Contents

Manual Status 16

1 An Overview Of The Bayesian Analysis Software 19
 1.1 The Server Software ... 19
 1.2 The Client Interface ... 22
 1.2.1 The Global Pull Down Menus 24
 1.2.2 The Package Interface 24
 1.2.3 The Viewers .. 27

2 Installing the Software 29

3 the Client Interface 33
 3.1 The Global Pull Down Menus 35
 3.1.1 the Files menu .. 35
 3.1.2 the Packages menu 40
 3.1.3 the WorkDir menu 45
 3.1.4 the Settings menu 46
 3.1.5 the Utilities menu 50
 3.1.6 the Help menu .. 50
 3.2 The Submit Job To Server area 51
 3.3 The Server area .. 52
 3.4 Interface Viewers ... 52
 3.4.1 the Ascii Data Viewer 53
 3.4.2 the fid Data Viewer 53
 3.4.3 Image Viewer .. 59
 3.4.3.1 the Image List area 59
 3.4.3.2 the Set Image area 62
 3.4.3.3 the Image Viewing area 62
 3.4.3.4 the Grayscale area on the bottom 63
 3.4.3.5 the Pixel Info area 63
 3.4.3.6 the Image Statistics area 64
 3.4.4 Prior Viewer ... 65
 3.4.5 Fid Model Viewer .. 68
 3.4.5.1 The fid Model Format 70
26 Phasing An Image
 26.1 The Bayesian Calculation .. 396
 26.2 Using The Package .. 402

27 Phasing An Image Using Non-Linear Phases 405
 27.1 The Model Equation .. 405
 27.2 The Bayesian Calculations .. 407
 27.3 The Interfaces To The Nonlinear Phasing Routine 409

28 Analyze Image Pixel .. 411
 28.1 Modification History ... 413

29 The Image Model Selection Package .. 415
 29.1 The Bayesian Calculations .. 417
 29.2 Outputs From The Image Model Selection Package 418

A Ascii Data File Formats ... 435
 A.1 Ascii Input Data Files .. 435
 A.2 Ascii Image File Formats ... 436
 A.3 The Abscissa File Format .. 437

B Markov chain Monte Carlo With Simulated Annealing 439
 B.1 Metropolis-Hastings Algorithm ... 440
 B.2 Multiple Simulations .. 441
 B.3 Simulated Annealing .. 442
 B.4 The Annealing Schedule ... 442
 B.5 Killing Simulations ... 443
 B.6 the Proposal ... 444

C Thermodynamic Integration ... 445

D McMC Values Report ... 449

E Writing Fortran/C Models .. 455
 E.1 Model Subroutines, No Marginalization 455
 E.2 The Parameter File .. 458
 E.3 The Subroutine Interface ... 460
 E.4 The Subroutine Declarations ... 462
 E.5 The Subroutine Body ... 463
 E.6 Model Subroutines With Marginalization 464

F the Bayes Directory Organization ... 469

G 4dfp Overview ... 471
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>H Outlier Detection</td>
<td>475</td>
</tr>
<tr>
<td>Bibliography</td>
<td>479</td>
</tr>
</tbody>
</table>
List of Figures

