Chapter 16

Given Polynomial Order

The Given polynomial Order package fits polynomials to two column Ascii data when the order of the polynomial is known. The interface to the Given Polynomial Order package is shown in Figure 16.1. This interface differs from most others in one respect, there are no parameter ranges to enter, so use of the interface is particularly simple. To use this package, you must do the following:

Select the Polynomial Models package from the Package menu. When selected this menu will bring up the “Given” and “Unknown” polynomial model interface.

Load one two column Ascii data sets. The data may be loaded using the Files menu. You can also load an arrayed Fid and then use a single cursor to mark the center of a peak and use the “Get Peak” button on the bottom right of the Fid viewer. Finally, the “Files/Load Ascii/Bayes Analyze” button can be used to load an Ascii data set from the amplitudes estimated by Bayes Analyze. When a data set is successfully loaded the data is plotted in the Ascii Data viewer. This package does not allow you to run with multiple data sets. If you attempt to do so, you will be prompted to remove all but a single file.

Set the Polynomial order using the “Set Order” selection widget. For the Given Polynomial Order, the order can be from 1 to 55.

Select the server that is to process the analysis.

Check the status of the selected server to determine if the server is busy, change to another server if the selected server is busy.

Run the the analysis on the selected server by activating the Run button.

Get the the results of the analysis by activating the Get Job button. If the analysis is running, this button will return the Accepted report containing the status of the current run. Otherwise, it will fetch and display the results from the current analysis.
To use the polynomial package:

1. Load an ascii file.
2. Specify the polynomial order, or specify "unknown" to enable automatic model determination.
3. Select the server to run the analysis.
4. Run the analysis using the "Run" button.
5. Use "Get Job" to get the results from the server.

Figure 16.1: This panel is interface to the Given Polynomial Order package. Because of the way this calculation is done very high orders are possible and numerically stable. However, the high orders, above 40, require very high signal-to-noise and even then roundoff errors degrade the accuracy to 4 or 5 decimal places.
16.1 The Bayesian Calculation

The polynomial model is just that, its a model in which a polynomial is fit to the data:

\[d_i = \sum_{j=0}^{m} A_j G_j(t_i) + n_i \]

with \[G_j(t_i) = t_i^j \]

where \(A_j \) is the amplitude of the \(j \)th polynomial, \(n_i \) represents noise in the \(i \)th data value and we have written these polynomials as \(G_j(t_i) \) for notational convenience. We will think of these polynomials as functions of time, but in the analysis which follows \(t \) is simply a single column abscissa and may be any quantity. In the problem we are describing here, \(m \) is the given order of the polynomial. Additionally, the assumption that these are polynomials is unimportant in the following discussions, the \(G_j(t_i) \) could be any set of functions.

16.1.1 Gram-Schmidt

The Bayesian calculation is implemented using Markov chain Monte Carlo with simulated annealing to draw samples for the joint posterior probability for the parameters. Before we do this calculation we introduce a change of function and a change of variables. The reason for this is simply that computing polynomials of the form \(\sum_{j=0}^{m} A_j t_i^j \) is computationally very unstable in the sense that only orders up to about 8 can be computed using single precision arithmetic. You can get to higher orders only by using numerical procedures that avoid differencing large numbers, for example the remainder theorem. However, here we take a different approach by transforming the problem to something that is computationally more stable. Using Gram-Schmidt, the polynomials are transformed to a set of orthogonal polynomials. We then solve the problem using these orthogonal polynomials and finally, we transform the derived amplitudes back to the \(A_j \) given in Eq. (16.1). If we designate the Gram-Schmidt polynomials as \(H_j(t_i) \) and the expansion coefficients as \(B_j \), Eq. (16.1) becomes:

\[d_i = \sum_{j=0}^{m} B_j H_j(t_i) + n_i. \]

We chose the Gram-Schmidt polynomials because they can be computed trivially from the \(t_i^j \), they preserve the notation of the order of the polynomial, and each polynomial depends only on the lower orders, not the higher orders. This change of variables and change of function is an identity, i.e., the polynomial expansions in Eq. (16.1) and Eq. (16.3) are exactly equal to each other. Finally, the amplitudes, \(B_j \) and \(A_j \), are linearly related to each other through an lower triangular matrix, and consequently, the conversion back and forth between these representations is very easy to program.

As a reminder to those unfamiliar with Gram-Schmidt polynomials, the normalized Gram-Schmidt polynomials \(H_j(t_i) \), are generated recursively from the \(G_j(t_i) \) using:

\[H_j(t_i) = \frac{1}{C_{jj}} \left[G_j(t_i) - \sum_{\ell=0}^{j-1} C_{j\ell} H_\ell(t_i) \right] \]
where the sum is not present for the first polynomial, and
\[C_{j\ell} = \sum_{i=1}^{N} G_j(t_i) H_{\ell}(t_i) \quad (0 \leq j \leq \ell). \] (16.5)

Gram-Schmidt polynomials have the property
\[\sum_{i=1}^{N} H_j(t_i) H_{\ell}(t_i) = \delta_{j\ell} \] (16.6)
where \(\delta_{j\ell} \) is zero if \(j \neq \ell \) and one if \(j = \ell \).

To derive the relationship between the \(A_j \) and the \(B_j \), note that the expansions given by Eq. (16.1) and Eq. (16.3) are identities, so can write
\[\sum_{k=0}^{m} A_k G_k(t_i) = \sum_{j=0}^{m} B_j H_j(t_i) \] (16.7)
where we changed the summation index on the left-hand side just to remind people that these summations are independent of each other. Multiplying this equation by \(H_{\ell}(t_i) \), and summing over time:
\[\sum_{i=1}^{N} \sum_{k=0}^{m} A_k G_k(t_i) H_{\ell}(t_i) = \sum_{i=1}^{N} \sum_{j=0}^{m} B_j H_j(t_i) H_{\ell}(t_i). \] (16.8)
The right-hand side of this equating is zero unless \(j = \ell \) and then one obtains
\[\sum_{i=1}^{N} \sum_{k=0}^{m} A_k G_k(t_i) H_{\ell}(t_i) = B_j \] (16.9)
and the sum over time on the left-hand side of this equation can be written as
\[\sum_{k=0}^{m} A_k \left[\sum_{i=1}^{N} G_k(t_i) H_{\ell}(t_i) \right] = B_j. \] (16.10)
The quantity in big square brackets is just the right-hand side of Eq. (16.5), so this equation becomes
\[\sum_{k=0}^{m} A_k C_{k\ell} = B_{\ell}. \] (16.11)
The matrix \(C_{k\ell} \) is a lower triangular matrix, so inverting it is trivial and one can use this equation solve for the nonorthogonal expansion coefficients, the \(A_k \), from the orthogonal expansion coefficients, the \(B_j \).

