Chapter 27

Phasing An Image Using Non-Linear Phases

The phasing algorithm presented in Chapter 26 can phase any NMR image in which the phases vary linearly in both domains. Consequently that phasing algorithm works well for spin echo and EPI images, but it does not work for gradient echos because in gradient echos the phase varies non-linearly. This effect is illustrated in Fig. 27.1 panels (A) and (B). The linear phasing algorithm has removed most of the oscillations, but has left behind a slowly varying phase that causes the signal to oscillate between the real and imaginary channels. In Panel (C) and (D) we have displayed the real and imaginary images after the nonlinear phasing routine has been run. The nonlinear phasing routine has moved all of the image from the imaginary changes into the real channel and left behind what appears to be white noise. Indeed if you compute the standard deviation of the noise from a region that contains no signal in the real and imaginary images, you will find they are nearly identical. In this chapter we describe the interface to the nonlinear phasing package, BayesPhase2, and give the calculations needed to phase a gradient echo.

27.1 The Model Equation

As in all Bayesian calculations, the calculations begin by relating the parameters of interest to the data, i.e., by stating the model. The model we are going to use is a pixel model. That is to say, we will use exactly the same model on every pixel and each pixel will be treated independently of ever other pixel. Because each pixel is being treated separately, if the image is 128 by 256 then there are a total of 32K different calculations that must be performed. However, each calculation involves only one complex data and two parameters so the calculations are very fast.

Because the discrete Fourier transform is an information preserving transformation, it does not mater if we do the calculation in the time or image domain; both calculations are equivalent. For convenience we will present this calculation in the image domain. What we wish to do is to determine how uncertain we are of both the phase and the amplitude in each pixel and then use the phase to generate a phased image. In a real sense we are not interested in either the amplitude and phase, rather we are interested in how uncertain we are of these quantities, because the resulting phased image must reflect these uncertainties.
Figure 27.1: Nonlinear Phasing Example

(A) Linear Phases, the Real image

(B) Linear Phases, the Imaginary image

(C) Non-Linear Phases, the Real image

(D) Non-Linear Phases, the Imaginary image

Figure 27.1: Panels (A) and (B) are the real and imaginary images generated from a gradient echo when the linear phasing algorithm is used. Note that the imaginary image, panel (B), still has a strong signal. This signal oscillates positive and negative in both the real and imaginary images. Panel (C) is the real image generated by the nonlinear phasing algorithm. The imaginary image (D) is essentially noise. If you compute the standard deviation of the noise from a section of the real and imaginary images you find they are essentially identical; indicating that the image is almost perfectly phased.
If \(d \) represents a complex image pixel value, then the model for any given pixel is

\[
d = A \exp \{ -i\theta \} + n \tag{27.1}
\]

where \(A \) is the amplitude of the image and \(\theta \) is the phase. The quantity \(n \) represents the noise, and in this calculation we will assume the standard deviation of the noise, \(\sigma \), is known. Separating the real and imaginary parts of this signal one has

\[
d_R = A \cos(\theta) + n_R \tag{27.2}
\]

for the real channel and

\[
d_I = -A \sin(\theta) + n_I \tag{27.3}
\]

for the imaginary channel, where \(d_R \) and \(d_R \) represent the real and imaginary pixel values and \(n_R \) and \(n_I \) represent the real and imaginary noise values. In the calculations which follow it will be assumed that the standard deviation of the noise is the same in both the real and imaginary channels and that the noise values are the same over the entire image.

27.2 The Bayesian Calculations

The Bayesian calculation consists of applying Bayes’ theorem

\[
P(A\theta|\sigma d_R d_I) = \frac{P(A\theta|\sigma I)P(d_R d_I|\sigma A\theta I)}{P(d_R d_I|\sigma I)} \tag{27.4}
\]

where \(P(A\theta|\sigma I) \) is the joint posterior probability for the parameters given the noise standard deviation, the data and the prior information \(I \). The joint prior probability for the parameters, \(P(A\theta|\sigma I) \), represents what was known about these parameters before the data were acquired. The direct probability for the data, \(P(d_R d_I|\sigma A\theta I) \), is essentially the likelihood function and \(P(d_R d_I|\sigma I) \) is a normalization constant. If we normalize this probability density function at the end of the calculation and factor the joint prior probability for the parameters, one obtains

\[
P(A\theta|\sigma d_I) \propto P(A|I)P(\theta|I)P(d|A\theta I) \tag{27.5}
\]

as the joint posterior probability for the parameters.

In this calculation we will assign independent prior probabilities for the amplitude and Phase. And the likelihood will be assigned using a Gaussian prior probability. By definition the amplitude should be positive, but we do not wish to insert a hard lower bound on the amplitude. The reason for this is that in this analysis we are not doing a model selection calculation; rather we are doing a parameter estimation calculation. If we were doing a model selection calculation, then we could select between Eq. (27.1) and the “no signal” model. If we had done that then a hard cutoff would have worked fine as the prior probability. In regions where there is no signal, we would just get noise, and in regions where the signal is large we would get a properly phased signal. However, if we are doing parameter estimation, then a hard lower bound will necessarily force the real image to be positive, and so put a constant offset into the image: exactly the same thing that happens when one uses and absolute image. Consequently, we will use a prior that strongly suggests the amplitude
should be positive:

\[
P(A|\sigma I) \propto \begin{cases}
\exp \left[-\frac{A^2}{2\sigma^2} \right] & \text{if } A < -3\sigma \\
\exp \left[-\frac{A^2}{2\delta^2} \right] & \text{otherwise}
\end{cases}
\] \hspace{1cm} (27.6)

where \(\delta \) is one half the maximum intensity in the image. So this prior expresses the belief that the amplitude should be small rather than large. Around zero this prior has almost no effect on negative amplitudes until the amplitude become more negative than three noise standard deviations, then suddenly this prior expresses a rather strong belief that the amplitude should be closer to zero. So small negative values are allowed, provided they are small enough not to protrude above the noise floor.