1.1 The Start Up Window ... 23
1.2 Example Package Exponential Interface 25

2.1 Installation Kit For The Bayesian Analysis Software 31

3.1 The Start Up Window .. 34
3.2 The Files Menu ... 35
3.3 The Files/Load Image Submenu 37
3.4 The Packages Menu .. 41
3.5 The Working Directory Menu ... 46
3.6 The Working Directory Information Popup 47
3.7 The Settings Pull Down Menu ... 47
3.8 The McMC Parameters Popup .. 48
3.9 The Edit Server Popup .. 49
3.10 The Submit Job Widgets .. 51
3.11 The Server Widgets Group .. 52
3.12 The Ascii Data Viewer ... 54
3.13 The Fid Data Viewer .. 55
3.14 Fid Data Display Type ... 56
3.15 Fid Data Options Menu .. 58
3.16 The Image Viewer ... 60
3.17 The Image Viewer Right Mouse Popup Menu 61
3.18 The Prior Probability Viewer .. 66
3.19 The Fid Model Viewer .. 69
3.20 The Plot Results Viewer .. 72
3.21 Plot Information Popup ... 73
3.22 The Text Results Viewer ... 75
3.23 The Bayes Condensed File .. 78
3.24 Data, Model, And Resid Plot ... 81
3.25 The Parameter Posterior Probabilities 82
3.26 The Maximum Entropy Histograms 84
3.27 The Parameter Samples Plot ... 85
3.28 Posterior Probability Vs Parameter Value 86
3.29 Posterior Probability Vs Parameter Value, A Skewed Example 87
3.30 The Expected Value Of The Logarithm Of The Likelihood 89
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3.1 The Scatter Plots</td>
<td>90</td>
</tr>
<tr>
<td>3.3.2 The Logarithm Of The Posterior Probability By Repeat Plot</td>
<td>92</td>
</tr>
<tr>
<td>3.3.3 The Fortran/C Model Viewer</td>
<td>94</td>
</tr>
<tr>
<td>3.3.4 The Fortran/C Code Editor</td>
<td>95</td>
</tr>
<tr>
<td>4.1 Frequency Estimation Using The DFT</td>
<td>112</td>
</tr>
<tr>
<td>4.2 Aliases</td>
<td>113</td>
</tr>
<tr>
<td>4.3 Nonuniformly Nonsimultaneously Sampled Sinusoid</td>
<td>127</td>
</tr>
<tr>
<td>4.4 Alias Spacing</td>
<td>128</td>
</tr>
<tr>
<td>4.5 Which Is The Critical Time</td>
<td>130</td>
</tr>
<tr>
<td>4.6 Example, Frequency Estimation</td>
<td>131</td>
</tr>
<tr>
<td>4.7 Estimating The Sinusoids Parameters</td>
<td>133</td>
</tr>
<tr>
<td>5.1 The Given And Unknown Number Of Exponential Package Interface</td>
<td>138</td>
</tr>
<tr>
<td>6.1 The Unknown Exponential Interface</td>
<td>144</td>
</tr>
<tr>
<td>6.2 The Distribution Of Models</td>
<td>149</td>
</tr>
<tr>
<td>6.3 The Posterior Probability For Exponential Model</td>
<td>150</td>
</tr>
<tr>
<td>7.1 The Inversion Recovery Interface</td>
<td>152</td>
</tr>
<tr>
<td>8.1 Bayes Analyze Interface</td>
<td>156</td>
</tr>
<tr>
<td>8.2 Bayes Analyze Fid Model Viewer</td>
<td>160</td>
</tr>
<tr>
<td>8.3 The Bayes Analyze File Header</td>
<td>179</td>
</tr>
<tr>
<td>8.4 The bayes.noise File</td>
<td>180</td>
</tr>
<tr>
<td>8.5 Bayes Analyze Global Parameters</td>
<td>183</td>
</tr>
<tr>
<td>8.6 The Third Section Of The Parameter File</td>
<td>184</td>
</tr>
<tr>
<td>8.7 Example Of An Initial Model In The Output File</td>
<td>187</td>
</tr>
<tr>
<td>8.8 Base 10 Logarithm Of The Odds</td>
<td>187</td>
</tr>
<tr>
<td>8.9 A Small Sample Of The Output Report</td>
<td>188</td>
</tr>
<tr>
<td>8.10 Bayes Analyze Uncorrelated Output</td>
<td>189</td>
</tr>
<tr>
<td>8.11 The bayes.probabilities.nnnn File</td>
<td>191</td>
</tr>
<tr>
<td>8.12 The bayes.log.nnnn File</td>
<td>193</td>
</tr>
<tr>
<td>8.13 The bayes.status.nnnn File</td>
<td>196</td>
</tr>
<tr>
<td>8.14 The bayes.model.nnnn File</td>
<td>197</td>
</tr>
<tr>
<td>8.15 The bayes.model.nnnn File Uncorrelated Resonances</td>
<td>198</td>
</tr>
<tr>
<td>8.16 Bayes Analyze Summary Header</td>
<td>198</td>
</tr>
<tr>
<td>8.17 The Summary2 (Best Summary)</td>
<td>199</td>
</tr>
<tr>
<td>8.18 The Summary3 Report</td>
<td>201</td>
</tr>
<tr>
<td>9.1 The Big Peak/Little Peak Interface</td>
<td>208</td>
</tr>
<tr>
<td>9.2 The Time Dependent Parameters</td>
<td>218</td>
</tr>
<tr>
<td>10.1 The Bayes Metabolite Interface</td>
<td>220</td>
</tr>
<tr>
<td>10.2 The Bayes Metabolite Viewer</td>
<td>222</td>
</tr>
<tr>
<td>10.3 Bayes Metabolite Parameters And Probabilities List</td>
<td>227</td>
</tr>
<tr>
<td>10.4 The IPGD_D20 Metabolite</td>
<td>229</td>
</tr>
</tbody>
</table>
10.5 Bayes Metabolite IPGD_D20 Spectrum 230
10.6 Bayes Metabolite, The Fraction of Glucose 231
10.7 Glutamate Example Spectrum .. 233
10.8 Estimating The F_{c0}, y and F_{a0} Parameters 236
10.9 Bayes Metabolite, The Ethyl Ether Example 237

