Bayesian Data-Analysis Toolbox
Release 4.23, Manual Version 3

G. Larry Bretthorst
Biomedical MR Laboratory
Washington University School Of Medicine,
Campus Box 8227
Room 2313, East Bldg.,
4525 Scott Ave.
St. Louis MO 63110
http://bayes.wustl.edu
Email: g Bretthorst@wustl.edu

September 18, 2018
Chapter 20

Enter Ascii Model

The Enter Ascii Model Package allows you to enter a model of your own and then use Bayesian probability theory to analyze that model. To use this package you do not have to have either Fortran or C installed on your server. However, If you do not have either Fortran or C installed, the only models you will be able to use are the system models. Consequently, installing both Fortran and C is strongly recommended. The interface to this package is shown in Fig. 20.1 To use this package, you must do the following:

Select the “Enter Ascii Model” package from the Package menu.

Load a Fortran or C model using the “System” or “User” buttons in the “Load And Build Model” widget group.

Load one or more Ascii data sets using the Files menu. When a data set is successfully loaded the data is plotted in the Ascii Data viewer. The format of the Ascii data that must be loaded is dependent on the model. Usually the data are two column Ascii, however, in general this package takes multicolumn Ascii data with a multicolumn abscissa. See Appendix A for a detailed description of the Ascii data files used by the Bayesian Analysis software.

Build the model using the “Build” button.

Check the Analysis Options/Find Outliers box if you suspect outliers are present in the data.

Review the prior probabilities for the loaded model using the Prior Viewer.

Select the server that is to process the analysis.

Check the status of the selected server to determine if the server is busy, change to another server if the selected server is busy.

Run the analysis on the selected server by activating the Run button.

1I would like to build a system library of predefined models. If you have models that you think would be of general use, I would like to hear from you. To have one of your models included, I would need the source code, the parameter file, a brief description of the model equations and data requirements.
To use the Enter Ascii package:

1. Load the Fortran or C model function from the System or User Models directory.

2. For non-system models, build the model using the “Build” button.

3. Load an ascii file having the number of abscissa specified by the model parameter file.

4. Review the prior range information, and make appropriate changes.

5. Select the server to run the analysis.

6. Run the analysis using the “Run” button.

7. Use “Get Job” to get the results from the server.

Figure 20.1: All packages that allow the user to load a Fortran or C model have the buttons titled “Load and Build Model.” These buttons allow you to load a model from either the system directory or from your user directory. They allow you to compile a model and save the current prior settings. Additionally, using the “Fortran/C Model Viewer” you can edit, modify, and create models, see Appendix E for more on creating Fortran and C models.
Get the results of the analysis by activating the Get Job button. If the analysis is running, this button will return the Accepted report containing the status of the current run. Otherwise, it will fetch and display the results from the current analysis.

20.1 The Bayesian Calculation

The calculation done by Enter Ascii Model Package is a parameter estimation calculation. However, there are two distinct functional forms for the model that are used: one using marginalization over the amplitudes, and one that does not. The model function that does not use marginalization is given by:

\[d_j(t_i) = U_j(t_i, r_1, r_2, \ldots) + n_j(t_i) \]

where \(d_j(t_i) \) represents a data item in the \(j \)th data set at abscissa value \(t_i \) and \(t_i \) may be vector valued. \(U_j(t_i, r_1, r_2, \ldots) \) is the model function. \(r_j \) are the various parameters appearing in the model including any amplitudes that may be present, and \(n_j(t_i) \) represents noise in the \(j \)th data set at abscissa \(t_i \). Because this model does not marginalize out the amplitudes, it is possible to restrict the amplitudes ranges using the prior probabilities.

The other model used by this package assumes the amplitudes are to be marginalized from the joint posterior probability for the parameters. The model equation that uses marginalization is similar

\[d_j(t_i) = \sum_{\ell=1}^{m} A_{jk} G_{j\ell}(t_i, r_1, r_2, \ldots) + n_j(t_i) \]

where the amplitudes are labeled \(A_{jk} \) meaning the \(k \)th amplitude in the \(j \)th data set, the sum is over all of the amplitudes in the model, \(G_{j\ell}(t_i, r_1, r_2, \ldots) \) is the \(\ell \)th model function in the \(j \)th data set evaluated at abscissa \(t_i \) and this model equation implicitly assumes that each data set contains the same number of amplitudes.

20.1.1 The Bayesian Calculations Using Eq. (20.1)

To compute the marginal posterior probability for each parameter using Eq. (20.1), a Markov chain Monte Carlo simulation is run targeting the joint posterior probability for all of the parameters. This joint posterior probability is represented symbolically by \(P(r_1 r_2 \ldots | DI) \). The joint posterior probability for the parameters is factored using Bayes’ theorem to obtain

\[P(r_1 r_2 \ldots | DI) \propto P(r_1 r_2 \ldots | I)P(D | r_1 r_2 \ldots I) \]

where \(D \) stands for all of the data in all of the data sets, \(P(r_1 r_2 \ldots \sigma_1 \ldots | I) \), is factored into independent prior probabilities for each parameter:

\[P(r_1 r_2 \ldots | DI) \propto \prod_{j=1}^{m} P(r_j | I) \prod_{i=1}^{m} P(D | r_1 r_2 \ldots I) \]

where \(m \) is the total number of parameters in the model. The priors, \(P(r_j | I) \), are specified in the input parameter file that describes the model. These prior are either the defaults, if you loaded the model from the system directory, or they are the priors set using the interface. Because we don’t
know the functional form of these priors, we are going to leave them in symbolic form. Factoring the direct probability for the data into an independent direct probability for each data set, one obtains

\[P(r_1 r_2 \ldots | DI) \propto \prod_{j=1}^{m} P(r_j | I) \prod_{j=1}^{n} P(D_j | r_1 r_2 \ldots I) \] (20.5)

as the joint posterior probability for the parameters. The direct probability for the data is a marginal likelihood, because the standard deviation of the noise prior probability is not present. Introducing a standard deviation of the noise prior probability, \(\sigma_j \), for each data set, and using the rules of probability theory to remove these parameters, one obtains:

\[P(r_1 r_2 \ldots | DI) \propto \prod_{j=1}^{m} P(r_j | I) \prod_{j=1}^{n} \left[\int P(\sigma_j | I) P(D_j | \sigma_j r_1 r_2 \ldots I) d\sigma_j \right]. \] (20.6)

We have reached the point in this calculation where one has no other choice than to assign probabilities to represent each of these probabilities and then to perform the indicated integrals. Assign a Jeffreys’ prior to the prior probability for the noise standard deviation:

\[P(\sigma_j | I) \propto \frac{1}{\sigma_j}, \] (20.7)

and assigning the direct probability for the data using a Gaussian of standard deviation \(\sigma_j \) one obtains

\[P(r_1 r_2 \ldots | DI) \propto \prod_{j=1}^{m} P(r_j | I) \prod_{j=1}^{n} \left[\int Q_j(t_i, r_1, r_2, \ldots) \sigma_j^{-N_j + 1} \exp \left\{ -\frac{Q_j(t_i, r_1, r_2, \ldots)}{2\sigma_j^2} \right\} d\sigma_j \right]. \] (20.8)

as the joint posterior probability for the parameters, where \(Q_j(t_i, r_1, r_2, \ldots) \) is given by:

\[Q_j(t_i, r_1, r_2, \ldots) = \sum_{i=1}^{N_j} \left[d_j(t_i) - U_j(t_i, r_1, r_2, \ldots) \right]^2, \] (20.9)

and is the total squared residual and is essentially \(\chi^2 \). Evaluating the integral over the standard deviation of the noise, one obtains

\[P(r_1 r_2 \ldots | DI) \propto \prod_{j=1}^{m} P(r_j | I) \prod_{j=1}^{n} \left[\frac{Q_j(t_i, r_1, r_2, \ldots)}{2} \right]^{N_j/2} \] (20.10)

as the joint posterior probability for the parameters, where we have dropped a number of constants that make no difference in this parameter estimation problem.