The prior probability for the phase is also assigned using a Gaussian prior probability of the form:

\[
P(\theta|I) \propto \exp \left\{ -\frac{\theta^2}{2 \times 2^2} \right\}.
\] \hspace{1cm} (27.7)

This prior expresses a slight belief that the phase should be zero. The reason for this is simply that noise does not really have a phase, and so the phase should be zero. Any data item having even a small significant amplitude will quickly override this prior.

The likelihood, \(P(d_Rd_I|A\theta\sigma I) \) was assigned using a Gaussian given by

\[
P(d_Rd_I|A\theta\sigma I) \propto \exp \left\{ -\frac{Q^2}{2\sigma^2} \right\}
\] \hspace{1cm} (27.8)

where

\[
Q \equiv |d_R - A\cos(\theta)|^2 + |d_I + A\sin(\theta)|^2.
\] \hspace{1cm} (27.9)

In the program that implements the calculation, the noise standard deviation \(\sigma \) must be determined. There are many ways this might be done, but whatever is done, it must be general enough to work on any image. If you examine the output from the linear phasing routine, Fig. 27.1 panels (A) and (B), you will note that in small patches of the image, say \(3 \times 3 \) pixels, the signal in the real and imaginary channels are roughly constant; different constants in the real and imaginary, but constant nonetheless. If you postulate a model that is a constant in this small region and then compare the constant model to the “no signal” model, one can compute the posterior probability for these two models. If there is no signal present, then that region can be used to compute the noise standard deviation. By going over the entire image using a \(3 \times 3 \) set on pixels one can quickly get a very accurate estimate of the noise standard deviation by using only pixels for which the probability for no signal is much greater that the probability for the constant model.

The Bayesian calculations are implemented using Markov chain Monte Carlo, without simulated annealing. The Markov chain has Eq. (27.5) as its target distribution, using Eqs. (27.6,27.7) as the prior probabilities and Eq.(27.8) as the direct probability. The calculations are implemented in parallel, with parallelization occurring at the pixel level. Consequently, it 32 processors are available then 32 pixels are processed at one time. The simulations are initialized using the maximum likelihood estimated of both the amplitude and phase. Consequently, these simulations start very near the maximum of the joint posterior probability and all that is necessary is to run the simulations long enough for them to reach equilibrium.
In most Markov chain Monte Carlo simulations, it is the means and standard deviations of the parameter samples that are output. If we had used the mean phases to generate the output image, we would almost certainly get the maximum of the direct probability in regions where there is a signal, and, consequently, the output would essentially be an absolute value spectrum. However, we are not trying to estimate the amplitudes and phases, we are trying to phase an image. In the Markov chain Monte Carlo simulations each of the samples from the simulations are characteristic of the phase and amplitude supported by the data. Consequently, we randomly take one phase from one of the Markov chain Monte Carlo simulations and use that phase to produce an absorption mode pixel. This process is repeated for each pixel, giving an absorption model image. Figure 27.1 panels (C) and (D) are the real and imaginary parts of a gradient echo image that was phased using this procedure. Note that the real image (C) contains the fully phased image, plus noise; while the imaginary image (D) contains only noise. If one computes the noise standard deviation for these two images one finds essentially the same value in both real and imaginary images, and this value is the same as what is found in both panels (A) and (B), the real and imaginary parts of the linearly phased image; so this procedure has moved the positive intensity to the real channel and left the noise behind.

27.3 The Interfaces To The Nonlinear Phasing Routine

The interfaces to the Nonlinear Phasing package are shown in Fig. 27.2. To use this package you must:

- Run the linear phasing algorithm and have that package write both the imaginary and real FDF images.
- Select the type of processing:
 - **All**: all of images are to be phased separately.
 - **One**: only the currently displayed image is to be phased.
 - **Common**: the phase from the currently displayed image are to be computed, and those phases are then used on all of the images.
- Indicate if the imaginary images are to be written, the default is not to write these images.
- Indicate if the Ascii image are to be written, the default is not to write these images.

The remaining widgets on this interface are used to view the outputs and to indicate where the analysis is to be run. These widgets are pretty standard and we do not discuss them further. If you need to know more about the function of these widgets activate the help button and then activate the widget in question.
Figure 27.2: The Interface To The Nonlinear Phasing Package

To use the Bayes Phase package:

1. Load the image you wish to phase.
2. Select the processing to All or Common.
3. Set the noise standard deviation.
 a. Draw an ROI in the noise
 b. Generate the statistics for that ROI
 c. Copy the standard deviation into the "Noise SD" entry box
4. Select the server to run the analysis.
5. Run the analysis using the "Run" button.
6. Use "Get Job" to get the results from the server.

Figure 27.2: The interface to the Nonlinear phasing package is shown here. The output from this package is the phased real and imaginary parts of the input image. These images, usually just the real image, can be used in other analysis such as inversion recovery and diffusion tensor packages.
Bibliography

[45] Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth, Augusta H. Teller, and Edward Teller (1953), “Equation of State Calculations by Fast Computing Machines,” Journal of Chemical Physics. The previous link is to the American Institute of Physics and if you do not have access to Science Sitations you many not be able to retrieve this paper.

