Bayesian Analysis Users Guide
Release 4.00, Manual Version 1

G. Larry Bretthorst
Biomedical MR Laboratory
Washington University School Of Medicine,
Campus Box 8227
Room 2313, East Bldg.,
4525 Scott Ave.
St. Louis MO 63110
http://bayes.wustl.edu
Email: larry@bayes.wustl.edu

July 13, 2018
Contents

Manual Status 16

1 An Overview Of The Bayesian Analysis Software 19
 1.1 The Server Software .. 19
 1.2 The Client Interface ... 22
 1.2.1 The Global Pull Down Menus 24
 1.2.2 The Package Interface .. 24
 1.2.3 The Viewers .. 27

2 Installing the Software 29

3 the Client Interface 33
 3.1 The Global Pull Down Menus 35
 3.1.1 the Files menu .. 35
 3.1.2 the Packages menu .. 40
 3.1.3 the WorkDir menu .. 45
 3.1.4 the Settings menu .. 46
 3.1.5 the Utilities menu .. 50
 3.1.6 the Help menu ... 50
 3.2 The Submit Job To Server area 51
 3.3 The Server area ... 52
 3.4 Interface Viewers ... 52
 3.4.1 the Ascii Data Viewer 53
 3.4.2 the fid Data Viewer .. 53
 3.4.3 Image Viewer ... 59
 3.4.3.1 the Image List area 59
 3.4.3.2 the Set Image area 62
 3.4.3.3 the Image Viewing area 62
 3.4.3.4 the Grayscale area on the bottom 63
 3.4.3.5 the Pixel Info area 63
 3.4.3.6 the Image Statistics area 64
 3.4.4 Prior Viewer .. 65
 3.4.5 Fid Model Viewer .. 68
 3.4.5.1 The fid Model Format 70
3.4.5.2 The Fid Model Reports .. 71
3.4.6 Plot Results Viewer ... 71
3.4.7 Text Results Viewer ... 74
3.4.8 Files Viewer ... 80
3.5 Common Interface Plots .. 80
3.5.1 Data, Model And Residual Plot ... 81
3.5.2 Posterior Probability For A Parameter 82
3.5.3 Maximum Entropy Histograms .. 83
3.5.4 Markov Monte Carlo Samples .. 83
3.5.5 Probability Vs Parameter Samples plot 86
3.5.6 Expected Log Likelihood Plot .. 88
3.5.7 Scatter Plots ... 88
3.5.8 Logarithm of the Posterior Probability Plot 91
3.5.9 Fortran/C Code Viewer .. 93
3.5.9.1 Fortran/C Model Viewer Popup Editor 93

4 An Introduction to Bayesian Probability Theory 99
4.1 The Rules of Probability Theory .. 99
4.2 Assigning Probabilities ... 102
4.3 Example: Parameter Estimation .. 109
4.3.1 Define The Problem .. 110
4.3.1.1 The Discrete Fourier Transform 110
4.3.1.2 Aliases .. 113
4.3.2 State The Model—Single-Frequency Estimation 114
4.3.3 Apply Probability Theory .. 115
4.3.4 Assign The Probabilities .. 118
4.3.5 Evaluate The Sums and Integrals 120
4.3.6 How Probability Generalizes The Discrete Fourier Transform 123
4.3.7 Aliasing ... 126
4.3.8 Parameter Estimates .. 132
4.4 Summary and Conclusions .. 136

5 Given Exponential Model .. 137
5.1 The Bayesian Calculation .. 139
5.2 Outputs From The Given Exponential Package 141

6 Unknown Number of Exponentials .. 143
6.1 The Bayesian Calculations ... 145
6.2 Outputs From The Unknown Number of Exponentials Package 148

7 Inversion Recovery .. 151
7.1 The Bayesian Calculation ... 153
7.2 Outputs From The Inversion Recovery Package 154
14 Magnetization Transfer
 14.1 The Bayesian Calculation ... 267
 14.2 Using The Package .. 271

15 Magnetization Transfer Kinetics
 15.1 The Bayesian Calculation ... 277
 15.2 Using The Package .. 281

16 Given Polynomial Order
 16.1 The Bayesian Calculation ... 287
 16.1.1 Gram-Schmidt .. 287
 16.1.2 The Bayesian Calculation 288
 16.2 Outputs From the Given Polynomial Order Package 290

