Contents

Manual Status 16

1 An Overview Of The Bayesian Analysis Software 19
  1.1 The Server Software ................................. 19
  1.2 The Client Interface ................................. 22
    1.2.1 The Global Pull Down Menus ...................... 24
    1.2.2 The Package Interface .......................... 24
    1.2.3 The Viewers .................................. 27

2 Installing the Software 29

3 the Client Interface 33
  3.1 The Global Pull Down Menus ......................... 35
    3.1.1 the Files menu ................................ 35
    3.1.2 the Packages menu ................................ 40
    3.1.3 the WorkDir menu ................................ 45
    3.1.4 the Settings menu ................................ 46
    3.1.5 the Utilities menu ................................ 50
    3.1.6 the Help menu .................................. 50
  3.2 The Submit Job To Server area ...................... 51
  3.3 The Server area .................................... 52
  3.4 Interface Viewers .................................. 52
    3.4.1 the Ascii Data Viewer .............................. 53
    3.4.2 the fid Data Viewer ................................ 53
    3.4.3 Image Viewer ..................................... 59
      3.4.3.1 the Image List area ............................ 59
      3.4.3.2 the Set Image area ............................. 62
      3.4.3.3 the Image Viewing area ......................... 62
      3.4.3.4 the Grayscale area on the bottom ............... 63
      3.4.3.5 the Pixel Info area ............................. 63
      3.4.3.6 the Image Statistics area ....................... 64
    3.4.4 Prior Viewer ..................................... 65
    3.4.5 Fid Model Viewer ................................. 68
      3.4.5.1 The fid Model Format ......................... 70
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.4.5.2</td>
<td>The Fid Model Reports</td>
<td>................................................................</td>
<td>71</td>
</tr>
<tr>
<td>3.4.6</td>
<td>Plot Results Viewer</td>
<td>................................................................</td>
<td>71</td>
</tr>
<tr>
<td>3.4.7</td>
<td>Text Results Viewer</td>
<td>................................................................</td>
<td>74</td>
</tr>
<tr>
<td>3.4.8</td>
<td>Files Viewer</td>
<td>................................................................</td>
<td>80</td>
</tr>
<tr>
<td>3.5</td>
<td>Common Interface Plots</td>
<td>................................................................</td>
<td>80</td>
</tr>
<tr>
<td>3.5.1</td>
<td>Data, Model And Residual Plot</td>
<td>..........................................................</td>
<td>81</td>
</tr>
<tr>
<td>3.5.2</td>
<td>Posterior Probability For A Parameter</td>
<td>.........................................................</td>
<td>82</td>
</tr>
<tr>
<td>3.5.3</td>
<td>Maximum Entropy Histograms</td>
<td>................................................................</td>
<td>83</td>
</tr>
<tr>
<td>3.5.4</td>
<td>Markov Monte Carlo Samples</td>
<td>................................................................</td>
<td>83</td>
</tr>
<tr>
<td>3.5.5</td>
<td>Probability Vs Parameter Samples</td>
<td>..........................................................</td>
<td>86</td>
</tr>
<tr>
<td>3.5.6</td>
<td>Expected Log Likelihood Plot</td>
<td>................................................................</td>
<td>88</td>
</tr>
<tr>
<td>3.5.7</td>
<td>Scatter Plots</td>
<td>................................................................</td>
<td>88</td>
</tr>
<tr>
<td>3.5.8</td>
<td>Logarithm of the Posterior Probability Plot</td>
<td>.......................................................</td>
<td>91</td>
</tr>
<tr>
<td>3.5.9</td>
<td>Fortran/C Code Viewer</td>
<td>................................................................</td>
<td>93</td>
</tr>
<tr>
<td>3.5.9.1</td>
<td>Fortran/C Model Viewer Popup Editor</td>
<td>................................................................</td>
<td>93</td>
</tr>
<tr>
<td>4</td>
<td>An Introduction to Bayesian Probability Theory</td>
<td>.........................................................</td>
<td>99</td>
</tr>
<tr>
<td>4.1</td>
<td>The Rules of Probability Theory</td>
<td>................................................................</td>
<td>99</td>
</tr>
<tr>
<td>4.2</td>
<td>Assigning Probabilities</td>
<td>................................................................</td>
<td>102</td>
</tr>
<tr>
<td>4.3</td>
<td>Example: Parameter Estimation</td>
<td>................................................................</td>
<td>109</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Define The Problem</td>
<td>................................................................</td>
<td>110</td>
</tr>
<tr>
<td>4.3.1.1</td>
<td>The Discrete Fourier Transform</td>
<td>................................................................</td>
<td>110</td>
</tr>
<tr>
<td>4.3.1.2</td>
<td>Aliases</td>
<td>................................................................</td>
<td>113</td>
</tr>
<tr>
<td>4.3.2</td>
<td>State The Model—Single-Frequency Estimation</td>
<td>.........................................................</td>
<td>114</td>
</tr>
<tr>
<td>4.3.3</td>
<td>Apply Probability Theory</td>
<td>................................................................</td>
<td>115</td>
</tr>
<tr>
<td>4.3.4</td>
<td>Assign The Probabilities</td>
<td>................................................................</td>
<td>118</td>
</tr>
<tr>
<td>4.3.5</td>
<td>Evaluate The Sums and Integrals</td>
<td>................................................................</td>
<td>120</td>
</tr>
<tr>
<td>4.3.6</td>
<td>How Probability Generalizes The Discrete Fourier Transform</td>
<td>.........................................................</td>
<td>123</td>
</tr>
<tr>
<td>4.3.7</td>
<td>Aliasing</td>
<td>................................................................</td>
<td>126</td>
</tr>
<tr>
<td>4.3.8</td>
<td>Parameter Estimates</td>
<td>................................................................</td>
<td>132</td>
</tr>
<tr>
<td>4.4</td>
<td>Summary and Conclusions</td>
<td>................................................................</td>
<td>136</td>
</tr>
<tr>
<td>5</td>
<td>Given Exponential Model</td>
<td>................................................................</td>
<td>137</td>
</tr>
<tr>
<td>5.1</td>
<td>The Bayesian Calculation</td>
<td>................................................................</td>
<td>139</td>
</tr>
<tr>
<td>5.2</td>
<td>Outputs From The Given Exponential Package</td>
<td>.........................................................</td>
<td>141</td>
</tr>
<tr>
<td>6</td>
<td>Unknown Number of Exponentials</td>
<td>................................................................</td>
<td>143</td>
</tr>
<tr>
<td>6.1</td>
<td>The Bayesian Calculations</td>
<td>................................................................</td>
<td>145</td>
</tr>
<tr>
<td>6.2</td>
<td>Outputs From The Unknown Number of Exponentials Package</td>
<td>.........................................................</td>
<td>148</td>
</tr>
<tr>
<td>7</td>
<td>Inversion Recovery</td>
<td>................................................................</td>
<td>151</td>
</tr>
<tr>
<td>7.1</td>
<td>The Bayesian Calculation</td>
<td>................................................................</td>
<td>153</td>
</tr>
<tr>
<td>7.2</td>
<td>Outputs From The Inversion Recovery Package</td>
<td>.........................................................</td>
<td>154</td>
</tr>
</tbody>
</table>
14 Magnetization Transfer
- 14.1 The Bayesian Calculation
- 14.2 Using The Package