Index

A_k definition, 349
$H_{jk(t_i)}$ definition, 349
λ_k definition, 349
g_{jk} eigenvalue, 349

Abscissa, 437
 Computational, 436
 Generating, 427
 Loading, 39
 Multicolumn, 437
 Number Of Columns, 458
 Total Data Values, 456

Aliases, 113, 126
Amplitudes orthonormal definition, 349

Analyze Image Pixel Package, 411
 Modification History, 413
 Phased Images, 397
 Reports
 Bayes Accepted, 413
 Using, 413

Viewers
 Fortran/C Models, 411
 Image, 411
 Prior Probabilities, 413

Widgets
 Abscissa File, 411
 Build, 411
 Find Outliers, 411
 Get Statistics, 413
 System, 411
 User, 411

Analyze Image Pixel Unique Package, 423
 Highlight
 Abscissa, 425
 Data, 425
 Input Image
 Abscissa, 423

Bayes Analyze Package, 155
 Levenberg-Marquardt, 171
 Step, 194
 Algorithm, 175
 Amplitudes, 197, 198
 Bayes Model, 159, 161
 Bayesian Calculations, 167
 Bruker, 162
 Build BA Model, 159
 Covariance, 174
 Default Parameters Settings, 155
 Error Messages, 200
 Fid Model Viewer, 160
 Interface, 156
 Likelihood
 Gaussian, 158
 Student’s t-distribution, 158

Ascii Data Viewer, 53
Assigning Probabilities, 118

Bandwidth, 111, 127

Bayes Accepted, 425
Console Log, 425
McMC Values, 425

Using, 425

Viewers
 Fortran/C Models, 423
 Image, 423
 Prior Probabilities, 425

Widgets
 Build, 423
 Find Outliers, 423
 Get Statistics, 425
 System, 423
 User, 423

484
Log File, 193, 195
Lorentzian lineshape, 161
Marking Resonances, 157
Model
 J_0, 165
 J_P, 165
 J_s, 165
Amplitude, 163, 164
Bessel Function, 163
Constants Models, 157
Correlated, 157, 162, 164
Equation, 161, 164, 164
First Order Phase, 157, 162, 164
First Point, 162, 164
Gaussian, 163
Imaginary Constant, 164
Multi-Exponential, 163
Multiple Data Sets, 165
Multiplet Order, 164
Multiplet Orders, 164
Multiplets, 162
Multiplets of Multiplets, 164
Non-Lorentzian, 163
Offsets, 162
Real Constant, 164
Relative Amplitude, 164–166
Resonance Frequency, 165
Shim Order, 163
Shimming, 166
Shimming Order, 164
Uncorrelated, 157, 162, 164
Zero Order Phase, 157, 162, 164
Model Interface, 160
Multiplets, 158
Newton-Raphson, 171
Noise File, 158
Noise Standard Deviation, 158
Outputs
 Bayes.accepted File, 177
 bayes.log.mnnn File, 177, 193, 193
 bayes.model.mnnn File, 177, 185, 197, 197
 bayes.noise File, 180
 bayes.noise.mnnn File, 158, 180
 bayes.output.mnnn File, 176, 186, 186
 bayes.params File, 176, 177
 bayes.params.mnnn File, 176, 177, 177
 bayes.probabilities.mnnn File, 177, 190, 190
 bayes.status.mnnn File, 177, 196, 200
 bayes.summary1.mnnn File, 177, 198, 198
 bayes.summary2.mnnn File, 177, 199, 199
 bayes.summary3.mnnn File, 177, 200, 200
Global Parameters, 182, 183
Model File, 184
Probabilities file, 191
Zero Order Phase, 182
Parameter File
 Activate Shims, 180
 Analysis Directory, 178
 By Fid, 181
 Data Type, 180
 Default Model, 181
 Directory Organization, 180
 Fid Model Name, 178
 File Version, 178
 First Fid, 181
 First Order Phase, 180, 183
 Imaginary Constant, 184
 Last Fid, 181
 lh, 182
 Maximum Candidates, 182
 Maximum New Resonances, 182
 Model Fid Number, 181
 Model Name, 184
 Model Names, 181
 Model Number, 184
 Model Points, 181
 Multiplets of Multiplets, 185
 Noise Start, 181
 Numerical Parameters, 178
 Output Format, 180
 Prior Odds, 182
 Procpars, 178
 Real Constant, 184
 Relative Amplitude, 183
 Resonance Model, 185
 Shim Order, 182
 Spectrometer Frequency, 182
 Text Parameters, 178
 Total Complex Data Values, 181
 Total Data Values, 181
 Total Sampling Time, 182
 True Reference, 182
INDEX

Units, 180
Use Noise StdDev, 180
User Reference, 182
Prior Probabilities, 167
Probabilities File, 191
Product Rule, 168
Relative Amplitude, 167
Remove Resonances, 159
Reports
Bayes Status, 155
Save/Reset, 159
Search, 166
Levenberg-Marquardt, 166
Short Parameter Description, 195
Siemens, 162
Status File, 196
Steepest Descents, 173
Sum Rule, 168
Summary File, 198
Summary Reports, 176
Summary2, 199
Summary3, 201
Units, 161
Using, 157
Varian/Agilent, 162
Widgets, 155
By, 158, 176
First Point, 157, 163
From, 158, 176
Imag Offset, 163
Imaginary Offset, 157
Mark, 159
Max New Res, 157
New, 159
Noise, 158
Phase, 157
Primary, 158
Real Offset, 157, 163
Remove, 159
Remove All, 159
Reset, 159, 193
Restore, 159
Save, 159
Secondary, 159
Shim Order, 157, 163
Signal, 158
To, 158, 176
Bayes Find Resonances Package, 239
Bayesian Calculations, 241
Current Fid, 239
Model Equation, 241
Number of data sets, 239
Phase Model
Automatic, 239, 242
Common, 239, 242
Independent, 239, 242
Prior Probabilities, 243–245
Reports
Bayes Accepted, 241, 246
Condensed, 246
Console log, 246
McMC Values, 246
Prob Model, 246
Using, 239, 241
Viewers
Fid Data, 240
Fid Model, 240, 246
File, 246
Plot Results, 246
Text, 246
Widgets
Build FID Model, 240, 241, 246
Constant, 239, 242
First Trace, 239
Last Trace, 239
Model Fid Number, 241
Phase Model, 239, 242
Bayes Home Directory, 45, 49
Bayes Manual pdf, 469
Bayes Metabolite Package
Widgets
Shift Left, 222
Shift Right, 222
Bayes Metabolite Package, 219
Aligning Resonances, 221
Bayesian Calculation, 225
Metabolite Locations, 221
Model Equation, 223
Reports
Bayes Accepted, 221, 238
Condensed, 238
Console log, 238
INDEX