16.1.2 The Bayesian Calculation

The Bayesian calculation is for the joint posterior probability for the amplitudes, \(B_j \), given the data and the prior information. This joint probability, denoted by \(P(B_0 B_1 \ldots B_m | DI) \), is computed by application of Bayes’ theorem
\[P(B_0 B_1 \ldots B_m | DI) \propto P(B_0 B_1 \ldots B_m | I) P(D | B_0 B_1 \ldots B_m I) \] (16.12)
where \(P(B_0B_1 \ldots B_m|I) \) is the joint prior probability for the amplitudes, and \(P(D|B_0B_1 \ldots B_mI) \) is the likelihood. Because each polynomial is orthogonal, we will factor the joint prior probability for the amplitudes, \(P(B_0B_1 \ldots B_m|I) \), into a series of independent prior probabilities:

\[
P(B_0B_1 \ldots B_m|I) = \prod_{j=0}^{m} P(B_j|I) \quad (16.13)
\]

and each of the \(P(B_j|I) \) will be assigned a unbound Gaussian. The posterior probability for the \(B_j \), is thus given by:

\[
P(B_0B_1 \ldots B_m|DI) \propto \left[\prod_{j=0}^{m} P(B_j|I) \right] P(D|B_0B_1 \ldots B_mI). \quad (16.14)
\]

We want the Markov chain to explore the amplitude parameter space, but we don’t want it to excessively waist time. All the amplitudes in an orthogonal model are estimated to be \(\pm \sqrt{\langle \sigma^2 \rangle} \), where \(\langle \sigma^2 \rangle \) is the mean-square residual given the model. Consequently, if we center the prior probability for an amplitude on the expected amplitude, \(T_j \) Eq. (16.16) below, and make the standard deviation of the prior very wide, then the prior probability for the amplitudes will do little more than keep the Markov chain in the physically meaningful region of the parameter space. Here is the prior actually used for the amplitudes:

\[
P(B_j|I) = (2\pi \delta^2)^{-\frac{1}{2}} \exp \left\{ -\frac{(T_j - B_j)^2}{2\delta^2} \right\} \quad (16.15)
\]

where the expected amplitude, \(T_j \), is given by

\[
T_j \equiv \sum_{i=1}^{N} d_i H_j(t_i) \quad (16.16)
\]

where \(N \) is the total number of data values in the data set. The standard deviation of this prior, \(\delta \), is 10 times larger than the expected root mean-square residual:

\[
\delta = 10\sqrt{\langle \sigma^2 \rangle} \quad (16.17)
\]

with

\[
\sqrt{\langle \sigma^2 \rangle} = \sqrt{\frac{\bar{e}^2 - \bar{h}^2}{N}}. \quad (16.18)
\]

The quantity, \(\bar{e}^2 - \bar{h}^2 \), is the total-squared residual given the polynomial. So the square root is the root mean-square residual given the polynomial order. The sufficient statistic, \(\bar{h}^2 \), is the total-squared projection of the data onto the polynomial and is defined as

\[
\bar{h}^2 \equiv \sum_{k=0}^{m} T_k^2 \quad (16.19)
\]

Having assigned the prior probabilities, we must now assign the direct probability. The direct probability, \(P(D|B_0B_1 \ldots B_mI) \), is a marginal probability and is computed from the joint probability for the data and the standard deviation of the noise

\[
P(D|B_0B_1 \ldots B_mI) = \int P(\sigma D|B_0B_1 \ldots B_mI) d\sigma \quad (16.20)
\]
which we factor as

$$P(D|B_0B_1\ldots B_m|I) = \int P(\sigma|I)P(D|\sigma B_0B_1\ldots B_m|I)d\sigma.$$ (16.21)

Assigning a Jeffreys’ prior to $P(\sigma|I)$ and a Gaussian likelihood, one obtains

$$P(B_0B_1\ldots B_m|DI) \propto \left[\prod_{j=0}^m P(B_j|I) \right] \int \frac{1}{\sigma} (2\pi\sigma^2)^{-\frac{N}{2}} \exp \left\{ -\frac{Q}{2\sigma^2} \right\} d\sigma$$ (16.22)

where we have left the prior probabilities in their symbolic form. Evaluating the integral over σ and substituting the prior probability for the amplitudes, Eq. (16.15), into Eq. (16.22), one obtains:

$$P(B_0B_1\ldots B_m|DI) \propto \left[\prod_{j=0}^m \exp \left\{ -\frac{(T_j - B_j)^2}{2\delta^2} \right\} \right] \left[\frac{Q}{2} \right]^{-\frac{N}{2}}$$ (16.23)

where we dropped some constant terms that cancel when this probability is normalized. The function Q is defined as

$$Q = \sum_{i=1}^N \left(d_i - \sum_{j=0}^m B_j H_j(t_i) \right)^2$$ (16.24)

One interesting note about the quantity Q, it does not depend on the individual data values, rather it depends on the total squared data value, the $N\overline{d^2}$, and it depends on the projection of the data onto the orthogonal functions, the T_j. Both of these items can be computed at the beginning of the calculation and used throughout with no further reference to the data. Consequently, the Given Polynomial Order runs very quickly. Also, note that the function Q could have been written as a single summation rather than two. If the standard deviation for the noise is known, the posterior probability for the B_j can be factored into a product of probabilities for each amplitude separately, i.e., the amplitudes of the orthogonal polynomials may be estimated separately, they don’t have to be estimated jointly. Finally, because each amplitude can be estimated separately, one can simply plot the posterior probability for each amplitude, there is no need to use a Markov chain Monte Carlo simulation to sample the joint posterior. However, joint estimation is required after marginalizing out the standard deviation for the noise. The joint estimation is done using a Markov chain Monte Carlo simulation to sample the joint posterior probability for the amplitudes, Eq. (16.23).

16.2 Outputs From the Given Polynomial Order Package

The Text outputs files from the Given Polynomial Order package consist of: “Bayes.prob.model,” “BayesPolGiven.mcmc.values,” “Bayes.params,” “Console.log,” “Bayes.accepted” and a “Bayes.Condensed.File.” These output files can be viewed using the Text Viewer or they can be viewed using File Viewer by navigating to the current working directory and then selecting the files. The format of the
Figure 16.2: The expansion coefficients in a nonorthogonal polynomial expansion tend to be highly correlated. Plotted here is a scatter plot of the 3rd and 4th order expansion coefficients, A_3 and A_4, as generated by a 6th order expansion of the 6th order polynomial test data. This test data can be downloaded using the “Files” menu.

Figure 16.2 The expansion coefficients in a nonorthogonal polynomial expansion tend to be highly correlated. Plotted here is a scatter plot of the 3rd and 4th order expansion coefficients, A_3 and A_4, as generated by a 6th order expansion of the 6th order polynomial test data. This test data can be downloaded using the “Files” menu.

The mcmc.values report is discussed in Appendix D and the other reports are discussed in Chapter ??.