15 Magnetization Transfer Kinetics
- 15.1 The Bayesian Calculation
- 15.2 Using The Package

16 Given Polynomial Order
- 16.1 The Bayesian Calculation
- 16.1.1 Gram-Schmidt
- 16.1.2 The Bayesian Calculation
- 16.2 Outputs From the Given Polynomial Order Package

17 Unknown Polynomial Order
- 17.1 Bayesian Calculations
- 17.1.1 Assigning Priors
- 17.1.2 Assigning The Joint Posterior Probability
- 17.2 Outputs From the Unknown Polynomial Order Package

18 Errors In Variables
- 18.1 The Bayesian Calculation
- 18.2 Outputs From The Errors In Variables Package

19 Behrens-Fisher
- 19.1 Bayesian Calculation
- 19.1.1 The Four Model Selection Probabilities
- 19.1.2 The Derived Probabilities
- 19.1.3 Parameter Estimation
- 19.2 Outputs From Behrens-Fisher Package

20 Enter Ascii Model
- 20.1 The Bayesian Calculation
- 20.1.1 The Bayesian Calculations Using Eq. (20.1)
- 20.1.2 The Bayesian Calculations Using Eq. (20.2)
- 20.2 Outputs Form The Enter Ascii Model Package

22 Enter Ascii Model Selection
- 22.1 The Bayesian Calculations
- 22.1.1 The Direct Probability With No Amplitude Marginalization
- 22.1.2 The Direct Probability With Amplitude Marginalization
- 22.1.2.1 Marginalizing the Amplitudes
- 22.1.2.2 Marginalizing The Noise Standard Deviation
22.2 Outputs Form The Enter Ascii Model Package ........................................... 353

26 Phasing An Image ......................................................................................... 395
  26.1 The Bayesian Calculation ....................................................................... 396
  26.2 Using The Package ................................................................. 402

27 Phasing An Image Using Non-Linear Phases ........................................... 405
  27.1 The Model Equation ........................................................................... 405
  27.2 The Bayesian Calculations .......................................................... 407
  27.3 The Interfaces To The Nonlinear Phasing Routine .......................... 409

28 Analyze Image Pixel .................................................................................. 411
  28.1 Modification History ........................................................................ 413

29 The Image Model Selection Package ....................................................... 415
  29.1 The Bayesian Calculations .......................................................... 417
  29.2 Outputs Form The Image Model Selection Package ...................... 418

A Ascii Data File Formats ............................................................................ 423
  A.1 Ascii Input Data Files ....................................................................... 423
  A.2 Ascii Image File Formats .............................................................. 424
  A.3 The Abscissa File Format ............................................................ 425

B Markov chain Monte Carlo With Simulated Annealing ......................... 439
  B.1 Metropolis-Hastings Algorithm .................................................... 440
  B.2 Multiple Simulations ................................................................. 441
  B.3 Simulated Annealing ................................................................. 442
  B.4 The Annealing Schedule .......................................................... 442
  B.5 Killing Simulations ................................................................. 443
  B.6 the Proposal .............................................................................. 444

C Thermodynamic Integration .................................................................. 445

D McMC Values Report ............................................................................. 449

E Writing Fortran/C Models ....................................................................... 455
  E.1 Model Subroutines, No Marginalization ......................................... 455
  E.2 The Parameter File ....................................................................... 458
  E.3 The Subroutine Interface .......................................................... 460
  E.4 The Subroutine Declarations .................................................... 462
  E.5 The Subroutine Body ................................................................. 463
  E.6 Model Subroutines With Marginalization .................................... 464

F the Bayes Directory Organization .............................................................. 469

G 4dfp Overview ....................................................................................... 471
Outlier Detection 475