Fid, 263
Peak Pick, 262
Model Equation, 261
Number of data sets, 259
Prior Probabilities, 261
Reports
 Bayes Accepted, 259, 262
 Condensed, 262
 Console log, 262
 McMC Values, 262
 Prob Model, 262
Using, 259
Viewers
 Ascii Data, 259
 File, 262
 Prior Probabilities, 259
 Text, 262
Widgets
 Find Outliers, 259
Big Peak/Little Peak Package, 207
Bayesian Calculations, 209
Fid Analyzed, 207
Model Equation, 210
 Metabolites, 209
 Solvent, 210
Number of data sets, 207
Prior Probabilities
 Metabolite, 207
 Solvent, 207
Removing Resonances, 207
Reports
 Bayes Accepted, 209, 216
 Condensed, 216
 Console log, 216
 McMC Values, 216
 Prob Model, 216
Using, 207
Viewers
 File, 216
 Model, 209
 Plot Results, 216
 Prior Probabilities, 207
 Text, 216
Widgets
 Metabolite, 207
 Solvent, 207
Binned Density Function Estimation, 355
Binned Histogram Package
 Reports
 Bayes Accepted, 357
 Viewers
 Ascii, 355
Binned Histograms Package
 Using, 357
 Viewers
 Prior Probabilities, 355
Bloch-McConnell Equations, 267, 277
Changing the Bayes Home Directory, 469
Compilers, 29
 CC, 29, 455
 Fortran, 29, 455
Correlations, 91
Diffusion Tensor Package, 247
 Ascii File Formats, 247, 254, 255
 Bayesian Calculations, 249
 Prior Probabilities
 \(\Delta \), 254
 \(\Gamma \), 254
 \(\delta \), 254
 \(\sigma \), 253
 Amplitudes, 253
 Eigenvalues, 253
 Euler Angles, 253
 Likelihood, 253
 Parameter, 254
 Reports
 Bayes Accepted, 247, 255
 Condensed, 255
 Console log, 255
 McMC Values, 255
 Prob Model, 255
 Symmetries, 253
Using, 247
Viewers
 File, 247, 255
 Plot Results, 255
 Prior Probabilities, 247, 253
 Text, 255
Widgets
 Abscissa Options, 248
Find Outliers, 247
Include Constant, 247, 248, 255
Tensor Number, 247, 248, 255
Use b Matrix, 255
Use b Vectors, 255
Use g Vectors, 254
Discrete Fourier Transform, 110, 113, 123

Enter Ascii Model Package, 329
Bayesian Calculations, 332
Marginalization, 332
No Marginalization, 331
Fortran/C Models, 330, 335
Model Equation
Marginalization, 331
No Marginalization, 331
Output Names
Derived, 335
Parameters, 335
Reports
Bayes Accepted, 331, 335
Bayes Params, 335
Condensed, 335
Console log, 335
McMC Values, 335
Prob Model, 335
Using, 331
Viewers
Ascii Data, 329
File, 335
Fortran/C Models, 329
Plot Results, 335
Prior Probabilities, 329
Text, 335
Widgets
Build, 329
Find Outliers, 329
System, 329
User, 329

Enter Ascii Model Selection Package, 341
Bayesian Calculations
Marginalization, 346
No Marginalization, 344
Fortran/C Models, 341, 343, 353
Model Equation, 343
No Marginalization, 343
With Marginalization, 347
Output Names
Derived, 354
Parameters, 353
Reports
Bayes Accepted, 343, 353
Condensed, 353
Console log, 353
McMC Values, 353
Params File, 353
Prob Model, 353
Using, 343
Viewers
Ascii Data, 341
File, 353
Fortran/C Models, 341
Plot Results, 353
Prior Probabilities Not Used, 341
Text, 353
Widgets
Build Not Used, 341
Find Outliers, 341
System, 341
User, 341

Errors In Variables Package, 303
Ascii File Formats
Errors In X and Y Known, 303, 309
Errors In X Known, 303, 309
Errors In Y Known, 303, 309
Errors Unknown, 303, 309
Bayesian Calculations, 305
Data Error Bars, 303
Files
Ascii, 303
Bayes Analyze, 303
Peak Pick, 303
Model Equation, 305
Number of data sets, 303
Reports
Bayes Accepted, 305, 309
Condensed, 309
Console log, 309
McMC Values, 309
Prob Model, 309
Using, 305
Viewers
Ascii Data, 303
File, 309
Plot Results, 309
Text, 309
Widgets
 Given Errors In, 303
 Order, 303
Exponentials
 Given Package, 137
 Inversion Recovery Package, 151
 Magnetization Transfer Package, 267
 Unknown Number of Package, 143

Fid Data Viewer, 53
Fid Model Viewer, 68
File Format
 Ascii, 436
File Viewer, 80
Files
 4dfp, 59, 428, 430, 470, 471
 Header, 473
 Reading, 471
 Abscissa, 39, 77, 470
 afh, 53
 ASCII, 35, 36
 ASCII, 53, 54, 435
 k-space, 437
 Abscissa, 435, 436, 437
 Data, 435
 Image, 436
Bayes Analyze, 36
Bayes.accepted, 51, 76
Bayes.params, 76, 79
Bayes.prob.model, 447
BayesManual.pdf, 469
Condensed, 77, 78
Console.log, 76, 79, 465
dir.info, 470
fid, 470, 470
 ASCII, 36
 ffh, 56
 Model, 68, 70
 procpar, 470
 Siemens Raw, 36
 Siemens Rda, 36
 Spectroscopic, 53
 Varian fid, 36