20.1.2 The Bayesian Calculations Using Eq. (20.2)

To compute the marginal posterior probability for each parameter using Eq. (20.2), a Markov chain Monte Carlo simulation is run targeting the joint posterior probability for all of the nonlinear parameters. In this context, nonlinear means all of the parameters appearing in the model in a
nonlinear fashion, i.e., all of the parameters except the amplitudes. This joint posterior probability is represented symbolically by \(P(r_1 r_2 \ldots | DI) \). The joint posterior probability for the nonlinear parameters is factored using Bayes’ theorem to obtain

\[
P(r_1 r_2 \ldots | DI) \propto P(r_1 r_2 \ldots | I) P(D | r_1 r_2 \ldots I)
\]

(20.11)

where \(D \) stands for all of the data in all of the data sets, the prior probability for all of the nonlinear parameters is represented by, \(P(r_1 r_2 \ldots \sigma_1 \ldots | I) \), and we will factor it into independent prior probabilities for each parameter. Consequently, the joint posterior probability for all of the nonlinear parameters is given by

\[
P(r_1 r_2 \ldots | DI) \propto \prod_{j=1}^{m} P(r_j | I) \prod_{j=1}^{n} P(D | r_1 r_2 \ldots I)
\]

(20.12)

where \(m \) is the total number of nonlinear parameters in the model. The priors, \(P(r_j | I) \), are specified in the input parameter file that describes the model. These prior are either the defaults, if you loaded the model from the system directory, or they are the priors set using the interface. Because we don’t know the functional form of these priors, we are going to leave them in symbolic form. Factoring the direct probability for the data into an independent direct probability for each data set, one obtains

\[
P(r_1 r_2 \ldots | DI) \propto \prod_{l=1}^{m} \prod_{j=1}^{n} P(D_j | r_1 r_2 \ldots I)
\]

(20.13)

as the joint posterior probability for the nonlinear parameters.

The direct probability for the data is a marginal likelihood, because neither the standard deviation of the noise prior probability nor the amplitudes are present. To proceed with this calculation, these parameters must be reintroduced into the joint posterior probability for the nonlinear parameters. Representing the standard deviation of the noise prior probability for each data set as \(\sigma_{\nu} \) and \(\{ A \}_{j} \) as all of the amplitudes in the \(j \)th data set, one obtains

\[
P(r_1 r_2 \ldots | DI) \propto \prod_{l=1}^{m} \prod_{j=1}^{n} P(D_j \sigma_{\nu} \{ A \}_{j} | r_1 r_2 \ldots I) d\sigma_{\nu} d\{ A \}_{j}
\]

(20.14)

as the joint posterior probability for the parameters. Factoring the right-hand side of this equation, one obtains

\[
P(r_1 r_2 \ldots | DI) \propto \prod_{l=1}^{m} \prod_{j=1}^{n} P(D_j \sigma_{\nu} \{ A \}_{j} | r_1 r_2 \ldots I) d\sigma_{\nu} d\{ A \}_{j}
\]

(20.15)

where \(P(D_j \sigma_{\nu} \{ A \}_{j} | r_1 r_2 \ldots I) \) is the standard deviation for the noise prior probability in the \(j \)th data set. Similarly, \(P(\{ A \}_{j} | I) \) is the joint prior probability for the amplitudes in the \(j \)th data set. If we assume the amplitudes are logically independent, then the joint prior probability for the amplitudes, \(P(\{ A \}_{j} | I) \), can be factored into a product of prior probabilities for each amplitude:

\[
P(r_1 r_2 \ldots | DI) \propto \prod_{l=1}^{m} \prod_{j=1}^{n} \prod_{k=1}^{p} P(A_{jk} | I) P(D_j \sigma_{\nu} \{ A \}_{j} | r_1 r_2 \ldots I) d\sigma_{\nu} d\{ A \}_{j}
\]

(20.16)
where \(P(A_{jk}|I) \) is the prior probability for the \(k \)th amplitude in the \(j \)th data set, and \(\nu \) is the number of data sets. We will assign a zero-mean Gaussian prior probability for each amplitude. This Gaussian prior probability is given by

\[
P(A_{jk}|I) \propto \left(\frac{2\pi \sigma_j^2}{\gamma^2 g_{jkk}} \right)^{-\frac{1}{2}} \exp \left\{ -\frac{A_{jk}^2 \gamma^2 g_{jkk}}{2\sigma_j^2} \right\} \tag{20.17}
\]

where

\[
g_{jkl} \equiv \sum_{i=1}^{N_j} G_{jk}(t_i)G_{jl}(t_i) \tag{20.18}
\]

and \(\gamma \) is used to control the width of this prior probability. The reason for this particular functional form is that it allows one to evaluate the integrals over the amplitudes in a concise functional form that aids in doing the numerical calculations. Substituting the prior probability for the amplitudes, Eq. (20.17), into the joint posterior probability for the parameters, Eq. 20.16,

\[
P(r_1 r_2 \ldots | DI) \propto \left\[\prod_{l=1}^{m} P(r_l|I) \right\] \times \left[\prod_{j=1}^{n} \left[\int \frac{1}{\sigma_j} \left(\frac{2\pi \sigma_j^2}{\gamma^2 g_{j11} \cdots g_{j\nu\nu}} \right)^{-\frac{1}{2}} \exp \left\{ -\frac{\sum_{k=1}^{\nu} A_{jk}^2 \gamma^2 g_{jkk}}{2\sigma_j^2} \right\} \left[P(D_j|\sigma_j\{ A\}_j r_1 r_2 \ldots I) d\sigma_j d\{ A\}_j \right] \right] \tag{20.19}
\]

and assigning a Gaussian for the direct probability for the data, \(P(D_j|\sigma_j\{ A\}_j r_1 r_2 \ldots I) \), one obtains:

\[
P(r_1 r_2 \ldots | DI) \propto \left\[\prod_{l=1}^{m} P(r_l|I) \right\] \times \left[\prod_{j=1}^{n} \left[\int \frac{1}{\sigma_j} \left(\frac{2\pi \sigma_j^2}{\gamma^2 g_{j11} \cdots g_{j\nu\nu}} \right)^{-\frac{1}{2}} \exp \left\{ -\frac{\sum_{k=1}^{\nu} A_{jk}^2 \gamma^2 g_{jkk}}{2\sigma_j^2} \right\} \left[(2\pi \sigma_j^2)^{-\frac{N_j}{2}} \exp \left\{ -\sum_{i=1}^{N_j} \left(\frac{d_{ji} - \sum_{k=1}^{\mu} A_{jk} G_{jk}(t_i, r_1 \cdots)}{2\sigma_j} \right)^2 \right\} \right] \right] \tag{20.20}
\]

