Bayesian Analysis Users Guide
Release 4.00, Manual Version 1

G. Larry Bretthorst
Biomedical MR Laboratory
Washington University School Of Medicine,
Campus Box 8227
Room 2313, East Bldg.,
4525 Scott Ave.
St. Louis MO 63110
http://bayes.wustl.edu
Email: larry@bayes.wustl.edu

July 13, 2018
Contents

Manual Status 16

1 An Overview Of The Bayesian Analysis Software 19
 1.1 The Server Software ... 19
 1.2 The Client Interface .. 22
 1.2.1 The Global Pull Down Menus 24
 1.2.2 The Package Interface 24
 1.2.3 The Viewers ... 27

2 Installing the Software 29

3 the Client Interface 33
 3.1 The Global Pull Down Menus 35
 3.1.1 the Files menu .. 35
 3.1.2 the Packages menu ... 40
 3.1.3 the WorkDir menu ... 45
 3.1.4 the Settings menu ... 46
 3.1.5 the Utilities menu ... 50
 3.1.6 the Help menu .. 50
 3.2 The Submit Job To Server area 51
 3.3 The Server area .. 52
 3.4 Interface Viewers ... 52
 3.4.1 the Ascii Data Viewer 53
 3.4.2 the fid Data Viewer ... 53
 3.4.3 Image Viewer .. 59
 3.4.3.1 the Image List area 59
 3.4.3.2 the Set Image area 62
 3.4.3.3 the Image Viewing area 62
 3.4.3.4 the Grayscale area on the bottom 63
 3.4.3.5 the Pixel Info area 63
 3.4.3.6 the Image Statistics area 64
 3.4.4 Prior Viewer .. 65
 3.4.5 Fid Model Viewer .. 68
 3.4.5.1 The fid Model Format 70
4 An Introduction to Bayesian Probability Theory

4.1 The Rules of Probability Theory

4.2 Assigning Probabilities

4.3 Example: Parameter Estimation

4.4 Summary and Conclusions

5 Given Exponential Model

5.1 The Bayesian Calculation

5.2 Outputs From The Given Exponential Package

6 Unknown Number of Exponentials

6.1 The Bayesian Calculations

6.2 Outputs From The Unknown Number Of Exponentials Package

7 Inversion Recovery

7.1 The Bayesian Calculation

7.2 Outputs From The Inversion Recovery Package
8 Bayes Analyze

8.1 Bayes Model 155
8.2 The Bayes Analyze Model Equation 159
8.3 The Bayesian Calculations 161
8.4 Levenberg-Marquardt And Newton-Raphson 167
8.5 Outputs From The Bayes Analyze Package 171
 8.5.1 The “bayes.params.mnnn” Files 177
 8.5.1.1 The Bayes Analyze File Header 178
 8.5.1.2 The Global Parameters 182
 8.5.1.3 The Model Components 184
 8.5.2 The “bayes.model.mnnn” Files 185
 8.5.3 The “bayes.output.mnnn” File 186
 8.5.4 The “bayes.probabilities.mnnn” File 190
 8.5.5 The “bayes.log.mnnn” File 193
 8.5.6 The “bayes.status.mnnn” and “bayes.accepted.mnnn” Files 196
 8.5.7 The “bayes.model.mnnn” File 197
 8.5.8 The “bayes.summary1.mnnn” File 198
 8.5.9 The “bayes.summary2.mnnn” File 199
 8.5.10 The “bayes.summary3.mnnn” File 200
8.6 Bayes Analyze Error Messages 200

9 Big Peak/Little Peak 207

9.1 The Bayesian Calculation 209
9.2 Outputs From The Big Peak/Little Peak Package 216

10 Metabolic Analysis 219

10.1 The Metabolic Model 223
10.2 The Bayesian Calculation 225
10.3 The Metabolite Models 228
 10.3.1 The IPGD_D2O Metabolite 228
 10.3.2 The Glutamate.2.0 Metabolite 232
 10.3.3 The Glutamate.3.0 Metabolite 235
10.4 The Example Metabolite 236
10.5 Outputs From The Bayes Metabolite Package 238

11 Find Resonances 239

11.1 The Bayesian Calculations 241
11.2 Outputs From The Bayes Find Resonances Package 246

12 Diffusion Tensor Analysis 247

12.1 The Bayesian Calculation 249
12.2 Using The Package 254

13 Big Magnetization Transfer 259

13.1 The Bayesian Calculation 259
13.2 Outputs From The Big Magnetization Transfer Package 262
14 Magnetization Transfer 265
 14.1 The Bayesian Calculation 267
 14.2 Using The Package ... 271