Fortran/C Models, 42, 455, 457, 458, 465–467
Images
 4dfp, 38
 Binary, 38
 Bruker 2dseq, 38
 Bruker stack, 38
 DICOM, 38
 FDF, 38
 Multi-Column Text, 38
 Siemens IMA, 38
k-space
 Text, 36
 Varian fid, 36
 mcmc.values, 76, 449
Model Listing, 77
prob.model, 76
procpar, 470
Raw, 36
RDA, 36
Statistics, 65
System.err.txt, 469
System.out.txt, 469
Varian fid, 36
WaterViscosityTable, 469

Fortran/C Model Viewer, 93
Popup Editor, 93

Fortran/C Models, 42, 330, 335, 353, 455
Abscissa, 463
Body, 463
 Abscissa, 457
Declarations, 462
Derived Parameters, 457, 459, 463
Edit/Create New Model, 42, 455
I/O, 464
Marginalization, 464
 \(G_f(\Omega, t_i) \), 464
Amplitude Range, 465
Example, 465, 466
Model Vectors, 465
Ordering Amplitudes, 465
Parameter File, 465, 467
Parameter Order, 465
Parameters, 465
Model Files, 455
Model Selection, 464
No Marginalization, 457
$S(t_i)$, 455
Example, 456
Parameter File, 458, 459, 465
Parameters, 463
Signal, 463
Subroutine Interface, 460
 Abscissa, 462
 Current Set, 460
 Derived Parameters, 461
 Maximum No Of Data Values, 461
 Number Of Abscissa Columns, 461
 Number Of Data Columns, 461
 Number Of Derived Parameters, 461
 Number Of Model Vectors, 461
 Number Of Parameters, 460
 Signal, 462
 Total Complex Data Values, 461
Subroutines and Functions, 464
Frequency Estimation, 114, 132

Given Exponential Package, 137
 Bayesian Calculations, 140
 Files
 Ascii, 137
 Bayes Analyze, 137
 Peak Pick, 137
 Model Equation, 139
 Number of data sets, 139
 Prior Probabilities, 139–141
Reports
 Bayes Accepted, 137, 141
 Condensed, 141
 Console log, 141
 McMC Values, 141
 Prob Model, 141
Symmetries, 141, 148
Using, 137
Viewers
 File, 141
 Plot Results, 141
 Prior Probabilities, 137, 139
 Text, 141
Widgets
Constant, 137, 139
Find Outliers, 137
Given Order, 27
Include Constant, 27
Order, 137, 139

Given Polynomial Order Package, 285
 Bayesian Calculations, 288
 Files
 Ascii, 285
 Bayes Analyze, 285
 Peak Pick, 285
 Gram-Schmidt, 287
 Model Equation, 287
 Number of data sets, 285
 Prior Probabilities, 289
Reports
 Bayes Accepted, 285, 291
 Condensed, 291
 Console log, 291
 McMC Values, 291
 Prob Model, 291
 Scatter Plots, 292
Using, 285
Viewers
 File, 290
 Plot Results, 291
 Text, 290
Widgets
 Set Order, 285

Histograms
 Binned, 381
 Kernel Density, 381

Image Model Selection Package, 415
 Abscissa, 415
 Fortran/C Models, 415, 417
Reports
 Bayes Accepted, 417
Using, 417
Viewers
 Fortran/C Models, 415
 Image, 415
Widgets
 Noise SD, 415
 System, 415
INDEX

Use Gaussian, 415
User, 415

Image Viewer, 59

Images
 Flip
 Horizontal, 63
 Vertical, 63
Grayscale, 63
ImageJ, 63
Original, 63

Inversion Recovery Package, 151
 Bayesian Calculations, 153
 Model Equation, 153
 Number of data sets, 153
 Prior Probabilities, 153
 Reports
 Bayes Accepted, 151, 154
 Condensed, 154
 Console Log, 154
 McMC Values, 154
 Prob Model, 154
 Using, 151

Viewers
 Plot Results, 154
 Prior Probability, 151

Widgets
 Find Outliers, 151

Kernel Density Function Package, 361
 Ascii File Format, 361
 Bayesian Calculations, 369
 Data Requirements, 361
 Data, Model And Residuals, 369
 Kernels, 369
 Biweight, 362
 Cosine, 362
 Epanechnikov, 362
 Exponential, 362
 Gaussian, 362, 370
 nonnegative, 361
 Real Valued, 361
 Triangular, 362
 Tricube, 362
 Triweight, 362
 Uniform, 362
 Likelihood, 371
 Number of data sets, 364
 Plots
 Expected Density Function, 367, 368
 Mean Density Function, 367, 368
 Posterior Probability for the Kernel Type, 365
 Posterior Probability for the Number Of Kernels, 366
 Scatter Plots of Model Averaged Density Function, 368
 Standard Deviation of the Mean Density Function, 367, 368
 Prior Probabilities
 Kernel Center, 371
 Kernel Smoothing Parameter, 371
 Kernel Type, 370
 Number Of Kernels, 370
 Reports
 Bayes Accepted, 364
 Condensed, 372
 McMC Values, 372
 Prob Model, 372
 Using, 364

Viewers
 Ascii, 361

Widgets
 Kernel Type, 364
 Output Size, 364

Levenberg-Marquardt, 171

Linear Phasing Package, 395, 409
 Interface, 397
 Model Equation, 398

Widgets
 cf, 403
 Display, 403
 Display Array Element, 403
 fn, 403
 fn1, 403
 Image Type, 402
 Load An Image, 402
 np, 403
 nv, 403
 Process, 403