After evaluating the integrals over the amplitudes, one obtains

\[
P(r_1 r_2 \ldots | DI) \propto \left\[\prod_{l=1}^{m} P(r_l|I) \right\] \prod_{j=1}^{n} \left[\frac{\gamma^2}{g_{j11} \cdots g_{j\nu\nu}} \right] |g_{jkl}|^{-\frac{1}{2}} \left(\frac{Q_j(r_1 r_2 \ldots)}{2} \right)^{\frac{N_j}{2}} \tag{20.21}
\]
with
\[Q_j(r_1 r_2 \ldots) \equiv N_j \left(\sum_{i=1}^{N_j} d_{ji} - \sum_{\ell=1}^{\nu} \hat{A}_{j\ell} G_{j\ell}(t_i r_1 r_2 \ldots) \right)^2, \]
(20.22)

\(|g_{jkl}|\) is the magnitude of the determinate of the \(g_{jkl}\) matrix defined in Eq. (20.18) and the amplitudes \(\hat{a}_{j\ell}\) are given by the solution to
\[\sum_{k=1}^{\nu} g_{jkl} \hat{A}_{j\ell} = T_{j\ell} \]
(20.23)

with the right-hand side of this equation given by:
\[T_{j\ell} = \sum_{i=1}^{N_j} d_{ji}(t_i) G_{j\ell}(t_i). \]
(20.24)

See [2], and [11] for more on how the integrals over the amplitudes are evaluated. Equation 20.21 is the joint posterior probability for the nonlinear parameters that is targeted by the Markov chain Monte Carlo simulations. These simulations only vary the nonlinear parameters, the amplitudes simply do not appear in the posterior probability. However, the amplitudes are output from the simulation. The output amplitudes are given by Eq. (20.23). Because these amplitudes are estimated for each value of the nonlinear parameters, there is as many samples from the distributions of the amplitudes as there is for each of the nonlinear parameters. Consequently, the model that use marginalization do output density functions for the amplitudes.

20.2 Outputs Form The Enter Ascii Model Package

The Text outputs files from the Enter Ascii Model packages consist of: “Bayes.prob.model,” “BayesModelAscii.mcmc.values,” “Bayes.params,” “Console.log,” “Bayes.accepted” and a “Bayes.Condensed.File.” These output files can be viewed using the Text Viewer or they can be viewed using File Viewer by navigating to the current working directory and then selecting the files. The format of the mcmc.values report is discussed in Appendix D and the other reports are discussed in Chapter ??.

Additionally, the “Plot Results Viewer” can be used to view the output probability density functions. In addition to the standard data, model and residual plots there are probability density functions for each parameter in the currently loaded Fortran/C model. These output probability density functions are named

\[\text{ModelFileName.ParamName} \]

where \text{ModelFileName} is the name of the currently loaded model. For example, if you have a model named \text{MyFunnyExp} model, and it has a decay rate named \text{FunnyRate} the output file containing the posterior probability for \text{FunnyRate} would be named:

\[\text{MyFunnyExp.FunnyRate}. \]

This naming convention also applies to derived parameters. So, if in addition to generating samples for \text{FunnyRate}, you also generated samples from a derived inverse decay rate, which was called \text{FunnyDecayTime} then there would also be an output file named

\[\text{MyFunnyExp.FunnyDecayTime}. \]
MyFunnyExp.FunnyDecayTime

containing the posterior probability for the decay time. For more on writing Ascii models in either Fortran or C, see Appendix E.
Bibliography

[45] Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth, Augusta H. Teller, and Edward Teller (1953), “Equation of State Calculations by Fast Computing Machines,” Journal of Chemical Physics. The previous link is to the American Institute of Physics and if you do not have access to Science Sitations you may not be able to retrieve this paper.

Index

A_k definition, 349
$H_{j\ell}(t_i)$ definition, 349
λ_ℓ definition, 349
g_{jk} eigenvalue, 349

Abscissa, 437
 Computational, 436
 Generating, 427
 Loading, 39
 Multicolumn, 437
 Number of Columns, 458
 Total Data Values, 456

Aliases, 113, 126
Amplitudes orthonormal definition, 349

Analyze Image Pixel Package, 411
 Modification History, 413
 Phased Images, 397
 Reports
 Bayes Accepted, 413
 Using, 413

Viewers
 Fortran/C Models, 411
 Image, 411
 Prior Probabilities, 413

Widgets
 Abscissa File, 411
 Build, 411
 Find Outliers, 411
 Get Statistics, 413
 System, 411
 User, 411

Analyze Image Pixel Unique Package, 423
 Highlight
 Abscissa, 425
 Data, 425
 Input Image
 Abscissa, 423

Data, 423
Reports
 Bayes Accepted, 425
 Console Log, 425
 McMC Values, 425
 Using, 425

Viewers
 Fortran/C Models, 423
 Image, 423
 Prior Probabilities, 425

Widgets
 Build, 423
 Find Outliers, 423
 Get Statistics, 425
 System, 423
 User, 423

Ascii Data Viewer, 53
Assigning Probabilities, 118

Bandwidth, 111, 127
Bayes Analyze Package, 155
 Levenberg-Marquardt, 171
 Step, 194
 Algorithm, 175
 Amplitudes, 197, 198
 Bayes Model, 159, 161
 Bayesian Calculations, 167
 Bruker, 162
 Build BA Model, 159
 Covariance, 174
 Default Parameters Settings, 155
 Error Messages, 200
 Fid Model Viewer, 160
 Interface, 156
 Likelihood
 Gaussian, 158
 Student’s t-distribution, 158
INDEX