Bibliography 479
## List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>The Start Up Window</td>
<td>23</td>
</tr>
<tr>
<td>1.2</td>
<td>Example Package Exponential Interface</td>
<td>25</td>
</tr>
<tr>
<td>2.1</td>
<td>Installation Kit For The Bayesian Analysis Software</td>
<td>31</td>
</tr>
<tr>
<td>3.1</td>
<td>The Start Up Window</td>
<td>34</td>
</tr>
<tr>
<td>3.2</td>
<td>The Files Menu</td>
<td>35</td>
</tr>
<tr>
<td>3.3</td>
<td>The Files/Load Image Submenu</td>
<td>37</td>
</tr>
<tr>
<td>3.4</td>
<td>The Packages Menu</td>
<td>41</td>
</tr>
<tr>
<td>3.5</td>
<td>The Working Directory Menu</td>
<td>46</td>
</tr>
<tr>
<td>3.6</td>
<td>The Working Directory Information Popup</td>
<td>47</td>
</tr>
<tr>
<td>3.7</td>
<td>The Settings Pull Down Menu</td>
<td>47</td>
</tr>
<tr>
<td>3.8</td>
<td>The McMC Parameters Popup</td>
<td>48</td>
</tr>
<tr>
<td>3.9</td>
<td>The Edit Server Popup</td>
<td>49</td>
</tr>
<tr>
<td>3.10</td>
<td>The Submit Job Widgets</td>
<td>51</td>
</tr>
<tr>
<td>3.11</td>
<td>The Server Widgets Group</td>
<td>52</td>
</tr>
<tr>
<td>3.12</td>
<td>The Ascii Data Viewer</td>
<td>54</td>
</tr>
<tr>
<td>3.13</td>
<td>The Fid Data Viewer</td>
<td>55</td>
</tr>
<tr>
<td>3.14</td>
<td>Fid Data Display Type</td>
<td>56</td>
</tr>
<tr>
<td>3.15</td>
<td>Fid Data Options Menu</td>
<td>58</td>
</tr>
<tr>
<td>3.16</td>
<td>The Image Viewer</td>
<td>60</td>
</tr>
<tr>
<td>3.17</td>
<td>The Image Viewer Right Mouse Popup Menu</td>
<td>61</td>
</tr>
<tr>
<td>3.18</td>
<td>The Prior Probability Viewer</td>
<td>66</td>
</tr>
<tr>
<td>3.19</td>
<td>The Fid Model Viewer</td>
<td>69</td>
</tr>
<tr>
<td>3.20</td>
<td>The Plot Results Viewer</td>
<td>72</td>
</tr>
<tr>
<td>3.21</td>
<td>Plot Information Popup</td>
<td>73</td>
</tr>
<tr>
<td>3.22</td>
<td>The Text Results Viewer</td>
<td>75</td>
</tr>
<tr>
<td>3.23</td>
<td>The Bayes Condensed File</td>
<td>78</td>
</tr>
<tr>
<td>3.24</td>
<td>Data, Model, And Resid Plot</td>
<td>81</td>
</tr>
<tr>
<td>3.25</td>
<td>The Parameter Posterior Probabilities</td>
<td>82</td>
</tr>
<tr>
<td>3.26</td>
<td>The Maximum Entropy Histograms</td>
<td>84</td>
</tr>
<tr>
<td>3.27</td>
<td>The Parameter Samples Plot</td>
<td>85</td>
</tr>
<tr>
<td>3.28</td>
<td>Posterior Probability Vs Parameter Value</td>
<td>86</td>
</tr>
<tr>
<td>3.29</td>
<td>Posterior Probability Vs Parameter Value, A Skewed Example</td>
<td>87</td>
</tr>
<tr>
<td>3.30</td>
<td>The Expected Value Of The Logarithm Of The Likelihood</td>
<td>89</td>
</tr>
<tr>
<td>Section</td>
<td>Page</td>
<td></td>
</tr>
<tr>
<td>------------------------------------------------------------------------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>26.1 Absorption Model Images</td>
<td>396</td>
<td></td>
</tr>
<tr>
<td>26.2 The Interface To The Image Phasing Package</td>
<td>397</td>
<td></td>
</tr>
<tr>
<td>26.3 Linear Phasing Package The Console Log</td>
<td>403</td>
<td></td>
</tr>
<tr>
<td>27.1 Nonlinear Phasing Example</td>
<td>406</td>
<td></td>
</tr>
<tr>
<td>27.2 The Interface To The Nonlinear Phasing Package</td>
<td>410</td>
<td></td>
</tr>
<tr>
<td>28.1 The Interface To The Analyze Image Pixels Package</td>
<td>412</td>
<td></td>
</tr>
<tr>
<td>29.1 The Interface To The Image Model Selection Package</td>
<td>416</td>
<td></td>
</tr>
<tr>
<td>29.2 Single Exponential Example Image</td>
<td>419</td>
<td></td>
</tr>
<tr>
<td>29.3 Single Exponential Example Data</td>
<td>420</td>
<td></td>
</tr>
<tr>
<td>29.4 Posterior Probability For The ExpOneNoConst Model</td>
<td>421</td>
<td></td>
</tr>
<tr>
<td>A.1 Ascii Data File Format</td>
<td>424</td>
<td></td>
</tr>
<tr>
<td>D.1 The McMC Values Report Header</td>
<td>450</td>
<td></td>
</tr>
<tr>
<td>D.2 McMC Values Report, The Middle</td>
<td>451</td>
<td></td>
</tr>
<tr>
<td>D.3 The McMC Values Report, The End</td>
<td>452</td>
<td></td>
</tr>
<tr>
<td>E.1 Writing Models A Fortran Example</td>
<td>456</td>
<td></td>
</tr>
<tr>
<td>E.2 Writing Models A C Example</td>
<td>457</td>
<td></td>
</tr>
<tr>
<td>E.3 Writing Models, The Parameter File</td>
<td>459</td>
<td></td>
</tr>
<tr>
<td>E.4 Writing Models Fortran Declarations</td>
<td>463</td>
<td></td>
</tr>
<tr>
<td>E.5 Writing Models Fortran Example</td>
<td>466</td>
<td></td>
</tr>
<tr>
<td>E.6 Writing Models The Parameter File</td>
<td>467</td>
<td></td>
</tr>
<tr>
<td>G.1 Example FDF File Header</td>
<td>473</td>
<td></td>
</tr>
<tr>
<td>H.1 The Posterior Probability For The Number of Outliers</td>
<td>476</td>
<td></td>
</tr>
<tr>
<td>H.2 The Data, Model and Residual Plot With Outliers</td>
<td>478</td>
<td></td>
</tr>
</tbody>
</table>
List of Tables

8.1 Multiplet Relative Amplitudes ........................................... 165
8.2 Bayes Analyze Models .................................................... 181
8.3 Bayes Analyze Short Descriptions ..................................... 195
Chapter 12

Diffusion Tensor Analysis

The diffusion tensor package estimates the parameters associated with diffusion tensor models. The data analyzed by this package are Ascii and may be input from an Ascii file, they can be loaded from the amplitudes resulting from a Bayes Analyze run or they may be input from an image pixel. The diffusion tensor package is accessed by selecting the “Packages/Diffusion Tensor” menu. When this button is activated the interface window shown in Fig. 12.1 is displayed. To use the Diffusion Tensor package, you must do the following:

**Check** the abscissa options appropriate for your input data.

**Load** one or more Ascii data sets using the Files menu. This data must have three abscissa for both “b” and “g” vector data. The format of a diffusion tensor data set is: data point number, data value, $A_r$, $A_p$, $A_s$, where $A_r$ is either a “B” or “G” value in the readout direction. Similarly, $A_p$ is a “B” or “G” value in the phase encode direction $A_s$ is a “B” or “G” value in the slice select direction. When a data set is successfully loaded it will be displayed in the Files Viewer.