Load Working Directory, 33

Logical Independence, 117
INDEX

Magnetization Transfer Kinetics Package, 275
 Arrhenius Plot, 281
 Bayesian Calculation, 278
 Boltzmann’s Constant, 277
 Eyring Equation, 275, 276, 277, 280
 Model Equation, 277
 Plank’s Constant, 277
 Prior Probabilities, 279
 Reports
 Bayes Accepted, 277, 281
 Condensed, 281
 Console log, 281
 McMC Values, 281
 Prob Model, 281
 Sum and Difference Variables, 280
 Transmission coefficient, 277
 Universal Gas Constant, 277
 Using, 277
 van’t Hoff Plot, 281
 Viewers
 Ascii File, 275
 File, 281
 Prior Probabilities, 275
 Text, 281
 Widgets
 Load, 275, 281
 Set, 275
 Uncertainty, 275
Magnetization Transfer Package, 265
 Bayesian Calculations, 267
 Files
 Ascii, 265
 Bayes Analyze, 265
 Inversion Recovery, 272
 Peak Pick, 265
 Model Equation, 267
 Number of data sets, 265
 Prior Probabilities, 265, 270
 Reports
 Bayes Accepted, 267, 272
 Condensed, 272
 Console log, 272
 McMC Values, 272
 Prob Model, 272
 Three Column Data, 265
 Using, 267
 Viewers
 Ascii Data, 265
 Fid Data, 272
 File, 271
 Plot Results, 262, 272, 281
 Prior Probabilities, 265
 Text, 271
 Widgets
 Find Outliers, 265
Marginalization, 100
 Bayes Analyze Package, 174
 Behrens-Fisher, 315
 Big Magnetization Transfer, 261
 Big Peak/Little Peak, 211
 Diffusion Tensors, 252
 Enter Ascii Model Package, 331
 Errors In Variables, 306
 Fortran/C Models, 464
 Given Exponential, 139
 Inversion Recovery, 153
 Linear Phasing, 399
 Magnetization Transfer, 269
 Magnetization Transfer Kinetics, 278
 Metabolic Analysis, 225
 Nonexhaustive Hypotheses, 101
 Nuisance Hypotheses, 100
 Nuisance Parameter, 100
 Unknown Number of Exponentials, 146
Markov chain Monte Carlo, 132, 439
 Acceptance Rate, 444
 Annealing Schedule, 91, 442
 Dynamic, 443
 Linear, 442
 Killing Simulations, 443
 Maximum Posterior Probability, 91
 Metropolis-Hastings, 439
 Mixing, 91
 Monte Carlo Integration, 440
 Multiple Simulations, 441
 Posterior Probability, 440
 Random Number Generators, 440
 Repeats, 91
 Sampling, 91
 Simulated Annealing, 442
 the Proposal, 444
MaxEnt Density Function Estimation Package, 373
 Data Requirements, 381
Plots
 Contour/Scatter, 375, 379
 Number Of Multipliers, 375, 378
Reports
 Bayes Accepted, 375
 Console Log, 375
Using, 375
Viewers
 Ascii, 373
 Plot, 375, 378
 Prior Probabilities, 373
Widgets
 Histogram Size, 373
 Order, 373
Maximum Entropy Method Of Moments, 102, 377, 381
 Advantages, 386
 Problems, 386
 Review, 381
Maximum Entropy Method Of Moments Package
 Bayesian Calculations, 387
Plots
 Data, Model and Residuals, 380
Menus
 Files, 24, 35
 4dfp, 37, 38
 Abscissa, 35, 39
 ASCII, 35, 36
 Binary, 38
 Bruker, 37
 Bruker 2dseq, 38
 Bruker Stack, 38
 DICOM, 37, 38
 FDF, 37, 38
 fid, 36, 37
 General Binary, 37
 Images, 35
 Import Working Directories in Batch, 40
 Import Working Directory, 40
 Load Images, 36, 37, 59
 Load Working Directory, 35
 Multi-Column Text, 37, 38
 Save Working Directory, 35, 39
 Siemens IMA, 37, 38
 Single-Column Text, 38
 Spectroscopic Fid, 35
 Test Data, 35, 39
 Text k-space, 36
 Text k-space fid, 37
 User Manual, 35, 39
Help, 24
Packages, 22, 24, 33, 40
Settings, 46
 Add Server, 48
 Auto Configure Server, 48
 McMC Parameters, 24, 46, 48
 Min Annealing Steps, 48, 48
 Port number, 48
 Preferences, 49, 63
 Remove Server, 48, 49
 Repetitions, 46, 48
 Server Name, 48
 Server Setup, 24, 26, 48
 Set Window Size, 49
 Simulations, 46, 48
 View Server Installation Info, 48, 49
Spectroscopy fid, 36
Utilities, 24, 50
 Memory Monitor, 50
 Software Updates, 50
 System Information, 50
WorkDir
 Creating, 22, 33, 46
 Deleting, 22, 33, 46
 List, 24, 46
 Loading, 46
 Name, 46
 Popup, 47
Model Comparison
 Big Peak/Little Peak Package, 211
 model orthonormal definition, 349
Mouse
 Control-left, 59
 Fid Data Viewer
 Left, 56
 Right, 56
 Shift-left, 59
Multiplets
 J-Coupling
INDEX

Center, 159
Primary, 159
Secondary, 159

Newton-Raphson, 171
Noise Standard Deviation, 64
Non-Linear Phasing Package, 405
Calculations, 407
Model Equation, 405, 407
Widgets
Process, 409
Write Ascii images, 409
Write imaginary images, 409
Nuisance Parameter, 100, 115, 135
Nyquist Critical Frequency, 111, 127

orthonormal, 349
Outliers, 475
Mean Parameter, 477
Model, 475
Prob Number of, 476
Proposal, 475
Red dot, 477
Weighted Average, 477

