Contents

Manual Status 16

1 An Overview Of The Bayesian Analysis Software 19
 1.1 The Server Software .. 19
 1.2 The Client Interface .. 22
 1.2.1 The Global Pull Down Menus 24
 1.2.2 The Package Interface .. 24
 1.2.3 The Viewers .. 27

2 Installing the Software 29

3 the Client Interface 33
 3.1 The Global Pull Down Menus .. 35
 3.1.1 the Files menu ... 35
 3.1.2 the Packages menu .. 40
 3.1.3 the WorkDir menu ... 45
 3.1.4 the Settings menu ... 46
 3.1.5 the Utilities menu ... 50
 3.1.6 the Help menu .. 50
 3.2 The Submit Job To Server area 51
 3.3 The Server area ... 52
 3.4 Interface Viewers ... 52
 3.4.1 the Ascii Data Viewer .. 53
 3.4.2 the fid Data Viewer ... 53
 3.4.3 Image Viewer ... 59
 3.4.3.1 the Image List area 59
 3.4.3.2 the Set Image area .. 62
 3.4.3.3 the Image Viewing area 62
 3.4.3.4 the Grayscale area on the bottom 63
 3.4.3.5 the Pixel Info area 63
 3.4.3.6 the Image Statistics area 64
 3.4.4 Prior Viewer .. 65
 3.4.5 Fid Model Viewer ... 68
 3.4.5.1 The fid Model Format 70
8 Bayes Analyze

8.1 Bayes Model ... 159
8.2 The Bayes Analyze Model Equation 161
8.3 The Bayesian Calculations 167
8.4 Levenberg-Marquardt And Newton-Raphson 171
8.5 Outputs From The Bayes Analyze Package 176
 8.5.1 The “bayes.params.nnnn” Files 177
 8.5.1.1 The Bayes Analyze File Header 178
 8.5.1.2 The Global Parameters 182
 8.5.1.3 The Model Components 184
 8.5.2 The “bayes.model.nnnn” Files 185
 8.5.3 The “bayes.output.nnnn” File 186
 8.5.4 The “bayes.probabilities.nnnn” File 190
 8.5.5 The “bayes.log.nnnn” File 193
 8.5.6 The “bayes.status.nnnn” and “bayes.accepted.nnnn” Files .. 196
 8.5.7 The “bayes.model.nnnn” File 197
 8.5.8 The “bayes.summary1.nnnn” File 198
 8.5.9 The “bayes.summary2.nnnn” File 199
 8.5.10 The “bayes.summary3.nnnn” File 200
8.6 Bayes Analyze Error Messages 200

9 Big Peak/Little Peak .. 207

9.1 The Bayesian Calculation 209
9.2 Outputs From The Big Peak/Little Peak Package 216

10 Metabolic Analysis ... 219

10.1 The Metabolic Model .. 223
10.2 The Bayesian Calculation 225
10.3 The Metabolite Models 228
 10.3.1 The IPGD_D2O Metabolite 228
 10.3.2 The Glutamate_2.0 Metabolite 232
 10.3.3 The Glutamate_3.0 Metabolite 235
10.4 The Example Metabolite 236
10.5 Outputs From The Bayes Metabolite Package 238