Additionally, the “Plot Results Viewer” can be used to view the output probability density functions. In addition to the standard data, model and residual plots there are probability density functions for each A_j in the given model. And because estimation of the amplitudes in polynomial models tend to be highly correlated, there are covariance plots to help illustrate these correlations. These covariance plots are scatter plots. The scatter plots are generated from the samples drawn from the Markov chain Monte Carlo simulation. In a typical run, there might be 50 simulations and 30 repeats giving a total of 1500 simulations. Each of these simulations contain the estimated parameters from one Markov chain Monte Carlo simulation. A typical scatter plot just put a dot in the plot at the location of parameter 1 versus parameter 2. In this package that would correspond to plotting A_j versus A_k. In Fig. 16.2, A_3 versus A_4 is plotted. The data used to generate this figure are the 6th order polynomial expansion data available in our test data kit. This test data can be downloaded using the “Files” menu. The covariance plot shown in Fig. 16.2 is the one generated.
form the A_3 and A_4 expansion coefficients in a 6th order expansion of this data. For these two parameters there is a strong correlation, when A_3 increases the A_4 parameter decreases to counter the effect of changing A_3. Uncorrelated parameters, by contrast, will have elliptical scatter plots with the major and minor axis aligned with coordinate system. The number of possible scatter plots is $m(m+1)$ where m is the order of the polynomial. Because the number of scatter plots can become large very quickly, the package only outputs a representative sample of these plots.
Bibliography

[45] Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth, Augusta H. Teller, and Edward Teller (1953), “Equation of State Calculations by Fast Computing Machines,” Journal of Chemical Physics. The previous link is to the American Institute of Physics and if you do not have access to Science Sitations you many not be able to retrieve this paper.

Index

A_k definition, 349
$H_{j\ell}(t_i)$ definition, 349
λ_ℓ definition, 349
g_{jk} eigenvalue, 349

Abscissa, 437
 Computational, 436
 Generating, 427
 Loading, 39
 Multicolumn, 437
 Number Of Columns, 458
 Total Data Values, 456

Aliases, 113, 126

Amplitudes orthonormal definition, 349

Analyse Image Pixel Package, 411
 Modification History, 413
 Phased Images, 397
 Reports
 Bayes Accepted, 413
 Using, 413
 Viewers
 Fortran/C Models, 411
 Image, 411
 Prior Probabilities, 413
 Widgets
 Abscissa File, 411
 Build, 411
 Find Outliers, 411
 Get Statistics, 413
 System, 411
 User, 411

Analyse Image Pixel Unique Package, 423
 Highlight
 Abscissa, 425
 Data, 425
 Input Image
 Abscissa, 423

ASCII Data Viewer, 53

Assigning Probabilities, 118

Bayes Analyze Package, 155
 Levenberg-Marquardt, 171
 Step, 194
 Algorithm, 175
 Amplitudes, 197, 198
 Bayes Model, 159, 161
 Bayesian Calculations, 167
 Bruker, 162
 Build BA Model, 159
 Covariance, 174
 Default Parameters Settings, 155
 Error Messages, 200
 Fid Model Viewer, 160
 Interface, 156
 Likelihood
 Gaussian, 158
 Student’s t-distribution, 158

Bayes Accepted, 425

Console Log, 425

McMC Values, 425

Using, 425

Viewers
 Fortran/C Models, 423
 Image, 423
 Prior Probabilities, 425
 Widgets
 Build, 423
 Find Outliers, 423
 Get Statistics, 425
 System, 423
 User, 423

Bandwidth, 111, 127
INDEX

Log File, 193, 195
Lorentzian lineshape, 161
Marking Resonances, 157
Model
 J_0, 165
 J_p, 165
 J_s, 165
Amplitude, 163, 164
Bessel Function, 163
Constants Models, 157
Correlated, 157, 162, 164
Equation, 161, 164, 164
First Order Phase, 157, 162, 164
First Point, 162, 164
Gaussian, 163
Imaginary Constant, 164
Multi-Exponential, 163
Multiple Data Sets, 165
Multiplet Order, 164
Multiplet Orders, 164
Multiplets, 162
Multiplets of Multiplets, 164
Non-Lorentzian, 163
Offsets, 162
Real Constant, 164
Relative Amplitude, 164–166
Resonance Frequency, 165
Shim Order, 163
Shimming, 166
Shimming Order, 164
Uncorrelated, 157, 162, 164
Zero Order Phase, 157, 162, 164
Model Interface, 160
Multiplets, 158
Newton-Raphson, 171
Noise File, 158
Noise Standard Deviation, 158
Outputs
 bayes.accepted File, 177
 bayes.log.mnnn File, 177, 193, 193
 bayes.model.mnnn File, 177, 185, 197, 197
 bayes.noise File, 180
 bayes.noise.mnnn File, 158, 180
 bayes.output.mnnn File, 176, 186, 186
 bayes.params File, 176, 177
 bayes.params.mnnn File, 176, 177, 177
 bayes.probabilities.mnnn File, 177, 190, 190
 bayes.status.mnnn File, 177, 196, 200
 bayes.summary1.mnnn File, 177, 198, 198
 bayes.summary2.mnnn File, 177, 199, 199
 bayes.summary3.mnnn File, 177, 200, 200
 Global Parameters, 182, 183
 Model File, 184
 Probabilities file, 191
 Zero Order Phase, 182
Parameter File
 Activate Shims, 180
 Analysis Directory, 178
 By Fid, 181
 Data Type, 180
 Default Model, 181
 Directory Organization, 180
 Fid Model Name, 178
 File Version, 178
 First Fid, 181
 First Order Phase, 180, 183
 Imaginary Constant, 184
 Last Fid, 181
 lb, 182
 Maximum Candidates, 182
 Maximum New Resonances, 182
 Model Fid Number, 181
 Model Name, 184
 Model Names, 181
 Model Number, 184
 Model Points, 181
 Multiplets of Multiplets, 185
 Noise Start, 181
 Numerical Parameters, 178
 Output Format, 180
 Prior Odds, 182
 Procpar, 178
 Real Constant, 184
 Relative Amplitude, 183
 Resonance Model, 185
 Shim Order, 182
 Spectrometer Frequency, 182
 Text Parameters, 178
 Total Complex Data Values, 181
 Total Data Values, 181
 Total Sampling Time, 182
 True Reference, 182
Units, 180
Use Noise StdDev, 180
User Reference, 182
Prior Probabilities, 167
Probabilities File, 191
Product Rule, 168
Relative Amplitude, 167
Remove Resonances, 159
Reports
Bayes Status, 155
Save/Reset, 159
Search, 166
Levenberg-Marquardt, 166
Short Parameter Description, 195
Siemens, 162
Status File, 196
Steepest Descents, 173
Sum Rule, 168
Summary File, 198
Summary Reports, 176
Summary2, 199
Summary3, 201
Units, 161
Using, 157
Varian/Agilent, 162
Widgets, 155
By, 158, 176
First Point, 157, 163
From, 158, 176
Imag Offset, 163
Imaginary Offset, 157
Mark, 159
Max New Res, 157
New, 159
Noise, 158
Phase, 157
Primary, 158
Real Offset, 157, 163
Remove, 159
Remove All, 159
Reset, 159, 193
Restore, 159
Save, 159
Secondary, 159
Shim Order, 157, 163
Signal, 158
To, 158, 176
Bayes Find Resonances Package, 239
Bayesian Calculations, 241
Current Fid, 239
Model Equation, 241
Number of data sets, 239
Phase Model
Automatic, 239, 242
Common, 239, 242
Independent, 239, 242
Prior Probabilities, 243–245
Reports
Bayes Accepted, 241, 246
Condensed, 246
Console log, 246
McMC Values, 246
Prob Model, 246
Using, 239, 241
Viewers
Fid Data, 240
Fid Model, 240, 246
File, 246
Plot Results, 246
Text, 246
Widgets
Build FID Model, 240, 241, 246
Constant, 239, 242
First Trace, 239
Last Trace, 239
Model Fid Number, 241
Phase Model, 239, 242
Bayes Home Directory, 45, 49
Bayes Manual pdf, 469
Bayes Metabolite Package
Widgets
Shift Left, 222
Shift Right, 222
Bayes Metabolite Package, 219
Aligning Resonances, 221
Bayesian Calculation, 225
Metabolite Locations, 221
Model Equation, 223
Reports
Bayes Accepted, 221, 238
Condensed, 238
Console log, 238
McMC Values, 238
Prob Model, 238