Packages
Analyze Image Pixel Unique, 423
Bayes Analyze, 20, 43, 57, 155, 200
Bayes Find Resonances, 21, 239
Bayes Test Data, 427
Behrens-Fisher, 21, 44, 311
Big Magnetization Transfer, 20, 43, 259
Big Peak/Little Peak, 20, 43, 207
Binned Density Function Estimation, 355
Binned Histograms, 21, 44
Diffusion Tensors, 20, 40, 247
Enter ASCII Model, 42
Enter Ascii Model, 20, 329
Enter ASCII Model Selection, 42
Enter Ascii Model Selection, 20, 341
Errors In Variables, 21, 44, 303
Find Resonances, 43
Given Exponential, 20, 40, 137
Given Polynomial Order, 285
Image Model Selection, 415
Image Pixel, 21, 45, 411

Image Pixel Model Selection, 22, 45
Inversion Recovery, 20, 40, 151
Kernel Density Function, 361
Linear Phasing, 21, 44, 395
Magnetization Transfer, 20, 42, 265
Magnetization Transfer Kinetics, 20, 43, 275
Maximum Entropy Method Of Moments, 21, 44, 373
Metabolic Analysis, 21, 43, 219
Non-Linear Image Phasing, 21, 45, 405
Polynomials
of Given Order, 21, 44
of Unknown Order, 21, 44
Test ASCII Model, 42
Test Ascii Model, 20, 337
Unknown Number of Exponentials, 20, 40, 143
Unknown Polynomial Order, 293
Parameter File, 42
Number Of
Abscissa, 458
Data Columns, 458
Model Vectors, 458
Priors, 458
Prior Probability, 459
Amplitude, 460
High, 459
Low, 459
Mean, 459
NonLinear, 460
Ordered, 460
Parameter File, 459
Peak, 459
Prior Type, 460
Standard Deviation, 459
Phase Cycling, 162
Plot Results Viewer, 71
Plots
Data and Model, 81
Data, Model and Residuals, 81
Expected Log Likelihood, 88
Logarithm of the Posterior Probability, 91
Maximum Entropy Histogram, 84
Maximum Entropy Histograms, 83
McMC Samples, 83, 85
Parameter Vs Posterior Probability, 86, 87
INDEX

Test Ascii Model Package, 337
Reports
Bayes Accepted, 339
Mcmc Values, 339
Using, 339, 428
Viewers
Ascii Data, 337
Fortran/C Models, 337
Prior Probabilities, 337
Widgets
Build, 337
Find Outliers, 339
System, 337
User, 337
Thermodynamic Integration, 445, 449

Uninstall, 49
Unknown Number of Exponentials Package, 143
Bayesian Calculations, 145
Model Equation, 145
Reports
Bayes Accepted, 143, 148
Condensed, 148
Console Log, 148, 149
McMC Values, 148
Prob Model, 148
Using, 143
Viewers
File, 148
Plot Results, 149, 150
Prior, 143
Text, 148
Widgets
Constant, 143
Find Outliers, 143
Order, 143
Unknown Polynomial Order Package, 293
Bayesian Calculations, 295
Files
Ascii, 293
Bayes Analyze, 293
Peak Pick, 293
Model Equation, 295
Number of data sets, 293
Reports
Bayes Accepted, 293, 299
Condensed, 299
Console Log, 298, 299
McMC Values, 299
Polynomial Order Plots, 301
Prob Model, 299
Using, 293
Viewers
File, 299
Text, 299
Widgets
Set Order, 293, 294
Unknown Order, 293, 294

Viewers, 27, 52
ASCII Data, 36
Ascii Data, 27, 53, 56, 63, 137, 265, 275, 285, 293, 311, 329, 337, 341
Expanding Plot, 53
Printing, 53
Right click, 53
Bayes Model, 160
Fid Data, 27, 265
fid Data, 53, 56, 285, 293
Auto Range, 59
Autoscale, 56
Clear Cursors, 56
Clear Data, 57
Copy, 59
Cursor, 56
Data Info, 57
Expand, 56
fn, 57
Full, 56
Get Peak, 56
Phase Popup, 57
Print, 59
Properties, 59
Referencing, 59
Save As, 57, 59
Set Preference, 57
Units, 59
Zoom, 59
Fid Model, 27
fid Model, 68, 186
Build BA Model, 70, 159
Data, 71
INDEX

Horizontal, 71
Model, 71
Overlay, 71
Report, 71
Residual, 71
Stacked, 71
Trace, 71
Vertical, 71
File, 28, 80
Fortran/C Models, 93, 330
Image, 27, 59, 415
 Autoset Grayscale, 61
 Copy Selected, 62
 Delete All, 61
 Delete Selected, 61
 Display Full, 61
 Element Selection, 60
 Export, 62
 Get Statistics, 64, 65
 Get Threshold Statistics, 65
 Grayscale, 63
 Image Selection, 60
 List, 59
 Load Selected Pixels, 61
 Max, 64
 Mean, 64
 Min, 64
 Right Click, 61
RMS, 64
 Save Displayed, 62
 Save Statistics, 65
 Sdev, 64
 Set Image Area, 62
 Show Histogram, 61
 Show Info, 62
Slice, 62
 Slice Selection, 60
 Statistics, 60
Value, 64
 View Selected Pixels, 61
Viewer Settings, 62
Viewing, 62
 X Pos, 64
 Y Pos, 64
Plot Results, 28, 71
Prior, 27, 65
Prior Probabilities, 138, 312
Text, 141, 271, 281, 290, 309, 322, 335, 353
Text Results, 26, 28, 52, 74
 Bayes Analyze, 176