15 Magnetization Transfer Kinetics 275
 15.1 The Bayesian Calculation 277
 15.2 Using The Package ... 281

16 Given Polynomial Order 285
 16.1 The Bayesian Calculation 287
 16.1.1 Gram-Schmidt ... 287
 16.1.2 The Bayesian Calculation 288
 16.2 Outputs From the Given Polynomial Order Package 290

17 Unknown Polynomial Order 293
 17.1 Bayesian Calculations 295
 17.1.1 Assigning Priors .. 296
 17.1.2 Assigning The Joint Posterior Probability 297
 17.2 Outputs From the Unknown Polynomial Order Package 299

18 Errors In Variables 303
 18.1 The Bayesian Calculation 305
 18.2 Outputs From The Errors In Variables Package 308

19 Behrens-Fisher 311
 19.1 Bayesian Calculation 311
 19.1.1 The Four Model Selection Probabilities 314
 19.1.1.1 The Means And Variances Are The Same 315
 19.1.1.2 The Mean Are The Same And The Variances Differ 317
 19.1.1.3 The Means Differ And The Variances Are The Same 318
 19.1.1.4 The Means And Variances Differ 319
 19.1.2 The Derived Probabilities 320
 19.1.3 Parameter Estimation 321
 19.2 Outputs From Behrens-Fisher Package 322

20 Enter Ascii Model 329
 20.1 The Bayesian Calculation 331
 20.1.1 The Bayesian Calculations Using Eq. (20.1) 331
 20.1.2 The Bayesian Calculations Using Eq. (20.2) 332
 20.2 Outputs From The Enter Ascii Model Package 335

22 Enter Ascii Model Selection 341
 22.1 The Bayesian Calculations 343
 22.1.1 The Direct Probability With No Amplitude Marginalization 344
 22.1.2 The Direct Probability With Amplitude Marginalization 346
 22.1.2.1 Marginalizing the Amplitudes 347
 22.1.2.2 Marginalizing The Noise Standard Deviation 352
22.2 Outputs Form The Enter Ascii Model Package 353

26 Phasing An Image 395
 26.1 The Bayesian Calculation 396
 26.2 Using The Package 402

27 Phasing An Image Using Non-Linear Phases 405
 27.1 The Model Equation 405
 27.2 The Bayesian Calculations 407
 27.3 The Interfaces To The Nonlinear Phasing Routine 409

28 Analyze Image Pixel 411
 28.1 Modification History 413

29 The Image Model Selection Package 415
 29.1 The Bayesian Calculations 417
 29.2 Outputs Form The Image Model Selection Package 418

A Ascii Data File Formats 423
 A.1 Ascii Input Data Files 423
 A.2 Ascii Image File Formats 424
 A.3 The Abscissa File Format 425

B Markov chain Monte Carlo With Simulated Annealing 439
 B.1 Metropolis-Hastings Algorithm 440
 B.2 Multiple Simulations 441
 B.3 Simulated Annealing 442
 B.4 The Annealing Schedule 442
 B.5 Killing Simulations 443
 B.6 the Proposal 444

C Thermodynamic Integration 445

D McMC Values Report 449

E Writing Fortran/C Models 455
 E.1 Model Subroutines, No Marginalization 455
 E.2 The Parameter File 458
 E.3 The Subroutine Interface 460
 E.4 The Subroutine Declarations 462
 E.5 The Subroutine Body 463
 E.6 Model Subroutines With Marginalization 464