**Set** the number of of tensors you wish to analyze. This number can be 1, 2 or 3 and is set using “Tensor Number” pull down menu.

**Check** the “Include Constant” box if the data contains an offset.

**Check** the Analysis Options/Find Outliers box if you suspect outliers are present in the data.

**Review** the prior probabilities for the the various parameters in the model using the Prior Viewer.

**Select** the server that is to process the analysis.

**Check** the status of the selected server to determine if the server is busy, change to another server if the selected server is busy.

**Run** the the analysis on the selected server by activating the Run button.

**Get** the the results of the analysis by activating the Get Job button. If the analysis is running, this button will return the Accepted report containing the status of the current run. Otherwise, it will fetch and display the results from the current analysis.
Figure 12.1: The Diffusion Tensor Package Interface

To use the diffusion tensor package:

1. Select the type of data to be loaded: g-vector, b-vector or b-matrix data.
2. Load a 5 column ascii data set for g-vector or b-vector data. For b-matrix data load a 8 column data set.
3. Select the number of tensors.
4. Specify whether a constant is present.
5. Select the server to process the job.
6. Run the analysis using the “Run” button.
7. Use “Get Job” to get the results from the server.

Figure 12.1: Diffusion Tensor Interface Fig. 12.1. The interface to the diffusion tensor package is shown here. To use this package one first selects the type diffusion tensor data to be analyzed, using the “Abscissa Options.” Depending on what check box is activated, the input data will have either 3 or 6 abscissa values. After the Abscissa Options are set, the data may be loaded, the number of tensors can then be selected and whether or not a constant offset is present. Finally, the analysis can be run using the “Run” button.
12.1 The Bayesian Calculation

A diffusion Tensor $D$ is a $3 \times 3$ symmetric matrix having six independent elements:

\[
D = \begin{pmatrix}
    D_{rr} & D_{pr} & D_{sr} \\
    D_{rp} & D_{pp} & D_{sp} \\
    D_{rs} & D_{ps} & D_{ss}
\end{pmatrix}
\]

(12.1)

where there are three redundant elements, $D_{rp} = D_{pr}$, $D_{ps} = D_{sp}$ and $D_{rs} = D_{sr}$. Using this diffusion tensor, the data and the model are related to each other by

\[
d_i = A \exp \left\{ -\text{Conv} \sum_{j=1}^3 \sum_{k=1}^3 g_{ij} D_{jk} g_{ik} \right\} + n_i
\]

(12.2)

where $d_i$ is the $i$th data value acquired using gradients $(g_{i1}, g_{i2},$ and $g_{i3})$, where the first, second and third directions are $x$, $y$ and $z$ respectively, “Conv” is a conversion constant that ensures the argument of the exponential is unitless, and $n_i$ represents the noise. For a rectangular gradient this conversion factor is given by:

\[
\text{Conv} = \Gamma^2 \delta^2 (\Delta - \delta/3)
\]

(12.3)

where $\Gamma$ is the gyromagnetic ratio, usually of protons, $\delta$ is the duration of the diffusion gradient pulses, $\Delta$ is the time between the diffusion gradient pulses.

The diffusion tensor model, Eq. (12.2) without the noise, is what is used in most diffusion tensor analyzes. To estimate the diffusion matrix, the experimenter takes a number of diffusion weighted data values, typically 6, plus a data value having no diffusion gradients. This nondiffusion weighted data value is used as an estimate of the amplitude $A$, and the data are divided by this amplitude estimate. If the measurement is noiseless, and there are no other effects in the data, the amplitude is typically estimated from the first point of the data, and then divided out of the right-hand side of Eq. (12.2). Thus if one takes the logarithm, the resulting equations are linear in the elements of the diffusion matrix. One then solves the resulting set of linear equations for the diffusion matrix. Finally, an eigenvalue decomposition of the diffusion matrix results in an estimate of the magnitude of the diffusion along three primary directions. Here we are going to call these principal diffusion magnitudes $\lambda_1$, $\lambda_2$ and $\lambda_3$ respectively. The eigenvectors are a rotation matrix $R$ characterized by three Euler angles and these Euler angles can also be estimated from the eigenvectors. Unfortunately, this procedure has many problems including, but not limited to the fact that the amplitude does not cancel because the measured amplitude is not noiseless. In some samples the diffusion data does not go to zero and, more importantly, this procedure can generate negative eigenvalues, a completely unphysical result because a real symmetric matrix must have three positive eigenvalues. Consequently, a different approach is needed to resolve these problems.

The negative eigenvalue problem can be solved by introducing the eigenvalues directly into the problem, and then using Bayesian probability theory and prior probabilities to prohibit negative eigenvalues. Here is how this is done. First, one introduces a diagonal diffusion tensor $U$ defined as:

\[
U = \begin{pmatrix}
    \lambda_1 & 0 & 0 \\
    0 & \lambda_2 & 0 \\
    0 & 0 & \lambda_3
\end{pmatrix}
\]

(12.4)
where \( \lambda_1, \lambda_2 \) and \( \lambda_3 \) are the unknown magnitudes of the diffusion along an as yet unknown set of directions. Next one introduces the rotation matrix \( R \) mentioned earlier. In this matrix the three Euler angles, \( \theta, \phi \) and \( \psi \), are unknowns that must be inferred:

\[
R = \begin{pmatrix}
\cos \psi & \sin \psi & 0 \\
-\sin \psi & \cos \psi & 0 \\
0 & 0 & 1
\end{pmatrix} \times \begin{pmatrix}
\cos \theta & 0 & -\sin \theta \\
0 & 1 & 0 \\
-\sin \theta & 0 & \cos \theta
\end{pmatrix} \times \begin{pmatrix}
\cos \phi & \sin \phi & 0 \\
-\sin \phi & \cos \phi & 0 \\
0 & 0 & 1
\end{pmatrix}
\]