Log File, 193, 195
Lorentzian lineshape, 161
Marking Resonances, 157
Model
 \(J_n \), 165
 \(J_p \), 165
 \(J_s \), 165
Amplitude, 163, 164
Bessel Function, 163
Constants Models, 157
Correlated, 157, 162, 164
Equation, 161, 164, 164
First Order Phase, 157, 162, 164
First Point, 162, 164
Gaussian, 163
Imaginary Constant, 164
Multi-Exponential, 163
Multiple Data Sets, 165
Multiplet Order, 164
Multiplet Orders, 164
Multiplets, 162
Multiplets of Multiplets, 164
Non-Lorentzian, 163
Offsets, 162
Real Constant, 164
Relative Amplitude, 164–166
Resonance Frequency, 165
Shim Order, 163
Shimming, 166
Shimming Order, 164
Uncorrelated, 157, 162, 164
Zero Order Phase, 157, 162, 164
Model Interface, 160
Multiplets, 158
Newton-Raphson, 171
Noise File, 158
Noise Standard Deviation, 158
Outputs
 bayes.accepted File, 177
 bayes.log.mnnn File, 177, 193, 193
 bayes.model.mnnn File, 177, 185, 197, 197
 bayes.noise File, 180
 bayes.noise.mnnn File, 158, 180
 bayes.output.mnnn File, 176, 186, 186
 bayes.params File, 176, 177
 bayes.params.mnnn File, 176, 177, 177
bayes.probabilities.mnnn File, 177, 190, 190
bayes.status.mnnn File, 177, 196, 200
bayes.summary1.mnnn File, 177, 198, 198
bayes.summary2.mnnn File, 177, 199, 199
bayes.summary3.mnnn File, 177, 200, 200
Global Parameters, 182, 183
Model File, 184
Probabilities file, 191
Zero Order Phase, 182
Parameter File
 Activate Shims, 180
 Analysis Directory, 178
 By Fid, 181
 Data Type, 180
 Default Model, 181
 Directory Organization, 180
 Fid Model Name, 178
 File Version, 178
 First Fid, 181
 First Order Phase, 180, 183
 Imaginary Constant, 184
 Last Fid, 181
 Ih, 182
 Maximum Candidates, 182
 Maximum New Resonances, 182
 Model Fid Number, 181
 Model Name, 184
 Model Names, 181
 Model Number, 184
 Model Points, 181
 Multiplets of Multiplets, 185
 Noise Start, 181
 Numerical Parameters, 178
 Output Format, 180
 Prior Odds, 182
 Procpar, 178
 Real Constant, 184
 Relative Amplitude, 183
 Resonance Model, 185
 Shim Order, 182
 Spectrometer Frequency, 182
 Text Parameters, 178
 Total Complex Data Values, 181
 Total Data Values, 181
 Total Sampling Time, 182
 True Reference, 182
Index

Units, 180
Use Noise StdDev, 180
User Reference, 182
Prior Probabilities, 167
Probabilities File, 191
Product Rule, 168
Relative Amplitude, 167
Remove Resonances, 159
Reports
 Bayes Status, 155
Save/Reset, 159
Search, 166
 Levenberg-Marquardt, 166
Short Parameter Description, 195
Siemens, 162
Status File, 196
Steepest Descents, 173
Sum Rule, 168
Summary File, 198
Summary Reports, 176
Summary2, 199
Summary3, 201
Units, 161
Using, 157
Varian/Agilent, 162
Widgets, 155
 By, 158, 176
 First Point, 157, 163
 From, 158, 176
 Imag Offset, 163
 Imaginary Offset, 157
 Mark, 159
 Max New Res, 157
New, 159
Noise, 158
Phase, 157
Primary, 158
Real Offset, 157, 163
Remove, 159
Remove All, 159
Reset, 159, 193
Restore, 159
Save, 159
Secondary, 159
Shim Order, 157, 163
Signal, 158
To, 158, 176
Bayes Find Resonances Package, 239
Bayesian Calculations, 241
Current Fid, 239
Model Equation, 241
Number of data sets, 239
Phase Model
 Automatic, 239, 242
 Common, 239, 242
 Independent, 239, 242
Prior Probabilities, 243–245
Reports
 Bayes Accepted, 241, 246
 Condensed, 246
 Console log, 246
 McMC Values, 246
 Prob Model, 246
 Using, 239, 241
Viewers
 Fid Data, 240
 Fid Model, 240, 246
 File, 246
 Plot Results, 246
 Text, 246
Widgets
 Build FID Model, 240, 241, 246
 Constant, 239, 242
 First Trace, 239
 Last Trace, 239
 Model Fid Number, 241
 Phase Model, 239, 242
Bayes Home Directory, 45, 49
Bayes Manual pdf, 469
Bayes Metabolite Package
 Widgets
 Shift Left, 222
 Shift Right, 222
Bayes Metabolite Package, 219
Aligning Resonances, 221
Bayesian Calculation, 225
Metabolite Locations, 221
Model Equation, 223
Reports
 Bayes Accepted, 221, 238
 Condensed, 238
 Console log, 238
INDEX

McMC Values, 238
Prob Model, 238

Viewers
Fid Data, 219
Fid Model, 221, 236
File, 222, 238
Metabolite, 221
Plot Results, 238
Text, 238

Widgets
Fid Model, 221
Fid Model Viewer, 221
Load System Metabolite File, 219
Load System Resonance File, 221
Load User Metabolite File, 219
Load User Resonance File, 221
Shift Left, 221
Shift Right, 221

Bayes Model, 159, 159
Bayes Test Data Package, 427

Parameters, 431

Reports
Bayes Accepted, 428
Condensed, 429
McMC Values, 429, 431–433

Viewers
Fortran/C Models, 427
Image, 428
Prior Probabilities, 427
Text Data, 430
Text Results, 429

Widgets
Images, 427
Slices, 427
Abscissa, 427
ArrayDim, 427
Build, 427
Get Job, 428
Max Value, 427
Noise SD, 427
Parameter Ranges, 428
Pe, 427
Ro, 427
Run, 428
Set (server), 428
Status, 428

Bayes.accepted
Body, 77
Header, 76

Behrens-Fisher Package, 311
Bayesian Calculations
Derived Probabilities, 320
Different Mean And Same Variance, 318
Different Mean And Variance, 319
Parameter Estimation, 321
Same Mean And Different Variance, 317
Same Mean And Variance, 315

Model Equation
Different Mean And Same Variance, 318
Different Mean And Variance, 319
Same Mean And Different Variance, 317
Same Mean And Variance, 315

Number of data sets, 311
Parameter Listing, 323

Prior Probabilities
Different Mean And Same Variance, 318
Different Mean And Variance, 319
Same Mean And Different Variance, 317
Same Means And Same Variance, 315

Reports
Bayes Accepted, 311, 322
Condensed, 322
Console Log, 322, 323
McMC Values, 322, 323
Prob Model, 322

Using, 311

Viewers
File, 322
Plot Results, 322, 324
Prior Probabilities, 311
Text, 322

Widgets
None, 311

Big Endian, 471, 473

Big Magnetization Transfer Package, 259
Bayesian Calculations, 259
Files
Bayes Analyze, 264
INDEX

Fid, 263
Peak Pick, 262
Model Equation, 261
Number of data sets, 259
Prior Probabilities, 261

Reports
Bayes Accepted, 259, 262
Condensed, 262
Console log, 262
McMC Values, 262
Prob Model, 262

Using, 259

Viewers
Ascii Data, 259
File, 262
Prior Probabilities, 259
Text, 262

Widgets
Find Outliers, 259

Big Peak/Little Peak Package, 207
Bayesian Calculations, 209
Fid Analyzed, 207
Model Equation, 210
Metabolites, 209
Solvent, 210
Number of data sets, 207
Prior Probabilities
Metabolite, 207
Solvent, 207

Removing Resonances, 207

Reports
Bayes Accepted, 209, 216
Condensed, 216
Console log, 216
McMC Values, 216
Prob Model, 216

Using, 207

Viewers
File, 216
Model, 209
Plot Results, 216
Prior Probabilities, 207
Text, 216