F the Bayes Directory Organization 469

G 4dfp Overview 471
H Outlier Detection 475

Bibliography 479
List of Figures

1.1 The Start Up Window ... 23
1.2 Example Package Exponential Interface 25

2.1 Installation Kit For The Bayesian Analysis Software 31

3.1 The Start Up Window ... 34
3.2 The Files Menu .. 35
3.3 The Files/Load Image Submenu 37
3.4 The Packages Menu .. 41
3.5 The Working Directory Menu 46
3.6 The Working Directory Information Popup 47
3.7 The Settings Pull Down Menu 47
3.8 The McMC Parameters Popup 48
3.9 The Edit Server Popup .. 49
3.10 The Submit Job Widgets .. 51
3.11 The Server Widgets Group .. 52
3.12 The Ascii Data Viewer .. 54
3.13 The Fid Data Viewer ... 55
3.14 Fid Data Display Type ... 56
3.15 Fid Data Options Menu .. 58
3.16 The Image Viewer ... 60
3.17 The Image Viewer Right Mouse Popup Menu 61
3.18 The Prior Probability Viewer 66
3.19 The Fid Model Viewer .. 69
3.20 The Plot Results Viewer .. 72
3.21 Plot Information Popup ... 73
3.22 The Text Results Viewer .. 75
3.23 The Bayes Condensed File .. 78
3.24 Data, Model, And Resid Plot 81
3.25 The Parameter Posterior Probabilities 82
3.26 The Maximum Entropy Histograms 84
3.27 The Parameter Samples Plot 85
3.28 Posterior Probability Vs Parameter Value 86
3.29 Posterior Probability Vs Parameter Value, A Skewed Example 87
3.30 The Expected Value Of The Logarithm Of The Likelihood 89
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.31</td>
<td>The Scatter Plots</td>
<td>90</td>
</tr>
<tr>
<td>3.32</td>
<td>The Logarithm Of The Posterior Probability By Repeat Plot</td>
<td>92</td>
</tr>
<tr>
<td>3.33</td>
<td>The Fortran/C Model Viewer</td>
<td>94</td>
</tr>
<tr>
<td>3.34</td>
<td>The Fortran/C Code Editor</td>
<td>95</td>
</tr>
<tr>
<td>4.1</td>
<td>Frequency Estimation Using The DFT</td>
<td>112</td>
</tr>
<tr>
<td>4.2</td>
<td>Aliases</td>
<td>113</td>
</tr>
<tr>
<td>4.3</td>
<td>Nonuniformly Nonsimultaneously Sampled Sinusoid</td>
<td>127</td>
</tr>
<tr>
<td>4.4</td>
<td>Alias Spacing</td>
<td>128</td>
</tr>
<tr>
<td>4.5</td>
<td>Which Is The Critical Time</td>
<td>130</td>
</tr>
<tr>
<td>4.6</td>
<td>Example, Frequency Estimation</td>
<td>131</td>
</tr>
<tr>
<td>4.7</td>
<td>Estimating The Sinusoids Parameters</td>
<td>133</td>
</tr>
<tr>
<td>5.1</td>
<td>The Given And Unknown Number Of Exponential Package Interface</td>
<td>138</td>
</tr>
<tr>
<td>6.1</td>
<td>The Unknown Exponential Interface</td>
<td>144</td>
</tr>
<tr>
<td>6.2</td>
<td>The Distribution Of Models</td>
<td>149</td>
</tr>
<tr>
<td>6.3</td>
<td>The Posterior Probability For Exponential Model</td>
<td>150</td>
</tr>
<tr>
<td>7.1</td>
<td>The Inversion Recovery Interface</td>
<td>152</td>
</tr>
<tr>
<td>8.1</td>
<td>Bayes Analyze Interface</td>
<td>156</td>
</tr>
<tr>
<td>8.2</td>
<td>Bayes Analyze Fid Model Viewer</td>
<td>160</td>
</tr>
<tr>
<td>8.3</td>
<td>The Bayes Analyze File Header</td>
<td>179</td>
</tr>
<tr>
<td>8.4</td>
<td>The bayes.noise File</td>
<td>180</td>
</tr>
<tr>
<td>8.5</td>
<td>Bayes Analyze Global Parameters</td>
<td>183</td>
</tr>
<tr>
<td>8.6</td>
<td>The Third Section Of The Parameter File</td>
<td>184</td>
</tr>
<tr>
<td>8.7</td>
<td>Example Of An Initial Model In The Output File</td>
<td>187</td>
</tr>
<tr>
<td>8.8</td>
<td>Base 10 Logarithm Of The Odds</td>
<td>187</td>
</tr>
<tr>
<td>8.9</td>
<td>A Small Sample Of The Output Report</td>
<td>188</td>
</tr>
<tr>
<td>8.10</td>
<td>Bayes Analyze Uncorrelated Output</td>
<td>189</td>
</tr>
<tr>
<td>8.11</td>
<td>The bayes.probabilities.nnnn File</td>
<td>191</td>
</tr>
<tr>
<td>8.12</td>
<td>The bayes.log.nnnn File</td>
<td>193</td>
</tr>
<tr>
<td>8.13</td>
<td>The bayes.status.nnnn File</td>
<td>196</td>
</tr>
<tr>
<td>8.14</td>
<td>The bayes.model.nnnn File</td>
<td>197</td>
</tr>
<tr>
<td>8.15</td>
<td>The bayes.model.nnnn File Uncorrelated Resonances</td>
<td>198</td>
</tr>
<tr>
<td>8.16</td>
<td>Bayes Analyze Summary Header</td>
<td>198</td>
</tr>
<tr>
<td>8.17</td>
<td>The Summary2 (Best Summary)</td>
<td>199</td>
</tr>
<tr>
<td>8.18</td>
<td>The Summary3 Report</td>
<td>201</td>
</tr>
<tr>
<td>9.1</td>
<td>The Big Peak/Little Peak Interface</td>
<td>208</td>
</tr>
<tr>
<td>9.2</td>
<td>The Time Dependent Parameters</td>
<td>218</td>
</tr>
<tr>
<td>10.1</td>
<td>The Bayes Metabolite Interface</td>
<td>220</td>
</tr>
<tr>
<td>10.2</td>
<td>The Bayes Metabolite Viewer</td>
<td>222</td>
</tr>
<tr>
<td>10.3</td>
<td>Bayes Metabolite Parameters And Probabilities List</td>
<td>227</td>
</tr>
<tr>
<td>10.4</td>
<td>The IPGD_D20 Metabolite</td>
<td>229</td>
</tr>
</tbody>
</table>
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1</td>
<td>Multiplet Relative Amplitudes</td>
<td>165</td>
</tr>
<tr>
<td>8.2</td>
<td>Bayes Analyze Models</td>
<td>181</td>
</tr>
<tr>
<td>8.3</td>
<td>Bayes Analyze Short Descriptions</td>
<td>195</td>
</tr>
</tbody>
</table>
Appendix A