(12.5)

where we have expressed this rotation matrix as a product of the three rotations needed rotate a diagonal matrix into any \( 3 \times 3 \) symmetric matrix. Multiplying the three matrices, one obtains:

\[
R = \begin{pmatrix}
R_{rr} & R_{pr} & R_{sr} \\
R_{rp} & R_{pp} & R_{sp} \\
R_{rs} & R_{ps} & R_{ss}
\end{pmatrix}
\]

(12.6)

with

\[
R_{rr} = \cos(\psi) \cos(\theta) \cos(\phi) - \sin(\psi) \sin(\phi),
\]

(12.7)

\[
R_{pr} = \cos(\psi) \cos(\theta) \sin(\phi) + \sin(\psi) \cos(\phi),
\]

(12.8)

\[
R_{sr} = -\cos(\psi) \sin(\theta),
\]

(12.9)

\[
R_{rp} = -\sin(\psi) \cos(\theta) \cos(\phi) - \cos(\psi) \sin(\phi),
\]

(12.10)

\[
R_{pp} = -\sin(\psi) \cos(\theta) \sin(\phi) + \cos(\psi) \cos(\phi),
\]

(12.11)

\[
R_{sp} = \sin(\theta) \sin(\psi),
\]

(12.12)

\[
R_{rs} = \sin(\theta) \cos(\phi),
\]

(12.13)

\[
R_{ps} = \sin(\theta) \sin(\phi),
\]

(12.14)

and

\[
R_{ss} = \cos(\theta).
\]

(12.15)

(12.16)

If we now rotate the diagonal tensor of eigenvalues, Eq. (12.4), into a nondiagonal space, one obtains

\[
D = R^T \times U \times R
\]

(12.17)

where \( D \) is the same tensor defined in Eq. (12.1). Explicitly working out this rotation results in:

\[
D_{rr} = R_{rr} \lambda_1 R_{rr} + R_{pr} \lambda_2 R_{pr} + R_{sr} \lambda_3 R_{sr},
\]

(12.18)

\[
D_{rp} = R_{rp} \lambda_1 R_{rr} + R_{pr} \lambda_2 R_{pp} + R_{sr} \lambda_3 R_{sp},
\]

(12.19)

\[
D_{rs} = R_{rr} \lambda_1 R_{rs} + R_{pr} \lambda_2 R_{ps} + R_{sr} \lambda_3 R_{ss},
\]

(12.20)

\[
D_{pr} = D_{rp},
\]

(12.21)

\[
D_{pp} = R_{rp} \lambda_1 R_{rp} + R_{pp} \lambda_2 R_{pp} + R_{sp} \lambda_3 R_{sp},
\]

(12.22)

\[
D_{ps} = R_{rp} \lambda_1 R_{rs} + R_{pp} \lambda_2 R_{ps} + R_{sp} \lambda_3 R_{ss},
\]

(12.23)

\[
D_{sr} = D_{rs},
\]

(12.24)

\[
D_{sp} = D_{ps},
\]

(12.25)
and

\[ D_{ss} = R_{rs} \lambda_1 R_{rs} + R_{ps} \lambda R_{ps} + R_{ss} \lambda_3 R_{ss}, \]  
(12.26)

\[ (12.27) \]

which means that we can apply Bayesian probability theory to infer the eigenvalues and Euler angles directly from the data without taking any logarithms and without attempting to divide the amplitude of the tensor from the problem. Additionally, because we can use the eigenvalues and Euler angles directly, we will be able to infer these quantities even when the data contain multiple diffusion tensors; something not possible with the procedures described earlier.

In the Bayesian calculations that follow, it will be assumed that there are multiple diffusion tensors in a given data set. Consequently, the notation used up to now must be modified. Here we introduce an index that represents the \( \ell \)th diffusion tensor. Additionally, we are going to include a constant offset in the diffusion tensor model. The presence of this constant will be under user control, so it may be included or excluded at the user’s discretion. Equation (12.2) will be rewritten as:

\[ d_i = C \delta(\nu) + \sum_{\ell=1}^{m} A_{\ell} \exp \left\{ \text{Conv} \sum_{j=1}^{3} \sum_{k=1}^{3} g_{ij} D_{jkm} g_{ik} \right\} + n_i, \]  
(12.28)

where \( m \) is the number of diffusion tensors, “Conv” is the conversion factor defined in Eq. (12.3), \( D_{jkm} \) is the \( j \)th column, the \( k \) row, of the \( \ell \)th diffusion tensor, \( g_{ik} \) is the \( k \)th component of the \( i \)th gradient, \( A_{\ell} \) is the amplitude of the \( \ell \)th tensor, \( C \) is the constant offset, and \( \delta(\nu) \) is an indicator function defined as:

\[ \delta(\nu) = \begin{cases} 1 & \text{If the user included a constant} \\ 0 & \text{Otherwise} \end{cases}. \]  
(12.29)

We will combine the constant offset and the amplitudes into a single set of amplitudes represented by: \( B_{\ell} \in \{C, A_1, \ldots, A_m\} \). The number of \( B \) amplitudes is \( n \) with \( n = m + \delta(\nu) \). Similarly, we will define a new model function \( G_{\ell} \) that combines the diffusion tensors and the constant:

\[ G_{\ell}(\Theta, i) \equiv \begin{cases} i^0 & \text{If } \ell = 1 \\ \exp \left[ \text{Conv} \sum_{j=1}^{3} \sum_{k=1}^{3} g_{ij} D_{jkm} g_{ik} \right] & \text{otherwise, with } m = \ell - 1 \end{cases}, \]  
(12.30)

where we intentionally wrote the constant model as \( i^0 \) as a reminder to the reader that the constant model is 1 for all \( i \). Additionally, we have included \( i \) in the argument list of the function \( G \) as a reminder that \( G \) is a function of the data point number. In the above we are using \( \Theta \) to stand for all of the diffusion tensor parameters, so

\[ \Theta \equiv \{\lambda_{11}, \lambda_{12}, \lambda_{13}, \theta_1, \phi_1, \psi_1, \ldots, \lambda_{m1}, \lambda_{m2}, \lambda_{m3}, \theta_m, \phi_m, \psi_m\}. \]  
(12.31)