Widgets
 Analyze Image Pixel Package
 Build, 411
 Find Outliers, 411
 Get Statistics, 413
 System, 411
 User, 411
 Analyze Image Pixel Unique Package
 Build, 423
 Find Outliers, 423
 Get Statistics, 425
 System, 423
 User, 423
 Ascii Data Viewer
 Delete, 53
 Left-mouse, 53
 Right-mouse, 53
 Bayes Analyze Package
 By, 158, 176
 First Point, 163
 From, 158, 176
 Imag Offset, 163
 Mark, 159
 Max New Res, 157
 New, 159
 Noise, 158
 Phase, 157
 Primary, 158
 Real Offset, 163
 Remove, 159
 Remove All, 159
 Reset, 159, 193
 Restore, 159
 Save, 159
 Secondary, 159
 Shim Order, 157, 163
 Signal, 158
 To, 158, 176
 Bayes Find Resonances Package
 Build FID Model, 240, 241, 246
 Constant, 239, 242
INDEX

First Trace, 239
Last Trace, 239
Model Fid Number, 241
Phase Model, 239, 242
Bayes Metabolite Package
Fid Model, 221
Fid Model Viewer, 221
Load System Metabolite File, 219
Load System Resonance File, 221
Load User Metabolite File, 219
Load User Resonance File, 221
Shift Left, 221, 222
Shift Right, 221, 222
Bayes Test Data Package
Images, 427
Slices, 427
Abscissa, 427
ArrayDim, 427
Build, 427
Get Job, 428
Max Value, 427
Noise SD, 427
Pe, 427
Ro, 427
Run, 428
Set (server), 428
Status, 428
System, 427
User, 427
Big Magnetization Transfer Package
Find Outliers, 259
Big Peak/Little Peak Package
Metabolite, 207
Solvent, 207
Diffusion Tensor Package
Abscissa Options, 248
Find Outliers, 247
Include Constant, 247, 248, 255
Tensor Number, 247, 248, 255
Use b Matrix, 255
Use b Vectors, 254, 255
Use g Vectors, 254
Enter Ascii Model Package
Find Outliers, 329
System, 329
User, 329
Enter Ascii Model Selection Package
Find Outliers, 341
System, 341
User, 341
Errors In Variables Package
Given Errors In, 303
Order, 303
Fid Data Viewer
Autoscale, 56
Clear Cursors, 56
Cursor A, 56
Cursor B, 56
Delta, 56
Display Type, 56
Expand, 56
Full, 56
Get Peak, 56
Left-mouse, 56
Options, 57, 59
Right-mouse, 56
Trace, 70
Fortran/C Model Viewer
Abscissa Spinner, 93
Add Prior, 96
Allow/Disallow Editing, 97
Cancel and Exit, 96
Changing Models, 94
Code, 93, 94
Compile Results, 97
Compiling, 96
Create/Edit Model, 93
Data Columns Spinner, 93
Derived, 96
Edit/Create New Model, 93, 94
High, 97
Low, 97
Mean, 97
Model, 96
Model Vectors, 93
Name (parameter), 97
Order, 97
Parameter Type, 97
Parameters button, 93, 94, 96
Prior Type, 97
Priors, 96
Remove All (priors), 96
Remove Prior, 96
Remove Selected Model, 93
Save and Load, 96
Standard Deviation, 97
Given Exponential Package
Constant, 137, 139
Find Outliers, 137
Order, 137, 139
Given Polynomial Order Package
Set Order, 285
Global
Bayes Find Outliers, 27
Cancel, 26, 51
Edit Servers, 26
Get Job, 26, 51, 137, 143, 151, 155, 209, 221, 241, 247, 259, 267, 277, 285, 293, 305, 311, 331, 339, 343, 357, 364, 375, 413, 417, 425, 428
Reset, 27
Restore Analysis, 22
Save, 27
Set (server), 26, 52, 137, 143, 151, 155, 207, 221, 239, 247, 259, 265, 277, 285, 293, 305, 311, 329, 337, 343, 355, 364, 373, 375, 413, 415, 425, 428
Image Model Selection Package
System, 415
User, 415
Image Viewer
Element Number, 62
Get Statistics, 64
Get Threshold Statistics, 65
Grayscale, 63
Save Statistics, 65
Slice Number, 62
Value, 64
X Pos, 64
Y Pos, 64
Inversion Recovery Package
Find Outliers, 151
Kernel Density Function Package
Kernel Type, 364
Output Size, 364
Linear Phasing Package
cf, 403
Display, 403
Display Array Element, 403
fn, 403
fn1, 403
Image Type, 402
Load An Image, 402
np, 403
nv, 403
Process, 403
Magnetization Transfer Kinetics Package
Load, 275, 281
Set, 275
Uncertainty, 275
Magnetization Transfer Package
Find Outliers, 265
MaxEnt Density Function Estimation Package
Histogram Size, 373
Order, 373
Non-Linear Phasing Package
Process, 409
Write Ascii images, 409
Write imaginary images, 409
Prior Viewer
High, 65
Low, 65
Mean, 65
Prior Type, 67
Server
Edit, 52
Name, 26, 52, 52
Set (server), 48
Setup, 48, 52
Test Ascii Model Package
Find Outliers, 339
System, 337
User, 337
Text Results Viewer
Copy, 74
INDEX

Down arrow, 74
Enable Editing, 74
Print, 74
Save (a copy), 74
Save As, 74
Settings, 74
Up arrow, 74
Unknown Number of Exponentials Package
 Constant, 143
 Find Outliers, 143
 Order, 143
Unknown Polynomial Order Package
 Set Order, 293, 294
 Unknown Order, 293, 294
WorkDir
 Creating, 22, 33, 46
 Deleting, 22, 33, 46
 List, 24, 46
 Loading, 46
 Name, 46
 Popup, 47