Viewers
Fid Data, 219
Fid Model, 221, 236
File, 222, 238
Metabolite, 221
Plot Results, 238
Text, 238

Widgets
Fid Model, 221
Fid Model Viewer, 221
Load System Metabolite File, 219
Load System Resonance File, 221
Load User Metabolite File, 219
Load User Resonance File, 221
Shift Left, 221
Shift Right, 221

Bayes Model, 159, 159
Bayes Test Data Package, 427

Parameters, 431

Reports
Bayes Accepted, 428
Condensed, 429
McMC Values, 429, 431–433

Viewers
Fortran/C Models, 427
Image, 428
Prior Probabilities, 427
Text Data, 430
Text Results, 429

Widgets
Images, 427
Slices, 427
Abscissa, 427
ArrayDim, 427
Build, 427
Get Job, 428
Max Value, 427
Noise SD, 427
Parameter Ranges, 428
Pe, 427
Ro, 427
Run, 428
Set (server), 428
Status, 428

Bayes.accepted
Body, 77
Header, 76

Behrens-Fisher Package, 311

Bayesian Calculations
Derived Probabilities, 320
Different Mean And Same Variance, 318
Different Mean And Variance, 319
Parameter Estimation, 321
Same Mean And Different Variance, 317
Same Mean And Variance, 315

Model Equation
Different Mean And Same Variance, 318
Different Mean And Variance, 319
Same Mean And Different Variance, 317
Same Mean And Variance, 315

Number of data sets, 311
Parameter Listing, 323

Prior Probabilities
Different Mean And Same Variance, 318
Different Mean And Variance, 319
Same Mean And Different Variance, 317
Same Means And Same Variance, 315

Reports
Bayes Accepted, 311, 322
Condensed, 322
Console Log, 322, 323
McMC Values, 322, 323
Prob Model, 322

Using, 311

Viewers
File, 322
Plot Results, 322, 324
Prior Probabilities, 311
Text, 322

Widgets
None, 311

Big Endian, 471, 473

Big Magnetization Transfer Package, 259

Bayesian Calculations, 259

Files
Bayes Analyze, 264
INDEX

Fid, 263
Peak Pick, 262
Model Equation, 261
Number of data sets, 259
Prior Probabilities, 261
Reports
 Bayes Accepted, 259, 262
 Condensed, 262
 Console log, 262
 McMC Values, 262
 Prob Model, 262
Using, 259
Viewers
 Ascii Data, 259
 File, 262
 Prior Probabilities, 259
 Text, 262
Widgets
 Find Outliers, 259
Big Peak/Little Peak Package, 207
Bayesian Calculations, 209
Fid Analyzed, 207
Model Equation, 210
 Metabolites, 209
 Solvent, 210
Number of data sets, 207
Prior Probabilities
 Metabolite, 207
 Solvent, 207
Removing Resonances, 207
Reports
 Bayes Accepted, 209, 216
 Condensed, 216
 Console log, 216
 McMC Values, 216
 Prob Model, 216
Using, 207
Viewers
 File, 216
 Model, 209
 Plot Results, 216
 Prior Probabilities, 207
 Text, 216
Widgets
 Metabolite, 207
 Solvent, 207

Binned Density Function Estimation, 355
Binned Histogram Package
 Reports
 Bayes Accepted, 357
 Viewers
 Ascii, 355
Binned Histograms Package
 Using, 357
 Viewers
 Prior Probabilities, 355
Bloch-McConnell Equations, 267, 277
Changing the Bayes Home Directory, 469
Compilers, 29
 CC, 29, 455
 Fortran, 29, 455
Correlations, 91
Diffusion Tensor Package, 247
 Ascii File Formats, 247, 254, 255
 Bayesian Calculations, 249
 Prior Probabilities
 δ, 254
 Γ, 254
 Δ, 254
 σ, 253
 Amplitudes, 253
 Eigenvalues, 253
 Euler Angles, 253
 Likelihood, 253
 Parameter, 254
 Reports
 Bayes Accepted, 247, 255
 Condensed, 255
 Console log, 255
 McMC Values, 255
 Prob Model, 255
 Symmetries, 253
 Using, 247
 Viewers
 File, 247, 255
 Plot Results, 255
 Prior Probabilities, 247, 253
 Text, 255
Widgets
 Abscissa Options, 248
INDEX

Find Outliers, 247
Include Constant, 247, 248, 255
Tensor Number, 247, 248, 255
Use b Matrix, 255
Use b Vectors, 255
Use g Vectors, 254
Discrete Fourier Transform, 110, 113, 123

Enter Ascii Model Package, 329
Bayesian Calculations, 332
Marginalization, 332
No Marginalization, 331
Fortran/C Models, 330, 335
Model Equation
 Marginalization, 331
 No Marginalization, 331
Output Names
 Derived, 335
 Parameters, 335
Reports
 Bayes Accepted, 331, 335
 Bayes Params, 335
 Condensed, 335
 Console log, 335
 McMC Values, 335
 Prob Model, 335
Using, 331
Viewers
 Ascii Data, 329
 File, 335
 Fortran/C Models, 329
 Plot Results, 335
 Prior Probabilities, 329
 Text, 335
Widgets
 Build, 329
 Find Outliers, 329
 System, 329
 User, 329

Enter Ascii Model Selection Package, 341
Bayesian Calculations
 Marginalization, 346
 No Marginalization, 344
Fortran/C Models, 341, 343, 353
Model Equation, 343
 No Marginalization, 343
With Marginalization, 347
Output Names
 Derived, 354
 Parameters, 353
Reports
 Bayes Accepted, 343, 353
 Condensed, 353
 Console log, 353
 McMC Values, 353
 Params File, 353
 Prob Model, 353
Using, 343
Viewers
 Ascii Data, 341
 File, 353
 Fortran/C Models, 341
 Plot Results, 353
 Prior Probabilities Not Used, 341
 Text, 353
Widgets
 Build Not Used, 341
 Find Outliers, 341
 System, 341
 User, 341