In this notation, the Eq. (12.2) can be written as

\[ d_i = \sum_{\ell=1}^{n} B_{\ell} G_{\ell}(\Theta, i) + n_i, \]  
(12.32)

and it is in this form that it will be used in the Bayesian calculations for the posterior probability for the \( \Theta \) parameters.
The Diffusion Tensor package computes the marginal posterior probability for each of the parameters appearing in the model. For computational convenience we are going to marginalize out the amplitudes, the constant offset and the standard deviation of the noise. Consequently, the target distribution for the Markov chain will be the joint marginal posterior probability for all of the diffusion parameters \( \Theta \). This joint posterior probability is computed from the joint posterior probability for all of the parameters, including the amplitudes and the standard deviation of the noise:

\[
P(\Theta | DI) = \int P(B_1 \ldots B_n, \sigma | DI) dB_1 \ldots dB_n d\sigma.
\]

The right-hand side of this equation is factored using Bayes’ theorem

\[
P(\Theta | DI) \propto \int P(B_1 \ldots B_m, \sigma | I) P(D | B_1 \ldots B_n, \sigma | I) dB_1 \ldots dB_n d\sigma
\]

where \( P(B_1 \ldots B_n, \sigma | I) \) is the joint prior probability for all of the parameters and the other term, the direct probability for the data, \( P(D | B_1 \ldots B_n, \sigma | I) \), is often called the likelihood function. Next the product rule of probability theory is used to factor the joint prior probability for the parameters into a series of independent prior probabilities, one for each parameter,

\[
P(B_1 \ldots B_m, \sigma | I) \propto P(\sigma | I) \prod_{\ell=1}^{n} P(B_\ell | I)
\]

\[
\times \prod_{j=1}^{m} [P(\lambda_{j1} | I)P(\lambda_{j2} | I)P(\lambda_{j3} | I)]
\]

\[
\times \prod_{j=1}^{m} [P(\theta_j | I)P(\phi_j | I)P(\psi_j | I)]
\]

where to make this factorization we assumed logical independents, i.e., the prior probability we would assign to one parameter does not depend on any other parameters. Substituting, the prior probability for the parameters, Eq. (12.35), into the marginal posterior probability for the \( \Theta \) parameters, Eq. (12.34), one obtains:

\[
P(\Theta | DI) \propto \int \prod_{\ell=1}^{n} [P(B_\ell | I)]
\]

\[
\times \prod_{j=1}^{m} [P(\lambda_{j1} | I)P(\lambda_{j2} | I)P(\lambda_{j3} | I)]
\]

\[
\times \prod_{j=1}^{m} [P(\theta_j | I)P(\phi_j | I)P(\psi_j | I)]
\]

\[
\times P(D | B_1 \ldots B_n, \sigma | I) dB_1 \ldots dB_n d\sigma
\]

We have reached the point in the calculation where we must assign probabilities to represent the various terms in this equation. The prior probability for the amplitudes \( B_\ell \) will be assigned as a Gaussians given by

\[
P(B_\ell | I) = \left( \frac{2\pi\sigma^2}{g_{\ell\ell}\beta^2} \right)^{-\frac{1}{2}} \exp \left\{ -\frac{g_{\ell\ell}\beta^2 B_\ell^2}{2\sigma^2} \right\}
\]
where \( \sigma \) is the standard deviation of the prior probability for the errors, \( \beta \) is hyperparameter and expresses how strongly we think we can guess the value of the amplitudes relative to how well it can be determined from the data and \( g_{\ell \ell} \), the squared-length of the function \( G_\ell(\Theta, i) \), is defined in Eq. (12.44) below. The prior probability for the noise standard deviation, \( P(\sigma|I) \), was assigned a Jeffreys’ prior

\[
P(\sigma|I) \propto \frac{1}{\sigma}.
\]

The prior probabilities for the eigenvalues are defined by the user. When the user loads a set of data, the interface will make its best guess for the prior probabilities and set a default Gaussian prior. The user, using the prior viewer, can modify or completely replace these default prior probabilities.

The model equation is symmetric under relabeling of the amplitudes and tensors parameters and each tensor is symmetric under reordering the rows or columns of the tensors. These symmetry cause the joint posterior probability for the tensor parameters to be symmetric in the sense that if there is a peak at \( \lambda_{11} = \beta \) and \( \lambda_{12} = \gamma \), then there is also a peak at \( \lambda_{11} = \gamma \) and \( \lambda_{12} = \beta \); this symmetry occurs because the model does not tell us which eigenvalue corresponds to which model component. Consequently, a convention must be introduced which breaks this symmetry by identifying a model component with a signal component. In the calculations implemented here, we break this symmetry by ordering the eigenvalues within and across tensors. By ordering the eigenvalues this manner, we effectively tell probability theory what we mean when we say, “eigenvalue one,” we mean the largest eigenvalue. We do impose one additional condition on these eigenvalues, if there are multiple tensors, then we impose the additional condition: \( 0 < \lambda_{11} < \lambda_{21} < \cdots < \lambda_{m1} < \text{High} \), where “High” is the upper bound in the prior probability for the eigenvalues. In effect telling probability theory that when we say tensor \( 1 \), we mean the tensor having the smallest principle eigenvalue, etc. Finally, we will assign the prior probabilities for the angles as uniform prior probabilities of the form:

\[
P(\text{angle}|I) = \begin{cases} 
0 & \text{If } 0 \leq \text{angle} \leq \pi \\
0 & \text{Otherwise}
\end{cases},
\]

(12.39)

where “angle” is any of the Euler angles in any of the tensors. The direct probability for the data was assigned using a Gaussian likelihood. Gathering up the prior probabilities and assigning the likelihood, the joint posterior probability for the parameters, Eq. (12.34), is given by:

\[
P(\Theta|DI) \propto \left(2\pi\sigma^2\right)^{-\frac{N+m}{2}} \prod_{j=1}^{m} \sqrt{g_{jj}} \beta \prod_{k=1}^{3} P(\lambda_{jk}|I) \exp\left\{-\frac{Q}{2\sigma^2}\right\} dB_1 \ldots dB_n d\sigma
\]