Ascii Data File Formats

Ascii data files are used throughout the entire Bayesian Analysis software. Often they are used for simple things like input to various packages. Sometimes they are used to loading Abscissa into plotting routines. And sometimes they are used to generate Fid and Image files. In all cases the exact file formats vary depending on the type of data and the package that is loading the Ascii file. This Appendix is a description of these file formats and how they are used. Most of the time the file formats are pretty simple and rather self explanatory and we will list a few of these shortly. However, in a few cases the actual file format of the Ascii data can be complicated. We give these more complicated file formats in this Appendix. For now here is a list of some of the more simple Ascii file formats:

Images can be loaded in Ascii. The interface Files/Load Image/Single-Column text file widget expects the data to be single column Ascii with each row in the image stacked one line after another.

FID data can be loaded as Ascii data. In this case one complex (real and imaginary) number are expected on each like of the FID. This type of data is used in the Files/Load Spectroscopic Fid/Text File widget.

Ascii Input Files for most packages, like an exponential package, allow Ascii data to be loaded. In these simple cases, the files are simply two column Ascii: one abscissa and one data column. However, see below because there are major exceptions to this rule.

A.1 Ascii Input Data Files

The format of a general input Ascii file used in the Bayesian Analysis software is shown in Fig. A.1. Each line in an input Ascii file consist of three parts. This is illustrated by the double vertical lines in the figure. The first part is a single column plot abscissa, and as its name implies, this is the abscissa used in plotting the Ascii data. All plots of the Ascii data done by the interface are of the data versus the plot abscissa. If there are multiple data columns, then multiple plots are drawn by the interface. However, all of these data plots use the input plot abscissa on the current data set.

The second part of an Ascii input file, is the data and as indicated in Fig. A.1, there can be up to N data columns, where N is specified by the model, i.e., it is user defined. The number of these
Figure A.1: Ascii Data File Format

<table>
<thead>
<tr>
<th>Plot Abscissa</th>
<th>Data Col 1</th>
<th>...</th>
<th>Data Col N</th>
<th>Abscissa Col 1</th>
<th>...</th>
<th>Abscissa Col M</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>25.1</td>
<td>...</td>
<td>30.2</td>
<td>1</td>
<td>...</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>15.1</td>
<td>...</td>
<td>10.2</td>
<td>2</td>
<td>...</td>
<td>-1</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td></td>
<td>...</td>
<td>...</td>
<td></td>
<td>...</td>
</tr>
</tbody>
</table>

Figure A.1: This table shows a schematic of a general input Ascii data file. The first column is simply a plot variable and in the case of a single column abscissa, this variable should be the abscissa. The columns labeled “Data Col 1” though “Data Col N” are the N input data columns. The number of these columns is implicit in the package model or it is defined explicitly in the model parameter file. Finally, when multiple abscissa’s are present, these abscissa follow the data columns. Here these M columns are labeled “Abscissa Col 1” through “Abscissa Col M”. If there is only a single abscissa, then these abscissa columns are not present.

columns is often implicit in the nature of the package. For example, an inversion recovery data set would require only a single data column. However, a magnetization transfer packages might require real and imaginary data so the data section might have two columns. User defined models can be written that use any number of input data columns. In Fig. A.1 these data columns are labeled as “Data Col 1” through “Data Col N” where there are N data columns.