Errors In Variables Package, 303
Ascii File Formats
 Errors In X and Y Known, 303, 309
 Errors In X Known, 303, 309
 Errors In Y Known, 303, 309
 Errors Unknown, 303, 309
Bayesian Calculations, 305
Data Error Bars, 303
Files
 Ascii, 303
 Bayes Analyze, 303
 Peak Pick, 303
Model Equation, 305
Number of data sets, 303
Reports
 Bayes Accepted, 305, 309
 Condensed, 309
 Console log, 309
 McMC Values, 309
 Prob Model, 309
Using, 305
Viewers
Ascii Data, 303
File, 309
Plot Results, 309
Text, 309
Widgets
Given Errors In, 303
Order, 303
Exponentials
Given Package, 137
Inversion Recovery Package, 151
Magnetization Transfer Package, 267
Unknown Number of Package, 143
Fid Data Viewer, 53
Fid Model Viewer, 68
File Format
Ascii, 436
File Viewer, 80
Files
4dfp, 59, 428, 430, 470, 471
 Header, 473
 Reading, 471
Abscissa, 39, 77, 470
afh, 53
ASCII, 35, 36
Ascii, 53, 54, 435
 k-space, 437
 Abscissa, 435, 436, 437
 Data, 435
 Image, 436
Bayes Analyze, 36
Bayes.accepted, 51, 76
Bayes.params, 76, 79
Bayes.prob.model, 447
BayesManual.pdf, 469
Condensed, 77, 78
Console.log, 76, 79, 465
dir.info, 470
fid, 470, 470
 ASCII, 36
 fh, 56
 Model, 68, 70
 procpar, 470
Siemens Raw, 36
Siemens Rda, 36
Spectroscopic, 53
Varian fid, 36
Fortran/C Models, 42, 455, 457, 458, 465–467
Images
4dfp, 38
Binary, 38
Bruker 2dseq, 38
Bruker stack, 38
DICOM, 38
FDF, 38
Multi-Column Text, 38
Siemens IMA, 38
k-space
 Text, 36
 Varian fid, 36
mcmc.values, 76, 449
Model Listing, 77
prob.model, 76
procpar, 470
Raw, 36
RDA, 36
Statistics, 65
System.err.txt, 469
System.out.txt, 469
Varian fid, 36
WaterViscosityTable, 469
Fortran/C Model Viewer, 93
Popup Editor, 93
Fortran/C Models, 42, 330, 335, 353, 455
Abscissa, 463
Body, 463
 Abscissa, 457
Declarations, 462
Derived Parameters, 457, 459, 463
Edit/Create New Model, 42, 455
I/O, 464
Marginalization, 464
 G(Ω, t), 464
Amplitude Range, 465
Example, 465, 466
Model Vectors, 465
Ordering Amplitudes, 465
Parameter File, 465, 467
Parameter Order, 465
Parameters, 465
Model Files, 455
INDEX

Model Selection, 464
No Marginalization, 457
\(S(t_i) \), 455
Example, 456
Parameter File, 458, 459, 465
Parameters, 463
Signal, 463
Subroutine Interface, 460
Abscissa, 462
Current Set, 460
Derived Parameters, 461
Maximum No Of Data Values, 461
Number Of Abscissa Columns, 461
Number Of Data Columns, 461
Number Of Derived Parameters, 461
Number Of Model Vectors, 461
Number Of Parameters, 460
Parameters, 461
Signal, 462
Total Complex Data Values, 461
Subroutines and Functions, 464

Frequency Estimation, 114, 132

Given Exponential Package, 137
Bayesian Calculations, 140
Files
Ascii, 137
Bayes Analyze, 137
Peak Pick, 137
Model Equation, 139
Number of data sets, 139
Prior Probabilities, 139–141
Reports
Bayes Accepted, 137, 141
Condensed, 141
Console log, 141
McMC Values, 141
Prob Model, 141
Symmetries, 141, 148
Using, 137
Viewers
File, 141
Plot Results, 141
Prior Probabilities, 137, 139
Text, 141