(12.40)

where we have left the prior probabilities for the eigenvalues in symbolic form because they are user defined. The quantity \( Q \) is given by

\[
Q = N\bar{d}^2 - 2N \sum_{j=1}^{m} B_j T_j(\Theta) + N \sum_{j=1}^{m} \sum_{k=1}^{m} B_j B_k g_{jk}(1 + \beta^2 \delta_{jk})
\]

(12.41)

and is essentially Chi-squared where

\[
\bar{d}^2 = \frac{1}{N} \sum_{i=1}^{N} d_i^2
\]

(12.42)
is the mean-square data value. The $T_j$

$$T_j = \frac{1}{N} \sum_{i=1}^{N} d_i G_j(\Theta, i)$$  \hspace{1cm} (12.43)

are the mean projection of the data onto the model. Finally, the $g_{jk}$ are defined as

$$g_{jk} = \frac{1}{N} \sum_{i=1}^{N} G_j(\Theta, i) G_k(\Theta, i).$$  \hspace{1cm} (12.44)

The integrals over the amplitudes are Gaussian quadrature integrals and the integral over the standard deviation is essentially a gamma function integral. Both of which are straightforward to evaluate and we omit the details, one obtains

$$P(\Theta|DI) \propto |g_{jk}|^{-\frac{1}{2}} \prod_{j=1}^{m} \sqrt{g_{jj}} \prod_{k=1}^{3} P(\lambda_{jk}|I) \left[ \frac{Q}{2} \right]^{-\frac{N}{2}}.$$  \hspace{1cm} (12.45)

This probability density function is of the form of Students $t$-distribution, and it is this $t$-distribution that is targeted by the Markov chain Monte Carlo simulation.

For some examples of diffusion tensors imaging, see [14] and for more on the origins of diffusion tensors imaging, see [38, 44, 62, 63]. For those wishing to know more about how these integrals were done see [2, 61]. For a brief overview of this subject, Wikipedia has a surprisingly good discussion.

### 12.2 Using The Package

The type of data loaded by the diffusion tensor package is dependent on the type of abscissa one selects, there are three options that may be chosen in the “Abscissa Options” box, by checking one of the three check boxes:

**Use g Vectors** tells the package that the abscissa of the input data will contain gradient or g-vectors. When g-vectors are used, the package converts them into b-vectors using

$$b_j = \Gamma \delta \sqrt{(\Delta - \delta/3)} g_j.$$  \hspace{1cm} (12.46)

where $j$ should be replaced by $x$, $y$ or $z$. This conversion requires three additional parameters to be entered, $\Gamma$ the gyromagnetic ratio in units of $1/(\text{Gauss Sec})$, $\delta$ the duration of the gradient pulse in units of seconds and $\Delta$ the time between the two gradient pulses in units of seconds. These parameters are specified by three prior probabilities of prior type parameter, i.e., constants. So when this option is selected, three additional prior probabilities are included in prior list. Note that gradients are three dimensional vectors, so the input Ascii data file must contain: a data point number, the data, the gradients $g_r$, $g_p$ and $g_s$, where the subscripts stand for the readout, phase encode and the slice select directions. Their appearance in the Ascii data file is a convention and they must appear in the given order, see Chapter A for more on Ascii file formats.
DIFFUSION TENSOR PACKAGE

Use **b Vectors** indicates that the input Abscissa are b-vectors and consequently, no conversion to b-vectors is required. In this case, the Diffusion Tensor package sets the conversion factor to one. The input Ascii data file must contain: a data point number, the data, \( b_r \), \( b_p \) and \( b_s \) in that order.

Use **b Matrix** indicates that the input data has a b-matrix for the abscissa. A b-matrix is a real symmetric 3 \times 3 matrix having six independent elements:

\[
B \text{ Matrix} \equiv \begin{pmatrix}
 b_{rr} & b_{pr} & b_{sr} \\
 b_{rp} & b_{pp} & b_{sp} \\
 b_{rs} & b_{ps} & b_{ss}
\end{pmatrix}.
\] (12.47)

Consequently, for b-matrix data, the input file format is: a data point number, the data followed by \( b_{rr} \), \( b_{pp} \), \( b_{ss} \), \( b_{rp} \), \( b_{rs} \) and \( b_{ps} \). Note the order of the elements in the b-matrix data file is a convention and must be in the given order.

After selecting the “Abscissa Options” one can load the diffusion data. As explained above, the type of data you must load is dependent on which Abscissa Options you selected. The model is specified by selecting the number of diffusion tensors, and indicating whether or not a constant offset is present. Setting the number of diffusion tensors is done using the “Tensor number” pull-down menu, see Fig. 12.1. Currently, you can select one, two or three tensors. To include a constant offset in the model, one checks the “Include Constant” check box.

The Text outputs files from the Diffusion Tensor packages consist of: “Bayes.prob.model,” “BayesDiffTensor.mcmc.values,” “Bayes.params,” “Console.log,” “Bayes.accepted” and finally a “Bayes.Condensed.File.” These output files can be viewed using the Text Viewer or they can be viewed using File Viewer by navigating to the current working directory and then selecting the files. The format of the mcmc.values report is discussed in Appendix D and a small sample of this file is shown in Fig. 12.2. The other reports are discussed in Chapter 3. Additionally, the “Plot Results Viewer” can be used to view the output probability density functions. In addition to the standard data, model and residual plots there are probability density functions for the eigenvalues, the three Euler angles, and the standard deviation of the noise.

The mean and standard deviation estimates of the various parameters are written to the “Bayes-DiffusionTensor.mcmc.values” output file, see Fig. 12.2 for a sample of this file. This file may be printed, or viewed using the interface. It consist of four general sections, the first section just identifies the model that was processed and relates some information about the posterior probability, the prior, and the likelihood. The second section contains the parameters that maximized the joint posterior probability. The third section contains mean and standard estimates of the parameters appearing in the Diffusion Tensor package. This third section also contains the logarithm of the posterior probability for the model. This probability is used to update the probabilities file and may be used to do model selection.

The Bayesian calculation for joint posterior probability for all of the parameters is done using Markov chain Monte Carlo with simulated annealing. In the annealing phase of the calculation the posterior probability for the model is computed. An example of this file is shown in Fig. 12.3. The “Bayes.prob.model” file contains the name of the model, the natural logarithm of the posterior probability for the model, the normalized probability for the model and the date and time the model was run.