11.1 The Find Resonances Interface With The Ethyl Ether Spectrum 240

12.1 The Diffusion Tensor Package Interface 248
12.2 Diffusion Tensor Parameter Estimates 256
12.3 Diffusion Tensor Posterior Probability For The Model 257

13.1 The Big Magnetization Package Interface 260
13.2 Big Magnetization Transfer Example Fid 263
13.3 Big Magnetization Transfer Expansion 263
13.4 Big Magnetization Transfer Peak Pick 264

14.1 The Magnetization Transfer Package Interface 266
14.2 Magnetization Transfer Package Peak Picking 272
14.3 Magnetization Transfer Example Data 273
14.4 Magnetization Transfer Example Spectrum 274

15.1 Magnetization Transfer Kinetics Package Interface 276
15.2 Magnetization Transfer Kinetics Package Arrhenius Plot 282
15.3 Magnetization Transfer Kinetics Water Viscosity Table 283

16.1 Given Polynomial Order Package Interface 286
16.2 Given Polynomial Order Scatter Plot 291

17.1 Unknown Polynomial Order Package Interface 294
17.2 The Distribution of Models On The Console Log 298
17.3 The Posterior Probability For The Polynomial Order 300

18.1 The Errors In Variables Package Interface 304
18.2 The McMC Values File Produced By The Errors In Variables Package 310

19.1 The Behrens-Fisher Interface 312
19.2 Behrens-Fisher Hypotheses Tested 313
19.3 Behrens-Fisher Console Log .. 323
19.4 Behrens-Fisher Status Listing 324
19.5 Behrens-Fisher McMC Values File, The Preamble 325
19.6 Behrens-Fisher McMC Values File, The Middle 326
19.7 Behrens-Fisher McMC Values File, The End 327

20.1 Enter Ascii Model Package Interface 330

22.1 The Enter Ascii Model Selection Package Interface 342
26.1 Absorption Model Images .. 396
26.2 The Interface To The Image Phasing Package 397
26.3 Linear Phasing Package The Console Log 403

27.1 Nonlinear Phasing Example 406
27.2 The Interface To The Nonlinear Phasing Package 410

28.1 The Interface To The Analyze Image Pixels Package 412

29.1 The Interface To The Image Model Selection Package 416
29.2 Single Exponential Example Image 419
29.3 Single Exponential Example Data 420
29.4 Posterior Probability For The ExpOneNoConst Model 421

A.1 Ascii Data File Format .. 436

D.1 The McMC Values Report Header 450
D.2 McMC Values Report, The Middle 451
D.3 The McMC Values Report, The End 452

E.1 Writing Models A Fortran Example 456
E.2 Writing Models A C Example 457
E.3 Writing Models, The Parameter File 459
E.4 Writing Models Fortran Declarations 463
E.5 Writing Models Fortran Example 466
E.6 Writing Models The Parameter File 467

G.1 Example FDF File Header 473

H.1 The Posterior Probability For The Number of Outliers 476
H.2 The Data, Model and Residual Plot With Outliers 478
List of Tables

8.1 Multiplet Relative Amplitudes ... 165
8.2 Bayes Analyze Models ... 181
8.3 Bayes Analyze Short Descriptions .. 195
Appendix G