Histograms
Binned, 381
Kernel Density, 381

Image Model Selection Package, 415
Abscissa, 415
Fortran/C Models, 415, 417
Reports
Bayes Accepted, 417
Using, 417
Viewers
Fortran/C Models, 415
Image, 415
Widgets
Noise SD, 415
System, 415
Use Gaussian, 415
User, 415
Image Viewer, 59
Images
Flip
 Horizontal, 63
 Vertical, 63
Grayscale, 63
ImageJ, 63
Original, 63
Inversion Recovery Package, 151
Bayesian Calculations, 153
Model Equation, 153
Number of data sets, 153
Prior Probabilities, 153
Reports
 Bayes Accepted, 151, 154
 Condensed, 154
 Console Log, 154
 McMC Values, 154
 Prob Model, 154
Using, 151
Viewers
 Plot Results, 154
 Prior Probability, 151
Widgets
 Find Outliers, 151
Kernel Density Function Package, 361
Ascii File Format, 361
Bayesian Calculations, 369
Data Requirements, 361
Data, Model And Residuals, 369
Kernels, 369
 Biweight, 362
 Cosine, 362
 Epanechnikov, 362
 Exponential, 362
 Gaussian, 362, 370
 nonnegative, 361
 Real Valued, 361
 Triangular, 362
 Tricube, 362
 Triweight, 362
 Uniform, 362
Likelihood, 371
Number of data sets, 364
Plots
 Expected Density Function, 367, 368
 Mean Density Function, 367, 368
 Posterior Probability for the Kernel Type, 365
 Posterior Probability for the Number Of Kernels, 366
 Scatter Plots of Model Averaged Density Function, 368
 Standard Deviation of the Mean Density Function, 367, 368
Prior Probabilities
 Kernel Center, 371
 Kernel Smoothing Parameter, 371
 Kernel Type, 370
 Number Of Kernels, 370
Reports
 Bayes Accepted, 364
 Condensed, 372
 McMC Values, 372
 Prob Model, 372
Using, 364
Viewers
 Ascii, 361
Widgets
 Kernel Type, 364
 Output Size, 364
Levenberg-Marquardt, 171
Linear Phasing Package, 395, 409
Interface, 397
Model Equation, 398
Widgets
 cf, 403
 Display, 403
 Display Array Element, 403
 fn, 403
 fn1, 403
 Image Type, 402
 Load An Image, 402
 np, 403
 nv, 403
 Process, 403
Load Working Directory, 33
Logical Independence, 117
<table>
<thead>
<tr>
<th>INDEX</th>
<th>493</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magnetization Transfer Kinetics Package, 275</td>
<td></td>
</tr>
<tr>
<td>Arrhenius Plot, 281</td>
<td></td>
</tr>
<tr>
<td>Bayesian Calculation, 278</td>
<td></td>
</tr>
<tr>
<td>Boltzmann’s Constant, 277</td>
<td></td>
</tr>
<tr>
<td>Eyring Equation, 275, 276, 277, 280</td>
<td></td>
</tr>
<tr>
<td>Model Equation, 277</td>
<td></td>
</tr>
<tr>
<td>Planck’s Constant, 277</td>
<td></td>
</tr>
<tr>
<td>Prior Probabilities, 279</td>
<td></td>
</tr>
<tr>
<td>Reports</td>
<td></td>
</tr>
<tr>
<td>Bayes Accepted, 277, 281</td>
<td></td>
</tr>
<tr>
<td>Condensed, 281</td>
<td></td>
</tr>
<tr>
<td>Console log, 281</td>
<td></td>
</tr>
<tr>
<td>McMC Values, 281</td>
<td></td>
</tr>
<tr>
<td>Prob Model, 281</td>
<td></td>
</tr>
<tr>
<td>Sum and Difference Variables, 280</td>
<td></td>
</tr>
<tr>
<td>Transmission coefficient, 277</td>
<td></td>
</tr>
<tr>
<td>Universal Gas Constant, 277</td>
<td></td>
</tr>
<tr>
<td>Using, 277</td>
<td></td>
</tr>
<tr>
<td>van’t Hoff Plot, 281</td>
<td></td>
</tr>
<tr>
<td>Viewers</td>
<td></td>
</tr>
<tr>
<td>Ascii File, 275</td>
<td></td>
</tr>
<tr>
<td>File, 281</td>
<td></td>
</tr>
<tr>
<td>Prior Probabilities, 275</td>
<td></td>
</tr>
<tr>
<td>Text, 281</td>
<td></td>
</tr>
<tr>
<td>Widgets</td>
<td></td>
</tr>
<tr>
<td>Load, 275, 281</td>
<td></td>
</tr>
<tr>
<td>Set, 275</td>
<td></td>
</tr>
<tr>
<td>Uncertainty, 275</td>
<td></td>
</tr>
<tr>
<td>Markov chain Monte Carlo, 132, 439</td>
<td></td>
</tr>
<tr>
<td>Acceptance Rate, 444</td>
<td></td>
</tr>
<tr>
<td>Annealing Schedule, 91, 442</td>
<td></td>
</tr>
<tr>
<td>Dynamic, 443</td>
<td></td>
</tr>
<tr>
<td>Linear, 442</td>
<td></td>
</tr>
<tr>
<td>Killing Simulations, 443</td>
<td></td>
</tr>
<tr>
<td>Maximum Posterior Probability, 91</td>
<td></td>
</tr>
<tr>
<td>Metropolis-Hastings, 439</td>
<td></td>
</tr>
<tr>
<td>Mixing, 91</td>
<td></td>
</tr>
<tr>
<td>Monte Carlo Integration, 440</td>
<td></td>
</tr>
<tr>
<td>Multiple Simulations, 441</td>
<td></td>
</tr>
<tr>
<td>Posterior Probability, 440</td>
<td></td>
</tr>
<tr>
<td>Random Number Generators, 440</td>
<td></td>
</tr>
<tr>
<td>Repeats, 91</td>
<td></td>
</tr>
<tr>
<td>Sampling, 91</td>
<td></td>
</tr>
<tr>
<td>Simulated Annealing, 442</td>
<td></td>
</tr>
<tr>
<td>the Proposal, 442</td>
<td></td>
</tr>
</tbody>
</table>
MaxEnt Density Function Estimation Package, 373
Data Requirements, 381
Plots
 Contour/Scatter, 375, 379
 Number Of Multipliers, 375, 378
Reports
 Bayes Accepted, 375
 Console Log, 375
Using, 375
Viewers
 Ascii, 373
 Plot, 375, 378
 Prior Probabilities, 373
Widgets
 Histogram Size, 373
 Order, 373
Maximum Entropy Method Of Moments, 102, 377, 381
 Advantages, 386
 Problems, 386
 Review, 381
Maximum Entropy Method Of Moments Package
 Bayesian Calculations, 387
Plots
 Data, Model and Residuals, 380
Menus
Files, 24, 35
 4dfp, 37, 38
 Abscissa, 35, 39
 ASCII, 35, 36
 Binary, 38
 Bruker, 37
 Bruker 2dseq, 38
 Bruker Stack, 38
 DICOM, 37, 38
 PDF, 37, 38
 fid, 36, 37
 General Binary, 37
Images, 35
Import Working Directories in Batch, 40
Import Working Directory, 40
Load Images, 36, 37, 59
Load Working Directory, 35
Multi-Column Text, 37, 38
Save Working Directory, 35, 39
Siemens IMA, 37, 38
Single-Column Text, 38
Spectroscopic Fid, 35
Test Data, 35, 39
Text k-space, 36
Text k-space fid, 37
User Manual, 35, 39
Help, 24
Packages, 22, 24, 33, 40
Settings, 46
 Add Server, 48
 Auto Configure Server, 48
 McMC Parameters, 24, 46, 48
 Min Annealing Steps, 48, 48
 Port number, 48
 Preferences, 49, 63
 Remove Server, 48, 49
 Repetitions, 46, 48
 Server Name, 48
 Server Setup, 24, 26, 48
 Set Window Size, 49
 Simulations, 46, 48
 View Server Installation Info, 48, 49
Spectroscopy fid, 36
Utilities, 24, 50
 Memory Monitor, 50
 Software Updates, 50
 System Information, 50
WorkDir
 Creating, 22, 33, 46
 Deleting, 22, 33, 46
 List, 24, 46
 Loading, 46
 Name, 46
 Popup, 47
Model Comparison
 Big Peak/Little Peak Package, 211
model orthonormal definition, 349
Mouse
 Control-left, 59
 Fid Data Viewer
 Left, 56
 Right, 56
 Shift-left, 59
Multiplets
 J-Coupling
INDEX

Center, 159
Primary, 159
Secondary, 159

Newton-Raphson, 171
Noise Standard Deviation, 64
Non-Linear Phasing Package, 405
Calculations, 407
Model Equation, 405, 407
Widgets
Process, 409
Write Ascii images, 409
Write imaginary images, 409
Nuisance Parameter, 100, 115, 135
Nyquist Critical Frequency, 111, 127

orthonormal, 349
Outliers, 475
Mean Parameter, 477
Model, 475
Prob Number of, 476
Proposal, 475
Red dot, 477
Weighted Average, 477