Widgets
Metabolite, 207
Solvent, 207

Binned Density Function Estimation, 355

Binned Histogram Package
Reports
Bayes Accepted, 357

Viewers
Ascii, 355

Binned Histograms Package
Using, 357

Viewers
Prior Probabilities, 355

Bloch-McConnell Equations, 267, 277

Changing the Bayes Home Directory, 469

Compilers, 29
CC, 29, 455
Fortran, 29, 455

Correlations, 91

Diffusion Tensor Package, 247
Ascii File Formats, 247, 254, 255
Bayesian Calculations, 249
Prior Probabilities
Δ, 254
Γ, 254
δ, 254
σ, 253

Amplitudes, 253
Eigenvalues, 253
Euler Angles, 253
Likelihood, 253
Parameter, 254

Reports
Bayes Accepted, 247, 255
Condensed, 255
Console log, 255
McMC Values, 255
Prob Model, 255

Symmetries, 253

Using, 247

Viewers
File, 247, 255
Plot Results, 255
Prior Probabilities, 247, 253
Text, 255

Widgets
Abscissa Options, 248
Find Outliers, 247
Include Constant, 247, 248, 255
Tensor Number, 247, 248, 255
Use b Matrix, 255
Use b Vectors, 255
Use g Vectors, 254
Discrete Fourier Transform, 110, 113, 123

Enter Ascii Model Package, 329
Bayesian Calculations, 332
Marginalization, 332
No Marginalization, 331
Fortran/C Models, 330, 335
Model Equation
Marginalization, 331
No Marginalization, 331
Output Names
Derived, 335
Parameters, 335
Reports
Bayes Accepted, 331, 335
Bayes Params, 335
Condensed, 335
Console log, 335
McMC Values, 335
Prob Model, 335
Using, 331
Viewers
Ascii Data, 329
File, 335
Fortran/C Models, 329
Plot Results, 335
Prior Probabilities, 329
Text, 335
Widgets
Build, 329
Find Outliers, 329
System, 329
User, 329

Enter Ascii Model Selection Package, 341
Bayesian Calculations
Marginalization, 346
No Marginalization, 344
Fortran/C Models, 341, 343, 353
Model Equation, 343
No Marginalization, 343
With Marginalization, 347
Output Names
Derived, 354
Parameters, 353
Reports
Bayes Accepted, 343, 353
Condensed, 353
Console log, 353
McMC Values, 353
Params File, 353
Prob Model, 353
Using, 343
Viewers
Ascii Data, 341
File, 353
Fortran/C Models, 341
Plot Results, 353
Prior Probabilities Not Used, 341
Text, 353
Widgets
Build Not Used, 341
Find Outliers, 341
System, 341
User, 341

Errors In Variables Package, 303
Ascii File Formats
Errors In X and Y Known, 303, 309
Errors In X Known, 303, 309
Errors In Y Known, 303, 309
Errors Unknown, 303, 309
Bayesian Calculations, 305
Data Error Bars, 303
Files
Ascii, 303
Bayes Analyze, 303
Peak Pick, 303
Model Equation, 305
Number of data sets, 303
Reports
Bayes Accepted, 305, 309
Condensed, 309
Console log, 309
McMC Values, 309
Prob Model, 309
Using, 305
Viewers
Ascii Data, 303
File, 309
Plot Results, 309
Text, 309
Widgets
Given Errors In, 303
Order, 303
Exponentials
Given Package, 137
Inversion Recovery Package, 151
Magnetization Transfer Package, 267
Unknown Number of Package, 143
Fid Data Viewer, 53
Fid Model Viewer, 68
File Format
Ascii, 436
File Viewer, 80
Files
4dfp, 59, 428, 430, 470, 471
Header, 473
Reading, 471
Abscissa, 39, 77, 470
afh, 53
ASCII, 35, 36
Abscissa, 53, 54, 435
k-space, 437
Abscissa, 435, 436, 437
Data, 435
Image, 436
Bayes Analyze, 36
Bayes.accepted, 51, 76
Bayes.params, 76, 79
Bayes.prob.model, 447
BayesManual.pdf, 469
Condensed, 77, 78
Console.log, 76, 79, 466
dir.info, 470
fid, 470, 470
ASCII, 36
ffh, 56
Model, 68, 70
procpar, 470
Siemens Raw, 36
Siemens Rda, 36
Spectroscopic, 53
Varian fid, 36
Fortran/C Models, 42, 455, 457, 458, 465–467
Images
4dfp, 38
Binary, 38
Bruker 2dseq, 38
Bruker stack, 38
DICOM, 38
FDF, 38
Multi-Column Text, 38
Siemens IMA, 38
k-space
Text, 36
Varian fid, 36
mcmc.values, 76, 449
Model Listing, 77
prob.model, 76
procpar, 470
Raw, 36
RDA, 36
Statistics, 65
System.err.txt, 469
System.out.txt, 469
Varian fid, 36
WaterViscosityTable, 469
Fortran/C Model Viewer, 93
Popup Editor, 93
Fortran/C Models, 42, 330, 335, 353, 455
Abscissa, 463
Body, 463
Abscissa, 457
Declarations, 462
Derived Parameters, 457, 459, 463
Edit/Create New Model, 42, 455
I/O, 464
Marginalization, 464
\(G_j(\Omega, t_i)\), 464
Amplitude Range, 465
Example, 465, 466
Model Vectors, 465
Ordering Amplitudes, 465
Parameter File, 465, 467
Parameter Order, 465
Parameters, 465
Model Files, 455
Model Selection, 464
No Marginalization, 457
\(S(t_i) \), 455
Example, 456
Parameter File, 458, 459, 465
Parameters, 463
Signal, 463
Subroutine Interface, 460
Abscissa, 462
Current Set, 460
Derived Parameters, 461
Maximum No Of Data Values, 461
Number Of Abscissa Columns, 461
Number Of Data Columns, 461
Number Of Derived Parameters, 461
Number Of Model Vectors, 461
Number Of Parameters, 460
Parameters, 461
Signal, 462
Total Complex Data Values, 461
Subroutines and Functions, 464

Frequency Estimation, 114, 132

Given Exponential Package, 137
Bayesian Calculations, 140
Files
Ascii, 137
Bayes Analyze, 137
Peak Pick, 137
Model Equation, 139
Number of data sets, 139
Prior Probabilities, 139–141
Reports
Bayes Accepted, 137, 141
Condensed, 141
Console log, 141
McMC Values, 141
Prob Model, 141
Symmetries, 141, 148
Using, 137
Viewers
File, 141
Plot Results, 141
Prior Probabilities, 137, 139
Text, 141
Widgets

Constant, 137, 139
Find Outliers, 137
Given Order, 27
Include Constant, 27
Order, 137, 139

Given Polynomial Order Package, 285
Bayesian Calculations, 288
Files
Ascii, 285
Bayes Analyze, 285
Peak Pick, 285
Gram-Schmidt, 287
Model Equation, 287
Number of data sets, 285
Prior Probabilities, 289
Reports
Bayes Accepted, 285, 291
Condensed, 291
Console log, 291
McMC Values, 291
Prob Model, 291
Scatter Plots, 292
Using, 285
Viewers
File, 290
Plot Results, 291
Text, 290
Widgets
Set Order, 285

