Chapter 17

Unknown Polynomial Order

The Unknown Polynomial Order package fits polynomials to two column Ascii data when both the order of the polynomial and the polynomial coefficients are unknown. The interface to this package is shown in Figure 17.1. This interface differs from most others in one respect, there are no parameter ranges to enter, so use of the interface is particularly simple. To use this package, you must do the following:

Select the Polynomial Models package from the Package menu. When selected this menu will bring up the “Given” and “Unknown” polynomial model interface.

Check the “Unknown Order” box to select the Unknown Polynomial Order package. When this check box is activated the “Set Order” widget becomes inactive. This is illustrated in Fig. 17.1 where the “Unknown Order” has been checked, and, consequently, the “Set Order” widget has been grayed out.

Load one two column Ascii data sets. The data may be loaded using the Files menu. You can also load an arrayed Fid and then use a single cursor to mark the center of a peak and use the “Get Peak” button on the bottom right of the Fid viewer. Finally, the “Files/Load Ascii/Bayes Analyze” button can be used to load an Ascii data set from the amplitudes estimated by Bayes Analyze. When a data set is successfully loaded the data is plotted in the Ascii Data viewer. This package does not allow you to run with multiple data sets. If you attempt to do so, you will be prompted to remove all but a single file.

Select the server that is to process the analysis.

Check the status of the selected server to determine if the server is busy, change to another server if the selected server is busy.

Run the the analysis on the selected server by activating the Run button.

Get the the results of the analysis by activating the Get Job button. If the analysis is running, this button will return the Accepted report containing the status of the current run. Otherwise, it will fetch and display the results from the current analysis.
Figure 17.1: This panel is the interface to both the Given and Unknown Polynomial Order packages. Data has already been loaded. Note that in this example, the “Unknown Order” check box has been set. Consequently, the “Set Order” spinner has been deactivated. Because of the way this calculation is done very high orders are possible and numerically stable. However, the high orders, above 40, require very high signal-to-noise and even then roundoff errors degrade the accuracy to 4 or 5 decimal places.
17.1 Bayesian Calculations

The Unknown Polynomial Order model is just that, its a model in which a polynomial is fit to the data:

\[d_i = \sum_{j=0}^{m} A_j t_i^j + n_i \]

(17.1)

where \(A_j \) is the amplitude of the \(j \)th polynomial, \(m \) is the unknown order of the polynomial expansion, and \(n_i \) represents noise in the data. As in Chapter 16, we introduce a change of function and a change of variables and we refer the reader to that chapter for a discussion of the change of function and variables. The change of function is to orthonormal polynomials designated by \(G_j(t_i) \), so the expansion given in Eq. (17.1) becomes:

\[d_i = \sum_{j=0}^{m} B_j G_j(t_i) + n_i \]

(17.2)

where \(B_j \) are the amplitudes in the orthonormal expansion. Note this change of function and variables is an identify, so

\[\sum_{j=0}^{m} A_j t_i^j = \sum_{j=0}^{m} B_j G_j(t_i). \]

(17.3)

The Bayesian calculation is implemented using Markov chain Monte Carlo with simulated annealing to draw samples from the joint posterior probability for the parameters, \(P(mB_0B_1 \ldots B_m|DI) \). From these samples we then compute the marginal posterior probabilities for the amplitudes and the polynomial order. The joint posterior probability for the parameters is computed by application of Bayes’ theorem

\[P(mB_0B_1 \ldots B_m|DI) \propto P(mB_0B_1 \ldots B_m|I)P(D|mB_0B_1 \ldots B_m|I) \]

(17.4)

where \(P(mB_0B_1 \ldots B_m|I) \) is the joint prior probability for the amplitudes and the polynomial order, and \(P(D|mB_0B_1 \ldots B_m|I) \) is the direct probability for the data given the parameters and the polynomial order. We factor the joint prior probability for the parameters, \(P(mB_0B_1 \ldots B_m|I) \), into a series of independent prior probabilities:

\[P(mB_0B_1 \ldots B_m|I) = P(m|I) \prod_{j=0}^{m} P(B_j|I) \]

(17.5)

where \(P(m|I) \) is the prior probability for the polynomial order and \(P(B_j|I) \) is the prior probability for the \(j \)th amplitude. Substituting, Eq. (17.5) into Eq. (17.4) one obtains

\[P(mB_0B_1 \ldots B_m|DI) \propto P(m|I) \left[\prod_{j=0}^{m} P(B_j|I) \right] P(D|mB_0B_1 \ldots B_m|I) \]