4dfp Overview

Files stored in the images subdirectory ending in 4dfp.img are 4dfp (4-dimensional floating point) format images. The corresponding file ending in 4dfp.ifh are the image file headers. The 4dfp.img files are purely binary files containing 4 dimensional arrayed images. The images stored in the 4dfp.img file are a single UNIX binary file containing a stack of images. The four dimensions are the array, slice, readout and phase encode. Symbolically, the loops needed to correctly read and store an image on a Big Endian machine are given by:

\[
\begin{align*}
\text{Do CurEle = 1, ArrayDim} & \quad ! \text{loop over the array dimension}
\text{Do CurSlice = 1, NoSlices} & \quad ! \text{loop over the slice dimension}
\text{Do CurRo = 1, NoRo} & \quad ! \text{loop over the readout dimension}
\text{Do CurPe = 1, NoPe} & \quad ! \text{loop over the phase encodes}
\end{align*}
\]

Read the next 4 byte Big Endian number and place it in "Work"

Copy "Work" into the image matrix

\[
\text{Images(CurEle,CurPe,CurRo,CurSlice) = Work}
\]

EndDo
EndDo
EndDo
EndDo

where ArrayDim is the size of the array, NoSlices is the number of slices, NoRo is the size of the image in the readouts direction and NoPe is the size of the image in the phase encode dimension. The images used in the Bayesian Analysis software are stored in Big Endian format and it does not matter what hardware platform writes the images: images are always written in Big Endian regardless of the hardware. If your reading one of our output images on a Little Endian machine, for example a PC, you must swap the byte order. Failure to do so will give essentially meaningless numbers in your image.

The 4dfp.img file contains the binary image, however that binary cannot be read without first parsing the associated 4dfp.ifh file. The 4dfp.ifh file is a separate image file header and it contains
among other things the dimensions of the images, Fig. G.1 is an example of this file. Most of the items in this header are pretty straight-forward, however we are going to dwell on the matrix size and the scaling factors a bit because unless you understand these you will not be able to correctly display an image. First, the four elements in the matrix size are: [1] the number of pixels in the phase encode (x domain), [2] the number of pixels in the readout (y domain), [3] the number of slices and [4] the size of the array variable. Similarly, the three scaling factors are the image pixels sizes in mm. the three scaling factors are the phase encode, the read out and the slice scaling factors. For our images the byte order will always be “bigendian”. Finally, the two file names are usually fully qualified path names to the appropriate files. Here they have been truncated to get them to paginate correctly.
Figure G.1: Example FDF File Header

```
INTERFILE :=
version of keys := 3.3
conversion program := BayesPhase
program version := 1.0
name of data file := Bayes/test/images/LoadedImage_Abs.4dfp.ifh
source data file name := Bayes.test.data/BayesPhase/image_IR.fid
patient ID := N/A
date := 12-Oct-2011 13:50:29
number format := float
number of bytes per pixel := 4
orientation := 2
number of dimensions := 4
matrix size [1] := 128
matrix size [3] := 1
scaling factor (mm/pixel) [1] := 0.15625
scaling factor (mm/pixel) [2] := 0.15625
scaling factor (mm/pixel) [3] := 0.15000000596046448
slice thickness (mm/pixel) := 0.15000000596046448
imagedata byte order := bigendian
x label := Phase Encode (cm)
y label := Readout (cm)
```

Figure G.1 This is a example image file header (ifh file type) written by the linear phasing package. The image file header contains the parameters necessary to read a 4dfp.img file. The most critical part of the header are the matrix sizes and the scale factors. The matrix sizes are the phase encode, readout, number of slices and array size respectively. The three scaling factors are the pixel sizes in the images. In the Bayesian Analysis interface the real 4 byte numbers written in the image are always written in Big Endian form. The x and y labels are just text strings used to set the labels on the displayed images. Finally, the name of data file and source data file name are normally fully qualified path names to the appropriate files. Here, these names were truncated to get them to paginate correctly.
Bibliography

[45] Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth, Augusta H. Teller, and Edward Teller (1953), “Equation of State Calculations by Fast Computing Machines,” Journal of Chemical Physics. The previous link is to the American Institute of Physics and if you do not have access to Science Sitations you may not be able to retrieve this paper.