11 Find Resonances .. 239

11.1 The Bayesian Calculations 241
11.2 Outputs From The Bayes Find Resonances Package 246

12 Diffusion Tensor Analysis 247

12.1 The Bayesian Calculation 249
12.2 Using The Package ... 254

13 Big Magnetization Transfer 259

13.1 The Bayesian Calculation 259
13.2 Outputs From The Big Magnetization Transfer Package ... 262
H Outlier Detection

Bibliography
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>The Start Up Window</td>
<td>23</td>
</tr>
<tr>
<td>1.2</td>
<td>Example Package Exponential Interface</td>
<td>25</td>
</tr>
<tr>
<td>2.1</td>
<td>Installation Kit For The Bayesian Analysis Software</td>
<td>31</td>
</tr>
<tr>
<td>3.1</td>
<td>The Start Up Window</td>
<td>34</td>
</tr>
<tr>
<td>3.2</td>
<td>The Files Menu</td>
<td>35</td>
</tr>
<tr>
<td>3.3</td>
<td>The Files/Load Image Submenu</td>
<td>37</td>
</tr>
<tr>
<td>3.4</td>
<td>The Packages Menu</td>
<td>41</td>
</tr>
<tr>
<td>3.5</td>
<td>The Working Directory Menu</td>
<td>46</td>
</tr>
<tr>
<td>3.6</td>
<td>The Working Directory Information Popup</td>
<td>47</td>
</tr>
<tr>
<td>3.7</td>
<td>The Settings Pull Down Menu</td>
<td>47</td>
</tr>
<tr>
<td>3.8</td>
<td>The McMC Parameters Popup</td>
<td>48</td>
</tr>
<tr>
<td>3.9</td>
<td>The Edit Server Popup</td>
<td>49</td>
</tr>
<tr>
<td>3.10</td>
<td>The Submit Job Widgets</td>
<td>51</td>
</tr>
<tr>
<td>3.11</td>
<td>The Server Widgets Group</td>
<td>52</td>
</tr>
<tr>
<td>3.12</td>
<td>The Ascii Data Viewer</td>
<td>54</td>
</tr>
<tr>
<td>3.13</td>
<td>The Fid Data Viewer</td>
<td>55</td>
</tr>
<tr>
<td>3.14</td>
<td>Fid Data Display Type</td>
<td>56</td>
</tr>
<tr>
<td>3.15</td>
<td>Fid Data Options Menu</td>
<td>58</td>
</tr>
<tr>
<td>3.16</td>
<td>The Image Viewer</td>
<td>60</td>
</tr>
<tr>
<td>3.17</td>
<td>The Image Viewer Right Mouse Popup Menu</td>
<td>61</td>
</tr>
<tr>
<td>3.18</td>
<td>The Prior Probability Viewer</td>
<td>66</td>
</tr>
<tr>
<td>3.19</td>
<td>The Fid Model Viewer</td>
<td>69</td>
</tr>
<tr>
<td>3.20</td>
<td>The Plot Results Viewer</td>
<td>72</td>
</tr>
<tr>
<td>3.21</td>
<td>Plot Information Popup</td>
<td>73</td>
</tr>
<tr>
<td>3.22</td>
<td>The Text Results Viewer</td>
<td>75</td>
</tr>
<tr>
<td>3.23</td>
<td>The Bayes Condensed File</td>
<td>78</td>
</tr>
<tr>
<td>3.24</td>
<td>Data, Model, And Resid Plot</td>
<td>81</td>
</tr>
<tr>
<td>3.25</td>
<td>The Parameter Posterior Probabilities</td>
<td>82</td>
</tr>
<tr>
<td>3.26</td>
<td>The Maximum Entropy Histograms</td>
<td>84</td>
</tr>
<tr>
<td>3.27</td>
<td>The Parameter Samples Plot</td>
<td>85</td>
</tr>
<tr>
<td>3.28</td>
<td>Posterior Probability Vs Parameter Value</td>
<td>86</td>
</tr>
<tr>
<td>3.29</td>
<td>Posterior Probability Vs Parameter Value, A Skewed Example</td>
<td>87</td>
</tr>
<tr>
<td>3.30</td>
<td>The Expected Value Of The Logarithm Of The Likelihood</td>
<td>89</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>10.5</td>
<td>Bayes Metabolite IPGD_D20 Spectrum</td>
<td>230</td>
</tr>
<tr>
<td>10.6</td>
<td>Bayes Metabolite, The Fraction of Glucose</td>
<td>231</td>
</tr>
<tr>
<td>10.7</td>
<td>Glutamate Example Spectrum</td>
<td>233</td>
</tr>
<tr>
<td>10.8</td>
<td>Estimating The F_{c0}, y and F_{a0} Parameters</td>
<td>236</td>
</tr>
<tr>
<td>10.9</td>
<td>Bayes Metabolite, The Ethyl Ether Example</td>
<td>237</td>
</tr>
<tr>
<td>11.1</td>
<td>The Find Resonances Interface With The Ethyl Ether Spectrum</td>
<td>240</td>
</tr>
<tr>
<td>12.1</td>
<td>The Diffusion Tensor Package Interface</td>
<td>248</td>
</tr>
<tr>
<td>12.2</td>
<td>Diffusion Tensor Parameter Estimates</td>
<td>256</td>
</tr>
<tr>
<td>12.3</td>
<td>Diffusion Tensor Posterior Probability For The Model</td>
<td>257</td>
</tr>
<tr>
<td>13.1</td>
<td>The Big Magnetization Package Interface</td>
<td>260</td>
</tr>
<tr>
<td>13.2</td>
<td>Big Magnetization Transfer Example Fid</td>
<td>263</td>
</tr>
<tr>
<td>13.3</td>
<td>Big Magnetization Transfer Expansion</td>
<td>263</td>
</tr>
<tr>
<td>13.4</td>
<td>Big Magnetization Transfer Peak Pick</td>
<td>264</td>
</tr>
<tr>
<td>14.1</td>
<td>The Magnetization Transfer Package Interface</td>
<td>266</td>
</tr>
<tr>
<td>14.2</td>
<td>Magnetization Transfer Package Peak Picking</td>
<td>272</td>
</tr>
<tr>
<td>14.3</td>
<td>Magnetization Transfer Example Data</td>
<td>273</td>
</tr>
<tr>
<td>14.4</td>
<td>Magnetization Transfer Example Spectrum</td>
<td>274</td>
</tr>
<tr>
<td>15.1</td>
<td>Magnetization Transfer Kinetics Package Interface</td>
<td>276</td>
</tr>
<tr>
<td>15.2</td>
<td>Magnetization Transfer Kinetics Package Arrhenius Plot</td>
<td>282</td>
</tr>
<tr>
<td>15.3</td>
<td>Magnetization Transfer Kinetics Water Viscosity Table</td>
<td>283</td>
</tr>
<tr>
<td>16.1</td>
<td>Given Polynomial Order Package Interface</td>
<td>286</td>
</tr>
<tr>
<td>16.2</td>
<td>Given Polynomial Order Scatter Plot</td>
<td>291</td>
</tr>
<tr>
<td>17.1</td>
<td>Unknown Polynomial Order Package Interface</td>
<td>294</td>
</tr>
<tr>
<td>17.2</td>
<td>The Distribution of Models On The Console Log</td>
<td>298</td>
</tr>
<tr>
<td>17.3</td>
<td>The Posterior Probability For The Polynomial Order</td>
<td>300</td>
</tr>
<tr>
<td>18.1</td>
<td>The Errors In Variables Package Interface</td>
<td>304</td>
</tr>
<tr>
<td>18.2</td>
<td>The McMC Values File Produced By The Errors In Variables Package</td>
<td>310</td>
</tr>
<tr>
<td>19.1</td>
<td>The Behrens-Fisher Interface</td>
<td>312</td>
</tr>
<tr>
<td>19.2</td>
<td>Behrens-Fisher Hypotheses Tested</td>
<td>313</td>
</tr>
<tr>
<td>19.3</td>
<td>Behrens-Fisher Console Log</td>
<td>323</td>
</tr>
<tr>
<td>19.4</td>
<td>Behrens-Fisher Status Listing</td>
<td>324</td>
</tr>
<tr>
<td>19.5</td>
<td>Behrens-Fisher McMC Values File, The Preamble</td>
<td>325</td>
</tr>
<tr>
<td>19.6</td>
<td>Behrens-Fisher McMC Values File, The Middle</td>
<td>326</td>
</tr>
<tr>
<td>19.7</td>
<td>Behrens-Fisher McMC Values File, The End</td>
<td>327</td>
</tr>
<tr>
<td>20.1</td>
<td>Enter Ascii Model Package Interface</td>
<td>330</td>
</tr>
<tr>
<td>21.1</td>
<td>The Enter Ascii Model Selection Package Interface</td>
<td>338</td>
</tr>
</tbody>
</table>
List of Tables