17 Unknown Polynomial Order
 17.1 Bayesian Calculations ... 295
 17.1.1 Assigning Priors .. 296
 17.1.2 Assigning The Joint Posterior Probability 297
 17.2 Outputs From the Unknown Polynomial Order Package 299

18 Errors In Variables
 18.1 The Bayesian Calculation ... 305
 18.2 Outputs From The Errors In Variables Package 308

19 Behrens-Fisher
 19.1 Bayesian Calculation ... 311
 19.1.1 The Four Model Selection Probabilities 314
 19.1.1.1 The Means And Variances Are The Same 315
 19.1.1.2 The Mean Are The Same And The Variances Differ 317
 19.1.1.3 The Means Differ And The Variances Are The Same 318
 19.1.1.4 The Means And Variances Differ 319
 19.1.2 The Derived Probabilities 320
 19.1.3 Parameter Estimation .. 321
 19.2 Outputs From Behrens-Fisher Package 322

20 Enter Ascii Model
 20.1 The Bayesian Calculation ... 331
 20.1.1 The Bayesian Calculations Using Eq. (20.1) 331
 20.1.2 The Bayesian Calculations Using Eq. (20.2) 332
 20.2 Outputs Form The Enter Ascii Model Package 335

21 Enter Ascii Model Selection
 21.1 The Bayesian Calculations ... 339
 21.1.1 The Direct Probability With No Amplitude Marginalization .. 340
 21.1.2 The Direct Probability With Amplitude Marginalization 342
 21.1.2.1 Marginalizing the Amplitudes 343
 21.1.2.2 Marginalizing The Noise Standard Deviation 348
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.2 Outputs Form The Enter Ascii Model Package</td>
<td>349</td>
</tr>
<tr>
<td>22 Phasing An Image</td>
<td>351</td>
</tr>
<tr>
<td>22.1 The Bayesian Calculation</td>
<td>352</td>
</tr>
<tr>
<td>22.2 Using The Package</td>
<td>358</td>
</tr>
<tr>
<td>23 Phasing An Image Using Non-Linear Phases</td>
<td>361</td>
</tr>
<tr>
<td>23.1 The Model Equation</td>
<td>361</td>
</tr>
<tr>
<td>23.2 The Bayesian Calculations</td>
<td>363</td>
</tr>
<tr>
<td>23.3 The Interfaces To The Nonlinear Phasing Routine</td>
<td>365</td>
</tr>
<tr>
<td>28 Analyze Image Pixel</td>
<td>411</td>
</tr>
<tr>
<td>28.1 Modification History</td>
<td>413</td>
</tr>
<tr>
<td>29 The Image Model Selection Package</td>
<td>415</td>
</tr>
<tr>
<td>29.1 The Bayesian Calculations</td>
<td>417</td>
</tr>
<tr>
<td>29.2 Outputs Form The Image Model Selection Package</td>
<td>418</td>
</tr>
<tr>
<td>A Ascii Data File Formats</td>
<td>423</td>
</tr>
<tr>
<td>A.1 Ascii Input Data Files</td>
<td>423</td>
</tr>
<tr>
<td>A.2 Ascii Image File Formats</td>
<td>424</td>
</tr>
<tr>
<td>A.3 The Abscissa File Format</td>
<td>425</td>
</tr>
<tr>
<td>B Markov chain Monte Carlo With Simulated Annealing</td>
<td>439</td>
</tr>
<tr>
<td>B.1 Metropolis-Hastings Algorithm</td>
<td>440</td>
</tr>
<tr>
<td>B.2 Multiple Simulations</td>
<td>441</td>
</tr>
<tr>
<td>B.3 Simulated Annealing</td>
<td>442</td>
</tr>
<tr>
<td>B.4 The Annealing Schedule</td>
<td>442</td>
</tr>
<tr>
<td>B.5 Killing Simulations</td>
<td>443</td>
</tr>
<tr>
<td>B.6 the Proposal</td>
<td>444</td>
</tr>
<tr>
<td>C Thermodynamic Integration</td>
<td>445</td>
</tr>
<tr>
<td>D McMC Values Report</td>
<td>449</td>
</tr>
<tr>
<td>E Writing Fortran/C Models</td>
<td>455</td>
</tr>
<tr>
<td>E.1 Model Subroutines, No Marginalization</td>
<td>455</td>
</tr>
<tr>
<td>E.2 The Parameter File</td>
<td>458</td>
</tr>
<tr>
<td>E.3 The Subroutine Interface</td>
<td>460</td>
</tr>
<tr>
<td>E.4 The Subroutine Declarations</td>
<td>462</td>
</tr>
<tr>
<td>E.5 The Subroutine Body</td>
<td>463</td>
</tr>
<tr>
<td>E.6 Model Subroutines With Marginalization</td>
<td>464</td>
</tr>
<tr>
<td>F the Bayes Directory Organization</td>
<td>469</td>
</tr>
<tr>
<td>G 4dfp Overview</td>
<td>471</td>
</tr>
</tbody>
</table>
List of Figures

