happens to obey the condition 
=k = N=(N + k).
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contrast, optimization of the hyperparameters can give a Gaussian approximation which,
for predictive purposes, puts most of the probability mass in the right place.

The evidence approximation, which sets hyperparameters so as to maximize the evi-
dence, is not intended to produce an accurate numerical approximation to the true poste-
rior distribution over w; and it does not. But what matters is whether low-dimensional
properties of w (i.e., predictions) are seriously mis-calculated as a result of the evidence
approximation.

The main conditions for the evidence approximation are that the data should not be
grossly at variance with the likelihood and the prior, and that the number of well-determined
parameters 
 should be large. How large depends on the problem, but often a value as small
as 
 ' 3 is su�cient, because this means that � is determined to within a factor of e (recall
�log�jD ' p

2=
); predictive distributions are often insensitive to changes of � of this
magnitude. Thus the approximation is usually good if we have enough data to determine
a few parameters.

If satisfactory conditions do not hold for the evidence approximation (e.g., if 
 is too
small), then it should be emphasized that this would not then motivate integrating out �
�rst. The MAP approximation is systematically inferior to the evidence approximation.
It would probably be most convenient numerically to retain � as an explicit variable, and
integrate it out last (Bryan 1990).

A �nal point in favour of the evidence framework is that it can be naturally extended (at
least approximately) to more elaborate priors such as mixture models; it would be di�cult
to integrate over the mixture hyperparameters in order to evaluate the `true prior' in these
cases.
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