8.1 Multiplet Relative Amplitudes ... 165
8.2 Bayes Analyze Models .. 181
8.3 Bayes Analyze Short Descriptions ... 195
Chapter 5

Given Exponential Model

The Given Exponential Package estimates amplitudes and decay rate constants in data that are known to contain signals which are sums of exponentials. This signal may or may not contain a constant offset, and the number of exponentials in the data need not be known. The calculations presented in this Chapter describe the given model, i.e., given the number of exponentials and whether a constant is or is not present. We describe the calculations for the unknown number of exponentials in Chapter 6. The input data files analyzed by this package are Ascii and may be input from Ascii files, a peak pick, a Bayes Analyze file or they may be loaded from an image pixel. When “Exponential” package button is activated, the interface window shown in Fig. 5.1 is displayed. This is the interface for both “Given” and “Unknown” number of exponentials. To use this package, you must do the following:

Select the exponential package from the Package menu.

Load one or more Ascii data sets using the Files menu. When a data set is successfully loaded the data is plotted in the Ascii Data viewer.

Set the number of exponentials in the model using the Model/Order selection menu.

Check the Model/Constant box if the data contains an offset.

Check the Analysis Options/Find Outliers box if you suspect outliers are present in the data.

Review the prior probabilities for the decay rate constant using the Prior Viewer.

Select the server that is to process the analysis.

Check the status of the selected server to determine if the server is busy, change to another server if the selected server is busy.

Run the analysis on the selected server by activating the Run button.