Histograms
Binned, 381
Kernel Density, 381

Image Model Selection Package, 415
Abscissa, 415
Fortran/C Models, 415, 417
Reports
Bayes Accepted, 417
Using, 417
Viewers
Fortran/C Models, 415
Image, 415
Widgets
Noise SD, 415
System, 415
Use Gaussian, 415
User, 415
Image Viewer, 59
Images
 Flip
 Horizontal, 63
 Vertical, 63
 Grayscale, 63
 ImageJ, 63
 Original, 63
Inversion Recovery Package, 151
 Bayesian Calculations, 153
 Model Equation, 153
 Number of data sets, 153
 Prior Probabilities, 153
Reports
 Bayes Accepted, 151, 154
 Condensed, 154
 Console Log, 154
 McMC Values, 154
 Prob Model, 154
Using, 151
Viewers
 Plot Results, 154
 Prior Probability, 151
Widgets
 Find Outliers, 151
Kernel Density Function Package, 361
 Ascii File Format, 361
 Bayesian Calculations, 369
 Data Requirements, 361
 Data, Model And Residuals, 369
Kernels, 369
 Biweight, 362
 Cosine, 362
 Epanechnikov, 362
 Exponential, 362
 Gaussian, 362, 370
 nonnegative, 361
 Real Valued, 361
 Triangular, 362
 Tricube, 362
 Triweight, 362
 Uniform, 362
 Likelihood, 371
Number of data sets, 364
Plots
 Expected Density Function, 367, 368
 Mean Density Function, 367, 368
 Posterior Probability for the Kernel Type, 365
 Posterior Probability for the Number Of Kernels, 366
 Scatter Plots of Model Averaged Density Function, 368
 Standard Deviation of the Mean Density Function, 367, 368
Prior Probabilities
 Kernel Center, 371
 Kernel Smoothing Parameter, 371
 Kernel Type, 370
 Number Of Kernels, 370
Reports
 Bayes Accepted, 364
 Condensed, 372
 McMC Values, 372
 Prob Model, 372
Using, 364
Viewers
 Ascii, 361
Widgets
 Kernel Type, 364
 Output Size, 364
Levenberg-Marquardt, 171
Linear Phasing Package, 395, 409
Interface, 397
Model Equation, 398
Widgets
 cf, 403
 Display, 403
 Display Array Element, 403
 fn, 403
 fnl, 403
 Image Type, 402
 Load An Image, 402
 np, 403
 nv, 403
 Process, 403
Load Working Directory, 33
Logical Independence, 117
INDEX

Magnetization Transfer Kinetics Package, 275
 Arrhenius Plot, 281
 Bayesian Calculation, 278
 Boltzmann’s Constant, 277
 Eyring Equation, 275, 276, 277, 280
 Model Equation, 277
 Plank’s Constant, 277
 Prior Probabilities, 279
 Reports
 Bayes Accepted, 277, 281
 Condensed, 281
 Console log, 281
 McMC Values, 281
 Prob Model, 281
 Sum and Difference Variables, 280
 Transmission coefficient, 277
 Universal Gas Constant, 277
 Using, 277
 van’t Hoff Plot, 281
 Viewers
 Ascii File, 275
 File, 281
 Prior Probabilities, 275
 Text, 281
 Widgets
 Load, 275, 281
 Set, 275
 Uncertainty, 275

Magnetization Transfer Package, 265
 Bayesian Calculations, 267
 Files
 Ascii, 265
 Bayes Analyze, 265
 Inversion Recovery, 272
 Peak Pick, 265
 Model Equation, 267
 Number of data sets, 265
 Prior Probabilities, 265, 270
 Reports
 Bayes Accepted, 267, 272
 Condensed, 272
 Console log, 272
 McMC Values, 272
 Prob Model, 272
 Three Column Data, 265
 Using, 267

Viewers
 Ascii Data, 265
 Fid Data, 272
 File, 271
 Plot Results, 262, 272, 281
 Prior Probabilities, 265
 Text, 271

Widgets
 Find Outliers, 265

Marginalization, 100
 Bayes Analyze Package, 174
 Behrens-Fisher, 315
 Big Magnetization Transfer, 261
 Big Peak/Little Peak, 211
 Diffusion Tensors, 252
 Enter Ascii Model Package, 331
 Errors In Variables, 306
 Fortran/C Models, 464
 Given Exponential, 139
 Inversion Recovery, 153
 Linear Phasing, 399
 Magnetization Transfer, 269
 Magnetization Transfer Kinetics, 278
 Metabolic Analysis, 225
 Nonexhaustive Hypotheses, 101
 Nuisance Hypotheses, 100
 Nuisance Parameter, 100
 Unknown Number of Exponentials, 146

Markov chain Monte Carlo, 132, 439
 Acceptance Rate, 444
 Annealing Schedule, 91, 442
 Dynamic, 443
 Linear, 442
 Killing Simulations, 443
 Maximum Posterior Probability, 91
 Metropolis-Hastings, 439
 Mixing, 91
 Monte Carlo Integration, 440
 Multiple Simulations, 441
 Posterior Probability, 440
 Random Number Generators, 440
 Repeats, 91
 Sampling, 91
 Simulated Annealing, 442
 the Proposal, 444
MaxEnt Density Function Estimation Package, 373
- Data Requirements, 381
- Plots
 - Contour/Scatter, 375, 379
 - Number Of Multipliers, 375, 378
- Reports
 - Bayes Accepted, 375
 - Console Log, 375
- Using, 375
- Viewers
 - Ascii, 373
 - Plot, 375, 378
 - Prior Probabilities, 373
- Widgets
 - Histogram Size, 373
 - Order, 373
- Maximum Entropy Method Of Moments, 102, 377, 381
- Advantages, 386
- Problems, 386
- Review, 381
- Maximum Entropy Method Of Moments Package
 - Bayesian Calculations, 387
- Plots
 - Data, Model and Residuals, 380
- Menus
 - Files, 24, 35
 - 4dfp, 37, 38
 - Abscissa, 35, 39
 - ASCII, 35, 36
 - Binary, 38
 - Bruker, 37
 - Bruker 2dseq, 38
 - Bruker Stack, 38
 - DICOM, 37, 38
 - PDF, 37, 38
 - fid, 36, 37
 - General Binary, 37
 - Images, 35
 - Import Working Directories in Batch, 40
 - Import Working Directory, 40
 - Load Images, 36, 37, 59
 - Load Working Directory, 35
 - Multi-Column Text, 37, 38
 - Save Working Directory, 35, 39
- Siemens IMA, 37, 38
- Single-Column Text, 38
- Spectroscopic Fid, 35
- Test Data, 35, 39
- Text k-space, 36
- Text k-space fid, 37
- User Manual, 35, 39
- Help, 24
- Packages, 22, 24, 33, 40
- Settings, 46
 - Add Server, 48
 - Auto Configure Server, 48
 - McMC Parameters, 24, 46, 48
 - Min Annealing Steps, 48, 48
 - Port number, 48
 - Preferences, 49, 63
 - Remove Server, 48, 49
 - Repetitions, 46, 48
 - Server Name, 48
 - Server Setup, 24, 26, 48
 - Set Window Size, 49
 - Simulations, 46, 48
 - View Server Installation Info, 48, 49
- Spectroscopy fid, 36
- Utilities, 24, 50
 - Memory Monitor, 50
 - Software Updates, 50
 - System Information, 50
- WorkDir
 - Creating, 22, 33, 46
 - Deleting, 22, 33, 46
 - List, 24, 46
 - Loading, 46
 - Name, 46
 - Popup, 47
- Model Comparison
 - Big Peak/Little Peak Package, 211
- model orthonormal definition, 349
- Mouse
 - Control-left, 59
 - Fid Data Viewer
 - Left, 56
 - Right, 56
 - Shift-left, 59
- Multiplets
 - J-Coupling
INDEX