The example shown in Fig. 12.3 was done using the “bayes/Bayes.test.data/DiffTensorAscii.Data”. This simulated data set contains one diffusion tensor plus a constant. To illustrate how to use the
Figure 12.2: Diffusion Tensor Parameter Estimates

--------------- Eigenvectors ---------------

<table>
<thead>
<tr>
<th>Tensor: 1</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vec: 2</td>
<td>-7.92821559E-01</td>
<td>-2.82826221E-01</td>
<td>5.39854892E-01</td>
</tr>
<tr>
<td>Vec: 3</td>
<td>-3.91027707E-01</td>
<td>9.15501029E-01</td>
<td>-9.46319111E-02</td>
</tr>
</tbody>
</table>

The expected parameter values (mean value of the probability distributions):

<table>
<thead>
<tr>
<th>Parameter Description</th>
<th>Mean Value</th>
<th>Std. Dev.</th>
<th>Peak Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lambda 1 Tensor 1</td>
<td>4.66911E-04</td>
<td>2.21524E-06</td>
<td>4.66811E-04</td>
</tr>
<tr>
<td>Lambda 2 Tensor 1</td>
<td>1.55124E-04</td>
<td>2.58916E-06</td>
<td>1.55343E-04</td>
</tr>
<tr>
<td>Lambda 3 Tensor 1</td>
<td>6.50448E-07</td>
<td>6.54884E-07</td>
<td>3.50572E-08</td>
</tr>
<tr>
<td>Average Lambda 1</td>
<td>2.07562E-04</td>
<td>1.19007E-06</td>
<td>2.07560E-04</td>
</tr>
<tr>
<td>RA Tensor 1</td>
<td>1.93932E-04</td>
<td>1.03217E-06</td>
<td>1.94039E-04</td>
</tr>
<tr>
<td>FA Tensor 1</td>
<td>9.34352E-01</td>
<td>5.63672E-03</td>
<td>9.34857E-01</td>
</tr>
<tr>
<td>Theta Tensor 1</td>
<td>9.53311E+01</td>
<td>8.87027E-01</td>
<td>9.54301E+01</td>
</tr>
<tr>
<td>Phi Tensor 1</td>
<td>1.13092E+02</td>
<td>3.09494E-01</td>
<td>1.13128E+02</td>
</tr>
<tr>
<td>Psi Tensor 1</td>
<td>3.27776E+01</td>
<td>4.09517E-01</td>
<td>3.28396E+01</td>
</tr>
<tr>
<td>Dxx Tensor 1</td>
<td>1.14992E-04</td>
<td>1.70590E-06</td>
<td>1.14795E-04</td>
</tr>
<tr>
<td>Dxy Tensor 1</td>
<td>1.85249E-04</td>
<td>1.16739E-06</td>
<td>1.85606E-04</td>
</tr>
<tr>
<td>Dxz Tensor 1</td>
<td>4.48854E-05</td>
<td>2.11995E-06</td>
<td>4.45133E-05</td>
</tr>
<tr>
<td>Dyy Tensor 1</td>
<td>3.06394E-04</td>
<td>2.01294E-06</td>
<td>3.05897E-04</td>
</tr>
<tr>
<td>Dyz Tensor 1</td>
<td>1.04314E-04</td>
<td>2.36628E-06</td>
<td>1.04367E-04</td>
</tr>
<tr>
<td>Dzz Tensor 1</td>
<td>2.01300E-04</td>
<td>1.74817E-06</td>
<td>2.01988E-04</td>
</tr>
<tr>
<td>Amp Tensor 1 Set 1</td>
<td>1.00122E+02</td>
<td>6.10312E-02</td>
<td>1.00124E+02</td>
</tr>
<tr>
<td>Const 1</td>
<td>1.00030E+01</td>
<td>1.43077E-01</td>
<td>1.00079E+01</td>
</tr>
</tbody>
</table>

Figure 12.2: The output from the Diffusion Tensor Package consists of four parts. The first part identifies the model that was processed and then relates some information about the priors and the likelihood. This is followed by the parameters that maximized the joint posterior probability for the parameters. The maximum posterior probability parameters are followed by the eigenvectors that maximized the posterior probability. And these are followed by the mean and standard deviation estimates for the parameters show here.
Figure 12.3: Diffusion Tensor Posterior Probability For The Model

<table>
<thead>
<tr>
<th>Model Name</th>
<th>Log(e) Prob</th>
<th>Probability</th>
<th>Date/Time Run</th>
</tr>
</thead>
<tbody>
<tr>
<td>One D</td>
<td>-1.68351E+02</td>
<td>0.00000</td>
<td>Mon Jun 9 10:24:23 2003</td>
</tr>
<tr>
<td>One D + Const</td>
<td>-1.31755E+02</td>
<td>0.99997</td>
<td>Mon Jun 9 10:25:05 2003</td>
</tr>
<tr>
<td>Two D</td>
<td>-1.72142E+02</td>
<td>0.00000</td>
<td>Mon Jun 9 10:26:49 2003</td>
</tr>
<tr>
<td>Two D + Const</td>
<td>-1.42238E+02</td>
<td>0.00003</td>
<td>Mon Jun 9 10:31:02 2003</td>
</tr>
</tbody>
</table>

Figure 12.3: During the annealing phase the Diffusion Tensor Package computes the posterior probability for the model. This probability is written to the “Bayes.prob.model” file located in the experiment. If you run multiple models, the probabilities for the various models are appended to this file and may be used for model selection.

Diffusion Tensor package to do model selection, the one tensor model, then the one plus constant, etc. up to the two tensors plus a constant were run. Note that the logarithm of the posterior probability reaches a peak at the one tensor plus a constant model, and then decreases when the two tensor models were run.
Bibliography


479


[45] Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth, Augusta H. Teller, and Edward Teller (1953), “Equation of State Calculations by Fast Computing Machines,” Journal of Chemical Physics. The previous link is to the American Institute of Physics and if you do not have access to Science Sitations you may not be able to retrieve this paper.


BIBLIOGRAPHY