(17.6)

as the joint posterior probability for all of the parameters, including the polynomial order.
17.1.1 Assigning Priors

Before we assign the likelihood, we are going to assign the prior probability for the polynomial order, \(P(m|I) \), and the prior probability for the amplitudes, the \(P(B_j|I) \). The prior probability for the polynomial order was assigned as a discrete Gaussian with lower bound zero, an upper bound of 50, a mean value of 5, and a standard deviation of 10:

\[
P(m|I) = \begin{cases} \frac{1}{C} \exp \left\{ -\frac{(5 - m)^2}{2 \times 10^2} \right\} & m \in \{0, 1, \ldots, 50\} \\ 0 & \text{otherwise} \end{cases}, \tag{17.7}
\]

with the normalization constant \(C \) set so that the sum over the total models is one:

\[
C = \sum_{m=0}^{50} \exp \left\{ -\frac{(5 - m)^2}{2 \times 10^2} \right\}. \tag{17.8}
\]

Which expresses a belief that the polynomial order should be small, we think it very unlikely that the polynomial order would be as large as 50; but we think it reasonably possible for the order to be in the tens or twenties.

The prior probabilities for the amplitudes will be assigned exactly the same way they were when the did the Given Polynomial Order package, Chapter 16. That prior was given by Eq. 16.15 and we simply use that prior here:

\[
P(B_j|I) = \left(2\pi\delta^2\right)^{-\frac{1}{2}} \exp \left\{ -\frac{(T_j - B_j)^2}{2\delta^2} \right\} \tag{17.9}
\]

where \(\delta \) is the standard deviation of this prior probability and indicates how strongly we believe the expected amplitude is \(T_j \). How we set \(\delta \) is explained shortly. The expected amplitude, \(T_j \), is given by

\[
T_j \equiv \sum_{i=1}^{N} d_i G_j(t_i). \tag{17.10}
\]

In Chapter 16 when this prior was used, we knew the order of the expansion polynomial and thus could determine the mean-square residual. We could use the mean-square residual to set \(\delta \) to a value much wider than any amplitude supported by the data. So this prior probability just acted as a guide to the Markov chain Monte Carlo simulations. Here setting \(\delta \) is harder because we don’t know which model to use. However, we still want to set \(\delta \) to a value that will guide the Markov chain Monte Carlo simulations but not make \(\delta \) so large that the simulations never converge. In Chapter 16 we noted that because these amplitudes appear in the model in a linear fashion, we could solve the problem analytically, we don’t have to use Markov chain Monte Carlo at all. The only reason for using a Markov chain is for consistency with the other packages in our Bayesian Analysis software. However, there is nothing to stop us from computing \(P(m|DI) \) analytically and using that to set \(\delta \). Without going into the details of this calculation, the posterior probability for polynomial of order \(m \) is given by:

\[
P(m|DI) = P(m|I) \Gamma \left(\frac{m}{2} \right) \Gamma \left(\frac{N - m}{2} \right) \left[\frac{\bar{r}^2}{\overline{r_m^2}} \right]^{-\frac{m}{2}} \left[\frac{\bar{r}^2 - \overline{r_m^2}}{2} \right]^{-\frac{N-m}{2}} \tag{17.11}
\]
where $P(m | I)$ is given by Eq. (17.7) and the prior probability for the amplitudes was assigned as a normalized unbounded Gaussian with mean zero and standard deviation γ; which was marginalized out of the problem using a series of approximations given in [2]. The quantity, $d^2 - h^2_m$, is the total-squared residual given a polynomial of order m. The sufficient statistic, h^2_m, is the total-squared projection of the data onto the given polynomial model and is defined as

$$h^2_m \equiv \sum_{k=0}^{m} T_k^2.$$ \hspace{1cm} (17.12)

The expected standard deviation of the noise independent of the model order is given by:

$$\sqrt{\langle \sigma^2 \rangle} = \max_{m=0}^{M_{ax}} P(m | DI) \sqrt{d^2 - h^2_m} / N.$$ \hspace{1cm} (17.13)

Finally, δ was set to

$$\delta = 10 \sqrt{\langle \sigma^2 \rangle}.$$ \hspace{1cm} (17.14)

While rather complicated, this calculation was used for two reasons: I needed an estimate of the standard deviation of the noise, which this gives by simple straightforward calculation; and I needed a way to determine where the maximum of the posterior probability for the polynomial order was. I needed this maximum to determine where to center the distribution of simulations that is printed out while this program is running. The problem is illustrated in Fig. 17.2. The maximum order of the polynomial is 50, but there is only room to print out 10 of these probabilities. So the output window must be shifted to cover the maximum posterior probability for the polynomial order. To do that, I needed to know where the maximum was. This calculation solved both of these problems at one time and it did so using Bayesian probability theory. See my book, [2], for more on this calculation and where each of these terms comes from.