Center, 159
Primary, 159
Secondary, 159

Newton-Raphson, 171
Noise Standard Deviation, 64
Non-Linear Phasing Package, 405
Calculations, 407
Model Equation, 405, 407
Widgets
Process, 409
Write Asci images, 409
Write imaginary images, 409
Nuisance Parameter, 100, 115, 135
Nyquist Critical Frequency, 111, 127

orthonormal, 349
Outliers, 475
Mean Parameter, 477
Model, 475
Prob Number of, 476
Proposal, 475
Red dot, 477
Weighted Average, 477

Parameter File, 42
Number Of
Abscissa, 458
Data Columns, 458
Model Vectors, 458
Priors, 458
Prior Probability, 459
Amplitude, 460
High, 459
Low, 459
Mean, 459
NonLinear, 460
Ordered, 460
Parameter File, 459
Peak, 459
Prior Type, 460
Standard Deviation, 459
Phase Cycling, 162
Plot Results Viewer, 71

Plots
Data and Model, 81
Data, Model and Residuals, 81
Expected Log Likelihood, 88
Logarithm of the Posterior Probability, 91
Maximum Entropy Histogram, 84
Maximum Entropy Histograms, 83
McMC Samples, 83, 85
Parameter Vs Posterior Probability, 86, 87
Posterior Probability, 82
Posterior Probability Vs Parameter Value, 86
Residuals, 81
Scatter, 88, 91
pnn graphics, 59
Posterior Probability Vs Parameter Value, 86
Power Spectrum, 112, 123, 124
Prior Probabilities
 Bayes Phase, 399
 Big Magnetization Transfer, 261
 Big Peak/Little Peak, 212
 Diffusion Tensor, 253
 Enter Ascii Model, 331, 333
 Errors In Variables, 306
 Magnetization Transfer, 269
 Magnetization Transfer Kinetics, 279
 Non-Linear Phasing Package
 A, 408
 θ, 408
Prior Probability, 42, 65, 65
Exponential, 67, 459
Gaussian, 67, 104, 106, 459
Jeffreys', 118
 Normalization Constant, 67
 Parameter, 68, 459
 Positive, 68, 460
 Uniform, 67, 103, 118, 459
Prior Viewer, 65, 93
Probabilities
 Expected Log Likelihood, 453
 Likelihood, 453
 Posterior, 453
 Prior, 453
Product Rule, 99, 119, 344, 439
Referencing
 Setting, 59
Reports
 Accepted File, 76
 McMC Values File
 General Description, 449
 Maximum Posterior Probability Simulations, 451
 Mean Values, 452
 Prior, 450
 Standard Deviations, 453
 Restoring An Analysis, 22, 35, 40
 ROI
 Expanding, 63
 Pixels, 63
 Point, 62
 Polygon, 62
 Square, 62
 Saving An Analysis, 35, 39
 Schuster Periodogram, 112, 123
 Screen Captures, 49
 Settings
 httpd server, 19
 Software
 Bayes Account, 29
 CC, 29
 Fortran, 29
 Installation, 29
 javaws, 29
 OS requirements, 29
 root requirements, 30
 Start Up Window, 22, 33
 Steepest Descents, 173
Subdirectories, 469
 Bayes, 39
 Bayes.model.fid, 470
 Bayes.Predefined.Spec, 469
 Bayes.test.data, 39
 BayesAnalyzeFiles, 470
 BayesAsciiModels, 93, 469
 BayesOtherAnalysis, 35, 73, 470
 fid, 36, 53
 images, 36, 38, 39, 59, 470
 model.compile, 470
 plugins, 470
 Properties, 470
 Resources, 470
 Spectroscopic
 fid, 470
 Working Directories, 470
Subroutine Names, 464
Sufficient Statistics, 122
 Definition, 105
 Location Parameter, 108
Sum Rule, 100, 119, 344, 440
INDEX

Test Ascii Model Package, 337
 Reports
 Bayes Accepted, 339
 Mcmc Values, 339
 Using, 339, 428
Viewers
 Ascii Data, 337
 Fortran/C Models, 337
 Prior Probabilities, 337
Widgets
 Build, 337
 Find Outliers, 339
 System, 337
 User, 337

Thermodynamic Integration, 445, 449

Uninstall, 49
Unknown Number of Exponentials Package, 143
 Bayesian Calculations, 145
 Model Equation, 145
 Reports
 Bayes Accepted, 143, 148
 Condensed, 148
 Console Log, 148, 149
 McMC Values, 148
 Prob Model, 148
 Using, 143
Viewers
 File, 148
 Plot Results, 149, 150
 Prior, 143
 Text, 148
Widgets
 Constant, 143
 Find Outliers, 143
 Order, 143

Unknown Polynomial Order Package, 293
 Bayesian Calculations, 295
Files
 Ascii, 293
 Bayes Analyze, 293
 Peak Pick, 293
Model Equation, 295
Number of data sets, 293
Reports
 Bayes Accepted, 293, 299
 Condensed, 299
 Console Log, 298, 299
 McMC Values, 299
 Polynomial Order Plot, 301
 Prob Model, 299
Using, 293
Viewers
 File, 299
 Text, 299
Widgets
 Set Order, 293, 294
 Unknown Order, 293, 294

Viewers, 27, 52
ASCII Data, 36
Ascii Data, 27, 53, 63, 137, 265, 275, 285, 293, 311, 329, 337, 341
 Expanding Plot, 53
 Printing, 53
 Right click, 53
 Bayes Model, 160
 Fid Data, 27, 265
fid Data, 53, 56, 285, 293
 Auto Range, 59
 Autoscale, 56
 Clear Cursors, 56
 Clear Data, 57
 Copy, 59
 Cursor, 56
 Data Info, 57
 Expand, 56
 fn, 57
 Full, 56
 Get Peak, 56
 Phase Popup, 57
 Print, 59
 Properties, 59
 Referencing, 59
 Save As, 57, 59
 Set Preference, 57
 Units, 59
 Zoom, 59
Fid Model, 27
fid Model, 68, 186
 Build BA Model, 70, 159
 Data, 71
Horizontal, 71
Model, 71
Overlay, 71
Report, 71
Residual, 71
Stacked, 71
Trace, 71
Vertical, 71
File, 28, 80
Fortran/C Models, 93, 330
Image, 27, 59, 415
 Autoset Grayscale, 61
 Copy Selected, 62
 Delete All, 61
 Delete Selected, 61
 Display Full, 61
 Element Selection, 60
 Export, 62
 Get Statistics, 64, 65
 Get Threshold Statistics, 65
 Grayscale, 63
 Image Selection, 60
 List, 59
 Load Selected Pixels, 61
 Max, 64
 Mean, 64
 Min, 64
 Right Click, 61
 RMS, 64
 Save Displayed, 62
 Save Statistics, 65
 Sdev, 64
 Set Image Area, 62
 Show Histogram, 61
 Show Info, 62
 Slice, 62
 Slice Selection, 60
 Statistics, 60
 Value, 64
 View Selected Pixels, 61
 Viewer Settings, 62
 Viewing, 62
 X Pos, 64
 Y Pos, 64
Plot Results, 28, 71
Prior, 27, 65