Get the results of the analysis by activating the Get Job button. If the analysis is running, this button will return the Accepted report containing the status of the current run. Otherwise, it will fetch and display the results from the current analysis.
To use the Exponential package:

1. Load an ascii file.
2. Specify the number of exponentials or specify "unknown" to enable automatic model determination.
3. When the number of exponentials is given, specify whether or not a constant is present.
4. Select the server to run the analysis.
5. Run the analysis using the "Run" button.
6. Use "Get Job" to get the results from the server.
5.1 The Bayesian Calculation

The sums of exponential package process data that are known to contain exponential signals of the form:

\[d_{ik} = C_k + \sum_{j=1}^{m} A_{jk} \exp \{-\alpha_j t_{ik}\} + n_{ik} \]

(5.1)

where \(d_{ik} \) is the ith data value in the kth data set, \(C_k \) is the constant offset in the kth data set, \(m \) is the number of exponentials, \(A_{jk} \) is the amplitude or intensity of the jth exponential in the kth data set, \(\alpha_j \) is the jth exponential decay rate constant, \(t_{ik} \) is the ith abscissa value in the kth data set, and as this equation implies, the abscissa values and the sampling times need not be the same from one data set to the next. In Fig. 5.1, the model widgets, allow you to set the number of exponentials and allow you to indicate if a constant is present. Additionally, the prior viewer can be used to set the prior probability for the decay rate constants. Finally, the number of data sets \(n \) is determined by the number of Ascii data sets loaded into the analysis. If 5 Ascii data sets are loaded, the \(n = 5 \).

When the number of exponentials are given, the problem is one of parameter estimation and the program that implements this Bayesian calculation computes the marginal posterior probability for each of the parameters appearing in the model. For example, the marginal posterior probability for the decay rate constant, \(\alpha_j \), is computed from the joint posterior probability for all of the parameters using the sum rule:

\[P(\alpha_j|DI) = \int d\{A\}d\{C\}d\{\sigma\}da_1 \ldots da_{j-1}da_{j+1} \ldots da_m P(\{A\}\{C\}\{\sigma\}|\alpha|DI) \]

(5.2)

where the integral is over all of the parameters except the parameter of interest, in this case \(\alpha_j \). The notation, \(\{\cdot\} \) is being used to stand for all of the enclosed quantities. So for example if there are three exponentials and 5 data sets, there are 15 total amplitudes represented by \(\{A\} \). Similarly, because there is one constant per data set, then there would be 5 total constants represented by \(\{C\} \). The right-hand side of this equation was factored using the rules of probability theory and Bayes Theorems' [1]

\[P(\{A\}\{C\}\{\sigma\}|\alpha|DI) \propto \prod_{l=1}^{m} P(\alpha_l|I) \]

\[\times \prod_{k=1}^{n} P(C_k|I)P(\sigma_k|I) \]

\[\times \prod_{k=1}^{n} \prod_{j=1}^{m} P(A_{jk}|I) \]

\[\times \prod_{k=1}^{n} P(D_k|\{A\}_k\{\alpha\}_kC_k\sigma_k|I) \]

(5.3)

where \(m \) is the given number of exponentials, \(n \) is the number of data sets, \(P(\alpha_l|I) \) is the prior probability for the lth decay rate constants, \(P(C_k|I) \) is the prior probability for the constant in the kth data set, \(P(\sigma_k|I) \) is the prior probability for the standard deviation of the noise, \(P(A_{jk}|I) \) is the prior probability for the amplitudes of the jth exponential in the kth data set, and \(P(D_k|\{A\}_k\{\alpha\}_kC_k\sigma_k|I) \)
is the direct probability or likelihood of data set \(D_k \) given the amplitudes, \(\{A\}_k \), in the \(k \)th data set, the constant offset, \(C_k \), and the standard deviation of the noise, \(\sigma_k \).

The various probabilities are assigned as follows: The prior probability for the decay rate constant, \(P(\alpha_l|I) \), are user defined and the functional form of this prior probability can be any of the following: a uniform prior probability, a bounded Gaussian, an exponential prior probability or a prior positive. When the interface initializes the exponential package, a default prior probability for the decay rate constant is defined using the maximum value of the abscissa. This default prior probability is a bounded Gaussian prior probability that goes through 4.5 e-foldings over the decay rate constant ranges shown in the interface. If the maximum decay rate constant is \(\alpha_{\text{Max}} \), then the default prior probability for the decay rate constant is given by

\[
P(\alpha_l|I) = \begin{cases} \frac{1}{N_l} \exp\left\{-\frac{\alpha_l^2}{2\sigma_l^2}\right\} & \text{if } 0 \leq \alpha_l \leq \alpha_{\text{Max}} \\ 0 & \text{otherwise} \end{cases} \quad (5.4)
\]

where \(N_l \) is a normalization constant. If we make the assumption that the exponential signal components decay to no more than 20 e-foldings over the run of the data, then we can define a maximum decay rate constant:

\[
\alpha_{\text{Max}} T_{\text{Max}} = 20, \quad (5.5)
\]