Finally the computational abscissa section is present only when the package expects multicolumn abscissa. For example, in a diffusion tensor analysis each abscissa consist of a 3 dimensional B vector, so 3 abscissa are needed. When a model runs that uses a computational abscissa, the abscissa passed to the model program contains as many columns as specified by the model. For example, a diffusion tensor analysis using a B vector would be a 3 by n abscissa, where 3 is the number of abscissa columns and n is the number of data values in the current data set.

In Ascii packages multiple data sets can be loaded and analyzed jointly. Each data set can have a differing number of data values and different abscissa values. However, the number of abscissa columns is fixed for a given analysis. When the posterior probability is computed the model program must generate the model given the current parameters and abscissa. After this information is generated, the posterior probability for the current data set is computed and used in the Bayesian calculations. So while you could have different abscissa values in the different data sets, all data sets must use the same number of abscissa columns.

A.2 Ascii Image File Formats

The previous section describes the file format for Ascii data files that are used as input to the various packages. However, Ascii images can also be loaded and in this case there are three distinct image formats, one single column, one multicolumn and one k-space Ascii format.

In the case of single column Ascii images, the images are stacked in the Ascii file one pixel at a time. If the image consists of N rows by M columns then the interface expects rows 1 (all M values) followed by row 2, etc until all N rows are read. Images can be stacked by slice or element number and you can specify in the popup how they are stacked so the outer loops can be either slice number or array element number.
Multicolumn Ascii files can also be loaded. In this case all elements in a give row are read from record one of the input file. Record 2 corresponds to the second row in the image, etc. The ordering of the images by slice and element is again under user control and can be specified when the images are loaded.

Finally, images can be complex k-spaced data. In this case, the complex k-space data is two column Ascii data. Each row of the complex data corresponds to one readout and readouts are stacked one after another. This complex k-space data is converted into a Varian fid. This fid is then Fourier transformed, phased, and displayed as a complex image. If multiple k-space images are present, the slice and element orders are again under user control. For k-space fid data the output from the interface is the real, imaginary and absolute value images.

All images are whether or not they are input as Ascii files, k-space files, or any other formats are copied into your current working directory. These images are located in BayesHome/WorkDir/images, where “BayesHome” is your current Bayes home directory, “WorkDir” is your current working directory, and “images” is the images subdirectory. Loaded images preserve the name of the name of the input image and duplicates will overwrite the image directory. However, loaded k-space data are first converted into a Varian fid. This fid is located in the BayesHome/WorkDir/Image.fid subdirectory. After this conversion, the k-space data is then Fourier transformed and displayed as an image. These images are output with the name “LoadedImage_Real.4dfp.ima,” “LoadedImage_Imag.4dfp.ima,” and “LoadedImage_Abs.4dfp.ima” for the real, imaginary and absolute value images respectively.

In all of these cases, an abscissa file will almost certainly have to be loaded and in the case of k-space data is required for the conversion. The next section briefly discusses the format of an abscissa file used with images.

A.3 The Abscissa File Format

If an image is arrayed, the values of the array variable must be specified in an abscissa file before any image processing can be done on the image. Additionally, when k-space images are loaded, the abscissa must be available to create the Varian fid file. These abscissa values are given in multicolumn Ascii files, one column for each abscissa column. Unusually abscissa are one dimensional like, for example, in an inversion recovery experiment. In which case the abscissa file is a simple single column Ascii file. But sometimes they can be much more complicated, for example, a B matrix diffusion experiment would have to have a 6 column abscissa, one entry for each of the 6 independent B values in a diffusion experiment. In all cases the actual meaning of the columns in an abscissa are specified by the model used in processing the image data. For example a diffusion tensor image would have an abscissa consisting of the gradient or B values used in the experiment. These gradient or B values could be one, two, etc. up to 6 dimensional depending on the problem. So the abscissa file could be one column, as in diffusion along a single direction, two column, for diffusion in a plane, all the way up to a 6 column abscissa for a full B matrix diffusion tensor experiment.
Bibliography

[45] Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth, Augusta H. Teller, and Edward Teller (1953), “Equation of State Calculations by Fast Computing Machines,” Journal of Chemical Physics. The previous link is to the American Institute of Physics and if you do not have access to Science Sitations you may not be able to retrieve this paper.