1.1 The Start Up Window ... 23
1.2 Example Package Exponential Interface 25

2.1 Installation Kit For The Bayesian Analysis Software 31

3.1 The Start Up Window ... 34
3.2 The Files Menu .. 35
3.3 The Files/Load Image Submenu 37
3.4 The Packages Menu ... 41
3.5 The Working Directory Menu 46
3.6 The Working Directory Information Popup 47
3.7 The Settings Pull Down Menu 47
3.8 The McMC Parameters Popup 48
3.9 The Edit Server Popup ... 49
3.10 The Submit Job Widgets ... 51
3.11 The Server Widgets Group 52
3.12 The Ascii Data Viewer ... 54
3.13 The Fid Data Viewer .. 55
3.14 Fid Data Display Type .. 56
3.15 Fid Data Options Menu ... 58
3.16 The Image Viewer ... 60
3.17 The Image Viewer Right Mouse Popup Menu 61
3.18 The Prior Probability Viewer 66
3.19 The Fid Model Viewer ... 69
3.20 The Plot Results Viewer .. 72
3.21 Plot Information Popup .. 73
3.22 The Text Results Viewer .. 75
3.23 The Bayes Condensed File 78
3.24 Data, Model, And Resid Plot 81
3.25 The Parameter Posterior Probabilities 82
3.26 The Maximum Entropy Histograms 84
3.27 The Parameter Samples Plot 85
3.28 Posterior Probability Vs Parameter Value 86
3.29 Posterior Probability Vs Parameter Value, A Skewed Example . 87
3.30 The Expected Value Of The Logarithm Of The Likelihood 89
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.1</td>
<td>Absorption Model Images</td>
<td>352</td>
</tr>
<tr>
<td>22.2</td>
<td>The Interface To The Image Phasing Package</td>
<td>353</td>
</tr>
<tr>
<td>22.3</td>
<td>Linear Phasing Package The Console Log</td>
<td>359</td>
</tr>
<tr>
<td>23.1</td>
<td>Nonlinear Phasing Example</td>
<td>362</td>
</tr>
<tr>
<td>23.2</td>
<td>The Interface To The Nonlinear Phasing Package</td>
<td>366</td>
</tr>
<tr>
<td>28.1</td>
<td>The Interface To The Analyze Image Pixels Package</td>
<td>412</td>
</tr>
<tr>
<td>29.1</td>
<td>The Interface To The Image Model Selection Package</td>
<td>416</td>
</tr>
<tr>
<td>29.2</td>
<td>Single Exponential Example Image</td>
<td>419</td>
</tr>
<tr>
<td>29.3</td>
<td>Single Exponential Example Data</td>
<td>420</td>
</tr>
<tr>
<td>29.4</td>
<td>Posterior Probability For The ExpOneNoConst Model</td>
<td>421</td>
</tr>
<tr>
<td>A.1</td>
<td>Ascii Data File Format</td>
<td>424</td>
</tr>
<tr>
<td>D.1</td>
<td>The McMC Values Report Header</td>
<td>450</td>
</tr>
<tr>
<td>D.2</td>
<td>McMC Values Report, The Middle</td>
<td>451</td>
</tr>
<tr>
<td>D.3</td>
<td>The McMC Values Report, The End</td>
<td>452</td>
</tr>
<tr>
<td>E.1</td>
<td>Writing Models A Fortran Example</td>
<td>456</td>
</tr>
<tr>
<td>E.2</td>
<td>Writing Models A C Example</td>
<td>457</td>
</tr>
<tr>
<td>E.3</td>
<td>Writing Models, The Parameter File</td>
<td>459</td>
</tr>
<tr>
<td>E.4</td>
<td>Writing Models Fortran Declarations</td>
<td>463</td>
</tr>
<tr>
<td>E.5</td>
<td>Writing Models Fortran Example</td>
<td>466</td>
</tr>
<tr>
<td>E.6</td>
<td>Writing Models The Parameter File</td>
<td>467</td>
</tr>
<tr>
<td>G.1</td>
<td>Example FDF File Header</td>
<td>473</td>
</tr>
<tr>
<td>H.1</td>
<td>The Posterior Probability For The Number of Outliers</td>
<td>476</td>
</tr>
<tr>
<td>H.2</td>
<td>The Data, Model and Residual Plot With Outliers</td>
<td>478</td>
</tr>
</tbody>
</table>
List of Tables