Packages
Analyze Image Pixel Unique, 423
Bayes Analyze, 20, 43, 57, 155, 200
Bayes Find Resonances, 21, 239
Bayes Test Data, 427
Behrens-Fisher, 21, 44, 311
Big Magnetization Transfer, 20, 42, 259
Big Peak/Little Peak, 20, 43, 207
Binned Density Function Estimation, 355
Binned Histograms, 21, 44
Diffusion Tensors, 20, 40, 247
Enter ASCII Model, 42
Enter Ascii Model, 20, 329
Enter ASCII Model Selection, 42
Enter Ascii Model Selection, 20, 341
Errors In Variables, 21, 44, 303
Find Resonances, 43
Given Exponential, 20, 40, 137
Given Polynomial Order, 285
Image Model Selection, 415
Image Pixel, 21, 45, 411
Image Pixel Model Selection, 22, 45
Inversion Recovery, 20, 40, 151
Kernel Density Function, 361
Linear Phasing, 21, 44, 395
Magnetization Transfer, 20, 42, 265
Magnetization Transfer Kinetics, 20, 43, 275
Maximum Entropy Method Of Moments, 21, 44, 373
Metabolic Analysis, 21, 43, 219
Non-Linear Image Phasing, 21, 45, 405
Polynomials
of Given Order, 21, 44
of Unknown Order, 21, 44
Test ASCII Model, 42
Test Ascii Model, 20, 337
Unknown Number of Exponentials, 20, 40, 143
Unknown Polynomial Order, 293
Parameter File, 42
Number Of
Abscissa, 458
Data Columns, 458
Model Vectors, 458
Priors, 458
Prior Probability, 459
Amplitude, 460
High, 459
Low, 459
Mean, 459
NonLinear, 460
Ordered, 460
Parameter File, 459
Peak, 459
Prior Type, 460
Standard Deviation, 459
Phase Cycling, 162
Plot Results Viewer, 71
Plots
Data and Model, 81
Data, Model and Residuals, 81
Expected Log Likelihood, 88
Logarithm of the Posterior Probability, 91
Maximum Entropy Histogram, 84
Maximum Entropy Histograms, 83
McMC Samples, 83, 85
Parameter Vs Posterior Probability, 86, 87
Test Ascii Model Package, 337
 Reports
 Bayes Accepted, 339
 Mcmc Values, 339
 Using, 339, 428
Viewers
 Ascii Data, 337
 Fortran/C Models, 337
 Prior Probabilities, 337
Widgets
 Build, 337
 Find Outliers, 339
 System, 337
 User, 337
Thermodynamic Integration, 445, 449
Uninstall, 49
Unknown Number of Exponentials Package, 143
 Bayesian Calculations, 145
 Model Equation, 145
Reports
 Bayes Accepted, 143, 148
 Condensed, 148
 Console Log, 148, 149
 McMC Values, 148
 Prob Model, 148
 Using, 143
Viewers
 File, 148
 Plot Results, 149, 150
 Prior, 143
 Text, 148
Widgets
 Constant, 143
 Find Outliers, 143
 Order, 143
Unknown Polynomial Order Package, 293
 Bayesian Calculations, 295
Files
 Ascii, 293
 Bayes Analyze, 293
 Peak Pick, 293
Model Equation, 295
Number of data sets, 293
Reports
 Bayes Accepted, 293, 299
Condensed, 299
Console Log, 298, 299
McMC Values, 299
Polynomial Order Plot , 301
Prob Model, 299
Using, 293
Viewers
 File, 299
 Text, 299
Widgets
 Set Order, 293, 294
 Unknown Order, 293, 294
Viewers, 27, 52
ASCII Data, 36
Ascii Data, 27, 53, 56, 63, 137, 265, 275, 285, 293, 311, 329, 337, 341
 Expanding Plot, 53
 Printing, 53
 Right click, 53
 Bayes Model, 160
Fid Data, 27, 265
fid Data, 53, 56, 285, 293
 Auto Range, 59
 Autoscale, 56
 Clear Cursors, 56
 Clear Data, 57
 Copy, 59
 Cursor, 56
 Data Info, 57
 Expand, 56
 fn, 57
 Full, 56
 Get Peak, 56
 Phase Popup, 57
 Print, 59
 Properties, 59
 Referencing, 59
 Save As, 57, 59
 Set Preference, 57
 Units, 59
 Zoom, 59
Fid Model, 27
fid Model, 68, 186
 Build BA Model, 70, 159
 Data, 71
<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horizontal</td>
<td>71</td>
</tr>
<tr>
<td>Model</td>
<td>71</td>
</tr>
<tr>
<td>Overlay</td>
<td>71</td>
</tr>
<tr>
<td>Report</td>
<td>71</td>
</tr>
<tr>
<td>Residual</td>
<td>71</td>
</tr>
<tr>
<td>Stacked</td>
<td>71</td>
</tr>
<tr>
<td>Trace</td>
<td>71</td>
</tr>
<tr>
<td>Vertical</td>
<td>71</td>
</tr>
<tr>
<td>File</td>
<td>28, 80</td>
</tr>
<tr>
<td>Fortran/C Models</td>
<td>93, 330</td>
</tr>
<tr>
<td>Image</td>
<td>27, 59, 415</td>
</tr>
<tr>
<td>Autoset Grayscale</td>
<td>61</td>
</tr>
<tr>
<td>Copy Selected</td>
<td>62</td>
</tr>
<tr>
<td>Delete All</td>
<td>61</td>
</tr>
<tr>
<td>Delete Selected</td>
<td>61</td>
</tr>
<tr>
<td>Display Full</td>
<td>61</td>
</tr>
<tr>
<td>Element Selection</td>
<td>60</td>
</tr>
<tr>
<td>Export</td>
<td>62</td>
</tr>
<tr>
<td>Get Statistics</td>
<td>64, 65</td>
</tr>
<tr>
<td>Get Threshold Statistics</td>
<td>65</td>
</tr>
<tr>
<td>Grayscale</td>
<td>63</td>
</tr>
<tr>
<td>Image Selection</td>
<td>60</td>
</tr>
<tr>
<td>List</td>
<td>59</td>
</tr>
<tr>
<td>Load Selected Pixels</td>
<td>61</td>
</tr>
<tr>
<td>Max</td>
<td>64</td>
</tr>
<tr>
<td>Mean</td>
<td>64</td>
</tr>
<tr>
<td>Min</td>
<td>64</td>
</tr>
<tr>
<td>Right Click</td>
<td>61</td>
</tr>
<tr>
<td>RMS</td>
<td>64</td>
</tr>
<tr>
<td>Save Displayed</td>
<td>62</td>
</tr>
<tr>
<td>Save Statistics</td>
<td>65</td>
</tr>
<tr>
<td>Sdev</td>
<td>64</td>
</tr>
<tr>
<td>Set Image Area</td>
<td>62</td>
</tr>
<tr>
<td>Show Histogram</td>
<td>61</td>
</tr>
<tr>
<td>Show Info</td>
<td>62</td>
</tr>
<tr>
<td>Slice</td>
<td>62</td>
</tr>
<tr>
<td>Slice Selection</td>
<td>60</td>
</tr>
<tr>
<td>Statistics</td>
<td>60</td>
</tr>
<tr>
<td>Value</td>
<td>64</td>
</tr>
<tr>
<td>View Selected Pixels</td>
<td>61</td>
</tr>
<tr>
<td>Viewer Settings</td>
<td>62</td>
</tr>
<tr>
<td>Viewing</td>
<td>62</td>
</tr>
<tr>
<td>X Pos</td>
<td>64</td>
</tr>
<tr>
<td>Y Pos</td>
<td>64</td>
</tr>
<tr>
<td>Plot Results</td>
<td>28, 71</td>
</tr>
<tr>
<td>Prior</td>
<td>27, 65</td>
</tr>
<tr>
<td>Prior Probabilities</td>
<td>138, 312</td>
</tr>
<tr>
<td>Text</td>
<td>141, 271, 281, 290, 309, 322, 335, 353</td>
</tr>
<tr>
<td>Text Results</td>
<td>26, 28, 52, 74</td>
</tr>
<tr>
<td>Bayes Analyze</td>
<td>176</td>
</tr>
</tbody>
</table>