\(T_{\text{Max}} \) is the maximum abscissa value, so

\[
\alpha_{\text{Max}} = \frac{20}{T_{\text{Max}}}, \quad (5.6)
\]

and \(\sigma_l \) is set so that the prior goes through 4.5 e-foldings:

\[
\frac{(\alpha_{\text{Max}})^2}{2\sigma_l^2} = 4.5. \quad (5.7)
\]

Consequently,

\[
\sigma_l \approx \frac{6.666666}{T_{\text{Max}}}. \quad (5.8)
\]

The user assigns only a single prior probability for the decay rate constants and the interface uses this prior for all decay rate constants.

The prior probabilities for the amplitudes, the \(P(A_{jk}|I) \), are assigned using broad Gaussian that range from \(-\infty\) to \(+\infty\),

\[
P(A_{jk}|I) = \left(\frac{2\pi \sigma_k^2}{\delta^2}\right)^{-\frac{1}{2}} \exp\left\{-\frac{\delta^2}{2\sigma_k^2} A_{jk}^2\right\} \quad (5.9)
\]

where \(\delta = 0.01 \) in the given and unknown number of exponentials. In these package you cannot change the prior probability for the amplitudes. Similarly, the prior probability for the constant offset in each data set, \(P(C_k|I) \), is also assigned as a Gaussian prior probability using

\[
P(C_k|I) = \left(\frac{2\pi \sigma_k^2}{\delta^2}\right)^{-\frac{1}{2}} \exp\left\{-\frac{\delta^2}{2\sigma_k^2} C_k^2\right\} \quad (5.10)
\]
the same functional form with δ also equal to 0.01. Consequently, it is possible for this package to estimate either the amplitudes or the constant offsets to be negative when the prior information available to the user would constrain it to be positive. If this is unacceptable, in the Enter Ascii Model package there is a full suite of exponential models that allow you to control the prior range on the amplitudes as well as the decay rate constants, Chapter 20. The prior probability for the standard deviation of the noise, the σ_k, were assigned using Jeffreys’ priors [33],

$$P(\sigma_k|I) \propto \frac{1}{\sigma_k}. \quad (5.11)$$

Finally, the direct probability for the data was assigned using a Gaussian likelihood function. This Gaussian had a standard deviation given by σ_k that is specific to each data set.

The exponential model equation, Eq. (5.1) is symmetric under relabeling of the amplitudes and decay rate constants. This symmetry causes the joint posterior probability for the decay rate constants to be symmetric in the sense that if there is a peak at $\alpha_1 = \beta$ and $\alpha_2 = \gamma$, then there is also a peak at $\alpha_1 = \gamma$ and $\alpha_2 = \beta$; this symmetry is caused because the model does not tell us which exponential signal corresponds to which model component. Consequently, a convention must be introduced which breaks this symmetry. In the calculations implemented here, we break this symmetry by ordering the rate constants: $\{\alpha_1 < \alpha_2 < \alpha_3, \text{ etc.}\}$.

The full Bayesian calculation and the assignment of the prior probabilities is discussed in reference [15] and this paper is available in pdf by activating this link. Additionally, much more about exponential parameter estimation is contained in [16, 17]. The first paper describes the problem of determining the number of exponentials in a given sample of data, while the second paper discusses how the accuracy of the parameter estimates depends on the number of data values, signal-to-noise level and the rate of decay of the sample.

5.2 Outputs From The Given Exponential Package

The Text outputs files from the exponential packages consist of: “Bayes.prob.model,” “BayesExp-Given.mcmc.values,” “Bayes.params,” “Console.log,” “Bayes.accepted” and a “Bayes.Condensed.File.” These output files can be viewed using the Text Viewer or they can be viewed using File Viewer by navigating to the current working directory and then selecting the files. The format of the mcmc.values report is discussed in Appendix D and the other reports are discussed in Chapter 3. Additionally, the “Plot Results Viewer” can be used to view the output probability density functions. In addition to the standard data, model and residual plots there are probability density functions for the decay rate constants, decay times, the amplitudes for each data set for each exponential and finally there are probability density functions for the standard deviation of the noise in each data set.
Bibliography

479

[45] Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth, Augusta H. Teller, and Edward Teller (1953), “Equation of State Calculations by Fast Computing Machines,” Journal of Chemical Physics. The previous link is to the American Institute of Physics and if you do not have access to Science Sitations you many not be able to retrieve this paper.