8.1 Multiplet Relative Amplitudes ... 165
8.2 Bayes Analyze Models ... 181
8.3 Bayes Analyze Short Descriptions ... 195
Chapter 23

Phasing An Image Using Non-Linear Phases

The phasing algorithm presented in Chapter 22 can phase any NMR image in which the phases vary linearly in both domains. Consequently that phasing algorithm works well for spin echo and EPI images, but it does not work for gradient echoes because in gradient echoes the phase varies non-linearly. This effect is illustrated in Fig. 23.1 panels (A) and (B). The linear phasing algorithm has removed most of the oscillations, but has left behind a slowly varying phase that causes the signal to oscillate between the real and imaginary channels. In Panel (C) and (D) we have displayed the real and imaginary images after the nonlinear phasing routine has been run. The nonlinear phasing routine has moved all of the image from the imaginary changes into the real channel and left behind what appears to be white noise. Indeed if you compute the standard deviation of the noise from a region that contains no signal in the real and imaginary images, you will find they are nearly identical. In this chapter we describe the interface to the nonlinear phasing package, BayesPhase2, and give the calculations needed to phase a gradient echo.

23.1 The Model Equation

As in all Bayesian calculations, the calculations begin by relating the parameters of interest to the data, i.e., by stating the model. The model we are going to use is a pixel model. That is to say, we will use exactly the same model on every pixel and each pixel will be treated independently of ever other pixel. Because each pixel is being treated separately, if the image is 128 by 256 then there are a total of 32K different calculations that must be performed. However, each calculation involves only one complex data and two parameters so the calculations are very fast.

Because the discrete Fourier transform is an information preserving transformation, it does not mater if we do the calculation in the time or image domain; both calculations are equivalent. For convenience we will present this calculation in the image domain. What we wish to do is to determine how uncertain we are of both the phase and the amplitude in each pixel and then use the phase to generate a phased image. In a real sense we are not interested in either the amplitude and phase, rather we are interested in how uncertain we are of these quantities, because the resulting phased image must reflect these uncertainties.

361
Figure 23.1: Nonlinear Phasing Example

(A) Linear Phases, the Real image

(B) Linear Phases, the Imaginary image

(C) Non-Linear Phases, the Real image

(D) Non-Linear Phases, the Imaginary image

Figure 23.1: Panels (A) and (B) are the real and imaginary images generated from a gradient echo when the linear phasing algorithm is used. Note that the imaginary image, panel (B), still has a strong signal. This signal oscillates positive and negative in both the real and imaginary images. Panel (C) is the real image generated by the nonlinear phasing algorithm. The imaginary image (D) is essentially noise. If you compute the standard deviation of the noise from a section of the real and imaginary images you find they are essentially identical; indicating that the image is almost perfectly phased.
If \(d \) represents a complex image pixel value, then the model for any given pixel is

\[
d = A \exp\{-i\theta\} + n
\] \hspace{1cm} (23.1)