Widgets

Analyze Image Pixel Package
- Build, 411
- Find Outliers, 411
- Get Statistics, 413
- System, 411
- User, 411

Analyze Image Pixel Unique Package
- Build, 423
- Find Outliers, 423
- Get Statistics, 425
- System, 423
- User, 423

Ascii Data Viewer
- Delete, 53
- Left-mouse, 53
- Right-mouse, 53

Bayes Analyze Package
- By, 158, 176
- First Point, 163
- From, 158, 176
- Imag Offset, 163
- Mark, 159
- Max New Res, 157
- New, 159
- Noise, 158
- Phase, 157
- Primary, 158
- Real Offset, 163
- Remove, 159
- Remove All, 159
- Reset, 159, 193
- Restore, 159
- Save, 159
- Secondary, 159
- Shim Order, 157, 163
- Signal, 158
- To, 158, 176

Bayes Find Resonances Package
- Build FID Model, 240, 241, 246
- Constant, 239, 242
INDEX

First Trace, 239
Last Trace, 239
Model Fid Number, 241
Phase Model, 239, 242
Bayes Metabolite Package
 Fid Model, 221
 Fid Model Viewer, 221
 Load System Metabolite File, 219
 Load System Resonance File, 221
 Load User Metabolite File, 219
 Load User Resonance File, 221
 Shift Left, 221, 222
 Shift Right, 221, 222
Bayes Test Data Package
 # Images, 427
 # Slices, 427
 Abscissa, 427
 ArrayDim, 427
 Build, 427
 Get Job, 428
 Max Value, 427
 Noise SD, 427
 Pe, 427
 Ro, 427
 Run, 428
 Set (server), 428
 Status, 428
 System, 427
 User, 427
Big Magnetization Transfer Package
 Find Outliers, 259
Big Peak/Little Peak Package
 Metabolite, 207
 Solvent, 207
Diffusion Tensor Package
 Abscissa Options, 248
 Find Outliers, 247
 Include Constant, 247, 248, 255
 Tensor Number, 247, 248, 255
 Use b Matrix, 255
 Use b Vectors, 254, 255
 Use g Vectors, 254
Enter Ascii Model Package
 Find Outliers, 329
 System, 329
 User, 329
Enter Ascii Model Selection Package
 Find Outliers, 341
 System, 341
 User, 341
Errors In Variables Package
 Given Errors In, 303
 Order, 303
Fid Data Viewer
 Autoscale, 56
 Clear Cursors, 56
 Cursor A, 56
 Cursor B, 56
 Delta, 56
 Display Type, 56
 Expand, 56
 Full, 56
 Get Peak, 56
 Left-mouse, 56
 Options, 57, 59
 Right-mouse, 56
 Trace, 70
Fortran/C Model Viewer
 Abscissa Spinner, 93
 Add Prior, 96
 Allow/Disallow Editing, 97
 Cancel and Exit, 96
 Changing Models, 94
 Code, 93, 94
 Compile Results, 97
 Compiling, 96
 Create/Edit Model, 93
 Data Columns Spinner, 93
 Derived, 96
 Edit/Create New Model, 93, 94
 High, 97
 Low, 97
 Mean, 97
 Model, 96
 Model Vectors, 93
 Name (parameter), 97
 Order, 97
 Parameter Type, 97
 Parameters button, 93, 94, 96
 Prior Type, 97
 Priors, 96
 Remove All (priors), 96
Remove Prior, 96
Remove Selected Model, 93
Save and Load, 96
Standard Deviation, 97
Given Exponential Package
 Constant, 137, 139
 Find Outliers, 137
 Order, 137, 139
Given Polynomial Order Package
 Set Order, 285
Global
 Bayes Find Outliers, 27
 Cancel, 26, 51
 Edit Servers, 26
 Get Job, 26, 51, 137, 143, 151, 155, 209, 221, 241, 247, 259, 267, 277, 285, 293, 305, 311, 331, 339, 343, 357, 364, 375, 413, 417, 425, 428
 Reset, 27
 Restore Analysis, 22
 Save, 27
 Set (server), 26, 52, 137, 143, 151, 155, 207, 221, 239, 247, 259, 265, 277, 285, 293, 305, 311, 329, 337, 343, 357, 364, 373, 413, 415, 425, 428
Image Model Selection Package
 System, 415
 User, 415
Image Viewer
 Element Number, 62
 Get Statistics, 64
 Get Threshold Statistics, 65
 Grayscale, 63
 Save Statistics, 65
 Slice Number, 62
 Value, 64
 X Pos, 64
 Y Pos, 64
Inversion Recovery Package
 Find Outliers, 151
Kernel Density Function Package
 Kernel Type, 364
 Output Size, 364
Linear Phasing Package
 cf, 403
 Display, 403
 Display Array Element, 403
 fn, 403
 fn1, 403
 Image Type, 402
 Load An Image, 402
 np, 403
 nv, 403
 Process, 403
Magnetization Transfer Kinetics Package
 Load, 275, 281
 Set, 275
 Uncertainty, 275
Magnetization Transfer Package
 Find Outliers, 265
MaxEnt Density Function Estimation Package
 Histogram Size, 373
 Order, 373
Non-Linear Phasing Package
 Process, 409
 Write Ascii images, 409
 Write imaginary images, 409
Prior Viewer
 High, 65
 Low, 65
 Mean, 65
 Prior Type, 67
Server
 Edit, 52
 Name, 26, 52, 52
 Set (server), 48
 Setup, 48, 52
Test Ascii Model Package
 Find Outliers, 339
 System, 337
 User, 337
Text Results Viewer
 Copy, 74
INDEX

Down arrow, 74
Enable Editing, 74
Print, 74
Save (a copy), 74
Save As, 74
Settings, 74
Up arrow, 74
Unknown Number of Exponentials Package
 Constant, 143
 Find Outliers, 143
 Order, 143
Unknown Polynomial Order Package
 Set Order, 293, 294
 Unknown Order, 293, 294
WorkDir
 Creating, 22, 33, 46
 Deleting, 22, 33, 46
 List, 24, 46
 Loading, 46
 Name, 46
 Popup, 47