Prior Probabilities, 138, 312
Text, 141, 271, 281, 290, 309, 322, 335, 353
Text Results, 26, 28, 52, 74
Bayes Analyze, 176

Widgets

 Analyze Image Pixel Package
 Build, 411
 Find Outliers, 411
 Get Statistics, 413
 System, 411
 User, 411
 Analyze Image Pixel Unique Package
 Build, 423
 Find Outliers, 423
 Get Statistics, 425
 System, 423
 User, 423
 Ascii Data Viewer
 Delete, 53
 Left-mouse, 53
 Right-mouse, 53
 Bayes Analyze Package
 By, 158, 176
 First Point, 163
 From, 158, 176
 Imag Offset, 163
 Mark, 159
 Max New Res, 157
 New, 159
 Noise, 158
 Phase, 157
 Primary, 158
 Real Offset, 163
 Remove, 159
 Remove All, 159
 Reset, 159, 193
 Restore, 159
 Save, 159
 Secondary, 159
 Shim Order, 157, 163
 Signal, 158
 To, 158, 176
 Bayes Find Resonances Package
 Build FID Model, 240, 241, 246
 Constant, 239, 242
INDEX

First Trace, 239
Last Trace, 239
Model Fid Number, 241
Phase Model, 239, 242
Bayes Metabolite Package
 Fid Model, 221
 Fid Model Viewer, 221
 Load System Metabolite File, 219
 Load System Resonance File, 221
 Load User Metabolite File, 219
 Load User Resonance File, 221
 Shift Left, 221, 222
 Shift Right, 221, 222
Bayes Test Data Package
 # Images, 427
 # Slices, 427
 Abscissa, 427
 ArrayDim, 427
 Build, 427
 Get Job, 428
 Max Value, 427
 Noise SD, 427
 Pe, 427
 Ro, 427
 Run, 428
 Set (server), 428
 Status, 428
 System, 427
 User, 427
Big Magnetization Transfer Package
 Find Outliers, 259
Big Peak/Little Peak Package
 Metabolite, 207
 Solvent, 207
Diffusion Tensor Package
 Abscissa Options, 248
 Find Outliers, 247
 Include Constant, 247, 248, 255
 Tensor Number, 247, 248, 255
 Use b Matrix, 255
 Use b Vectors, 254, 255
 Use g Vectors, 254
Enter Ascc Model Package
 Find Outliers, 329
 System, 329
 User, 329
Enter Ascii Model Selection Package
 Find Outliers, 341
 System, 341
 User, 341
Errors In Variables Package
 Given Errors In, 303
 Order, 303
Fid Data Viewer
 Autoscale, 56
 Clear Cursors, 56
 Cursor A, 56
 Cursor B, 56
 Delta, 56
 Display Type, 56
 Expand, 56
 Full, 56
 Get Peak, 56
 Left-mouse, 56
 Options, 57, 59
 Right-mouse, 56
 Trace, 70
Fortran/C Model Viewer
 Abscissa Spinner, 93
 Add Prior, 96
 Allow/Disallow Editing, 97
 Cancel and Exit, 96
 Changing Models, 94
 Code, 93, 94
 Compile Results, 97
 Compiling, 96
 Create/Edit Model, 93
 Data Columns Spinner, 93
 Derived, 96
 Edit/Create New Model, 93, 94
 High, 97
 Low, 97
 Mean, 97
 Model, 96
 Model Vectors, 93
 Name (parameter), 97
 Order, 97
 Parameter Type, 97
 Parameters button, 93, 94, 96
 Prior Type, 97
 Priors, 96
 Remove All (priors), 96
Remove Prior, 96
Remove Selected Model, 93
Save and Load, 96
Standard Deviation, 97

Given Exponential Package
Constant, 137, 139
Find Outliers, 137
Order, 137, 139

Given Polynomial Order Package
Set Order, 285

Global
Bayes Find Outliers, 27
Cancel, 26, 51
Edit Servers, 26
Get Job, 26, 51, 137, 143, 151, 155, 209, 221, 241, 247, 259, 267, 277, 285, 293, 305, 311, 331, 339, 343, 357, 364, 375, 413, 417, 425, 428
Reset, 27
Restore Analysis, 22
Save, 27
Set (server), 26, 52, 137, 143, 151, 155, 207, 221, 239, 247, 259, 265, 277, 285, 293, 305, 311, 329, 337, 343, 355, 364, 373, 413, 415, 425, 428

Image Model Selection Package
System, 415
User, 415

Image Viewer
Element Number, 62
Get Statistics, 64
Get Threshold Statistics, 65
Grayscale, 63
Save Statistics, 65
Slice Number, 62
Value, 64
X Pos, 64
Y Pos, 64

Inversion Recovery Package
Find Outliers, 151

Kernel Density Function Package
Kernel Type, 364
Output Size, 364

Linear Phasing Package
cf, 403
Display, 403
Display Array Element, 403
fn, 403
fn1, 403
Image Type, 402
Load An Image, 402
np, 403
nv, 403
Process, 403

Magnetization Transfer Kinetics Package
Load, 275, 281
Set, 275
Uncertainty, 275

Magnetization Transfer Package
Find Outliers, 265

MaxEnt Density Function Estimation Package
Histogram Size, 373
Order, 373

Non-Linear Phasing Package
Process, 409
Write Ascii images, 409
Write imaginary images, 409

Prior Viewer
High, 65
Low, 65
Mean, 65
Prior Type, 67

Server
Edit, 52
Name, 26, 52, 52
Set (server), 48
Setup, 48, 52

Test Ascii Model Package
Find Outliers, 339
System, 337
User, 337

Text Results Viewer
Copy, 74
INDEX

Down arrow, 74
Enable Editing, 74
Print, 74
Save (a copy), 74
Save As, 74
Settings, 74
Up arrow, 74

Unknown Number of Exponentials Package
 Constant, 143
 Find Outliers, 143
 Order, 143

Unknown Polynomial Order Package
 Set Order, 293, 294
 Unknown Order, 293, 294

WorkDir
 Creating, 22, 33, 46
 Deleting, 22, 33, 46
 List, 24, 46
 Loading, 46
 Name, 46
 Popup, 47