where \(A \) is the amplitude of the image and \(\theta \) is the phase. The quantity \(n \) represents the noise, and in this calculation we will assume the standard deviation of the noise, \(\sigma \), is known. Separating the real and imaginary parts of this signal one has

\[
d_R = A \cos(\theta) + n_R
\] \hspace{1cm} (23.2)

for the real channel and

\[
d_I = -A \sin(\theta) + n_I
\] \hspace{1cm} (23.3)

for the imaginary channel, where \(d_R \) and \(d_I \) represent the real and imaginary pixel values and \(n_R \) and \(n_I \) represent the real and imaginary noise values. In the calculations which follow it will be assumed that the standard deviation of the noise is the same in both the real and imaginary channels and that the noise values are the same over the entire image.

23.2 The Bayesian Calculations

The Bayesian calculation consists of applying Bayes’ theorem

\[
P(A\theta|\sigma d_R d_I) = \frac{P(A\theta|\sigma) P(d_R d_I|A\theta \sigma) P(\sigma)}{P(d_R d_I|\sigma)}
\] \hspace{1cm} (23.4)

where \(P(A\theta|\sigma d_I) \) is the joint posterior probability for the parameters given the noise standard deviation, the data and the prior information \(I \). The joint prior probability for the parameters, \(P(A\theta|\sigma I) \), represents what was known about these parameters before the data were acquired. The direct probability for the data, \(P(d_R d_I|\sigma A\theta I) \), is essentially the likelihood function and \(P(d_R d_I|\sigma I) \) is a normalization constant. If we normalize this probability density function at the end of the calculation and factor the joint prior probability for the parameters, one obtains

\[
P(A\theta|\sigma d_I) \propto P(A|I) P(\theta|I) P(d|A\theta \sigma I) \] \hspace{1cm} (23.5)

as the joint posterior probability for the parameters.

In this calculation we will assign independent prior probabilities for the amplitude and Phase. And the likelihood will be assigned using a Gaussian prior probability. By definition the amplitude should be positive, but we do not wish to insert a hard lower bound on the amplitude. The reason for this is that in this analysis we are not doing a model selection calculation; rather we are doing a parameter estimation calculation. If we were doing a model selection calculation, then we could select between Eq. (23.1) and the “no signal” model. If we had done that then a hard cutoff would have worked fine as the prior probability. In regions where there is no signal, we would just get noise, and in regions where the signal is large we would get a properly phased signal. However, if we are doing parameter estimation, then a hard lower bound will necessarily force the real image to be positive, and so put a constant offset into the image: exactly the same thing that happens when one uses and absolute image. Consequently, we will use a prior that strongly suggests the amplitude
should be positive:

\[
P(A|\sigma I) \propto \begin{cases}
\exp \left(-\frac{A^2}{2\sigma^2} \right) & \text{if } A < -3\sigma \\
\exp \left(-\frac{A^2}{2\delta^2} \right) & \text{otherwise}
\end{cases}
\]

(23.6)

where \(\delta \) is one half the maximum intensity in the image. So this prior expresses the belief that the amplitude should be small rather than large. Around zero this prior has almost no effect on negative amplitudes until the amplitude become more negative than three noise standard deviations, then suddenly this prior expresses a rather strong belief that the amplitude should be closer to zero. So small negative values are allowed, provided they are small enough not to protrude above the noise floor.

The prior probability for the phase is also assigned using a Gaussian prior probability of the form:

\[
P(\theta|I) \propto \exp \left\{ -\frac{\theta^2}{2 \times 2^2} \right\}.
\]

(23.7)

This prior expresses a slight belief that the phase should be zero. The reason for this is simply that noise does not really have a phase, and so the phase should be zero. Any data item having even a small significant amplitude will quickly override this prior.

The likelihood, \(P(d_Rd_I|\theta \sigma I) \) was assigned using a Gaussian given by

\[
P(d_Rd_I|\theta \sigma I) \propto \exp \left\{ -\frac{Q^2}{2\sigma^2} \right\}
\]

(23.8)

where

\[
Q \equiv [d_R - A\cos(\theta)]^2 + [d_I + A\sin(\theta)]^2.
\]

(23.9)

In the program that implements the calculation, the noise standard deviation \(\sigma \) must be determined. There are many ways this might be done, but whatever is done, it must be general enough to work on any image. If you examine the output from the linear phasing routine, Fig. 23.1 panels (A) and (B), you will note that in small patches of the image, say \(3 \times 3 \) pixels, the signal in the real and imaginary channels are roughly constant; different constants in the real and imaginary, but constant nonetheless. If you postulate a model that is a constant in this small region and then compare the constant model to the “no signal” model, one can compute the posterior probability for these two models. If there is no signal present, then that region can be used to compute the noise standard deviation. By going over the entire image using a \(3 \times 3 \) set on pixels one can quickly get a very accurate estimate of the noise standard deviation by using only pixels for which the probability for no signal is much greater that the probability for the constant model.

The Bayesian calculations are implemented using Markov chain Monte Carlo, without simulated annealing. The Markov chain has Eq. (23.5) as its target distribution, using Eqs. (23.6,23.7) as the prior probabilities and Eq.(23.8) as the direct probability. The calculations are implemented in parallel, with parallelization occurring at the pixel level. Consequently, it 32 processors are available then 32 pixels are processed at one time. The simulations are initialized using the maximum likelihood estimated of both the amplitude and phase. Consequently, these simulations start very near the maximum of the joint posterior probability and all that is necessary is to run the simulations long enough for them to reach equilibrium.
In most Markov chain Monte Carlo simulations, it is the means and standard deviations of the parameter samples that are output. If we had used the mean phases to generate the output image, we would almost certainly get the maximum of the direct probability in regions where there is a signal, and, consequently, the output would essentially be an absolute value spectrum. However, we are not trying to estimate the amplitudes and phases, we are trying to phase an image. In the Markov chain Monte Carlo simulations each of the samples from the simulations are characteristic of the phase and amplitude supported by the data. Consequently, we randomly take one phase from one of the Markov chain Monte Carlo simulations and use that phase to produce an absorption mode pixel. This process is repeated for each pixel, giving an absorption model image. Figure 23.1 panels (C) and (D) are the real and imaginary parts of a gradient echo image that was phased using this procedure. Note that the real image (C) contains the fully phased image, plus noise; while the imaginary image (D) contains only noise. If one computes the noise standard deviation for these two images one finds essentially the same value in both real and imaginary images, and this value is the same as what is found in both panels (A) and (B), the real and imaginary parts of the linearly phased image; so this procedure has moved the positive intensity to the real channel and left the noise behind.

23.3 The Interfaces To The Nonlinear Phasing Routine

The interfaces to the Nonlinear Phasing package are shown in Fig. 23.2. To use this package you must:

- Run the linear phasing algorithm and have that package write both the imaginary and real FDF images.
- Select the type of processing:
 - **All**: all of images are to be phased separately.
 - **One**: only the currently displayed image is to be phased.
 - **Common**: the phase from the currently displayed image are to be computed, and those phases are then used on all of the images.
- Indicate if the imaginary images are to be written, the default is not to write these images.
- Indicate if the Ascii image are to be written, the default is not to write these images.

The remaining widgets on this interface are used to view the outputs and to indicate where the analysis is to be run. These widgets are pretty standard and we do not discuss them further. If you need to know more about the function of these widgets activate the help button and then activate the widget in question.
To use the Bayes Phase package:

1. Load the image you wish to phase.

2. Select the processing to All or Common.

3. Set the noise standard deviation.
 a. Draw an ROI in the noise
 b. Generate the statistics for that roi
 c. Copy the standard deviation into the "Noise SD" entry box

4. Select the server to run the analysis.

5. Run the analysis using the "Run" button.

6. Use "Get Job" to get the results from the server.

Figure 23.2: The interface to the Nonlinear phasing package is shown here. The output from this package is the phased real and imaginary parts of the input image. These images, usually just the real image, can be used in other analysis such as inversion recovery and diffusion tensor packages.
Bibliography

[45] Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth, Augusta H. Teller, and Edward Teller (1953), “Equation of State Calculations by Fast Computing Machines,” Journal of Chemical Physics. The previous link is to the American Institute of Physics and if you do not have access to Science Sitations you may not be able to retrieve this paper.