17.1.2 Assigning The Joint Posterior Probability

Having assigned the prior probabilities, we can now proceed with assigning the joint posterior probability for the parameters, Eq. (17.6). First, however, we assign the direct probability for the data. The direct probability, $P(D | mB_0B_1\ldots B_mI)$, is a marginal probability and is computed from the joint probability for the data and the standard deviation of the noise

$$P(D | mB_0B_1\ldots B_mI) = \int P(\sigma D | mB_0B_1\ldots B_mI)d\sigma$$ \hspace{1cm} (17.15)

which we factor as

$$P(D | mB_0B_1\ldots B_mI) = \int P(\sigma | I)P(D | \sigma mB_0B_1\ldots B_mI)d\sigma.$$ \hspace{1cm} (17.16)

Assigning a Jeffreys’ prior to $P(\sigma | I)$ and a Gaussian likelihood, one obtains

$$P(mB_0B_1\ldots B_m | DI) \propto P(m | I) \left[\prod_{j=0}^{M} P(B_j | I) \right] \int \frac{1}{\sigma} \left(2\pi \sigma^2 \right)^{-\frac{N}{2}} \exp \left\{ -\frac{Q}{2\sigma^2} \right\} d\sigma$$ \hspace{1cm} (17.17)
Table 17.2: The Distribution of Models On The Console Log

<table>
<thead>
<tr>
<th>Phase</th>
<th>Frac</th>
<th><Likelihood></th>
<th><StdDevLike></th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annealing</td>
<td>0.000</td>
<td>-2.8665E+01</td>
<td>-1.4089E+02</td>
<td>4</td>
<td>5</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0.004</td>
<td>-3.1841E+01</td>
<td>-5.2177E+01</td>
<td>5</td>
<td>5</td>
<td>7</td>
<td>4</td>
<td>3</td>
<td>5</td>
<td>2</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0.007</td>
<td>-3.1615E+01</td>
<td>9.4579E+00</td>
<td>6</td>
<td>5</td>
<td>14</td>
<td>4</td>
<td>5</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0.012</td>
<td>-3.2178E+01</td>
<td>5.4344E+01</td>
<td>4</td>
<td>7</td>
<td>15</td>
<td>8</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0.017</td>
<td>-3.4670E+01</td>
<td>1.0615E+02</td>
<td>2</td>
<td>6</td>
<td>14</td>
<td>13</td>
<td>7</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>0.025</td>
<td>-3.6671E+01</td>
<td>1.3447E+02</td>
<td>0</td>
<td>4</td>
<td>19</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>0.039</td>
<td>-3.6100E+01</td>
<td>1.5631E+02</td>
<td>0</td>
<td>0</td>
<td>21</td>
<td>13</td>
<td>7</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>0.065</td>
<td>-3.4743E+01</td>
<td>1.7613E+02</td>
<td>0</td>
<td>0</td>
<td>16</td>
<td>18</td>
<td>7</td>
<td>6</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>0.088</td>
<td>-3.3993E+01</td>
<td>1.9468E+02</td>
<td>0</td>
<td>0</td>
<td>11</td>
<td>22</td>
<td>12</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>0.109</td>
<td>-3.4516E+01</td>
<td>2.0296E+02</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>24</td>
<td>10</td>
<td>4</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Phase</th>
<th>Frac</th>
<th><Likelihood></th>
<th><StdDevLike></th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sampling</td>
<td>0.500</td>
<td>-3.1813E+01</td>
<td>2.6462E+02</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>48</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>0.550</td>
<td>-3.1991E+01</td>
<td>2.6438E+02</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>46</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>0.600</td>
<td>-3.1907E+01</td>
<td>2.6411E+02</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>47</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>0.650</td>
<td>-3.1989E+01</td>
<td>2.6459E+02</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>46</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>0.700</td>
<td>-3.1817E+01</td>
<td>2.6430E+02</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>48</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>0.750</td>
<td>-3.1904E+01</td>
<td>2.6432E+02</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>47</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>17</td>
<td>0.800</td>
<td>-3.1994E+01</td>
<td>2.6414E+02</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>46</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>0.850</td>
<td>-3.1992E+01</td>
<td>2.6429E+02</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>46</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>19</td>
<td>0.900</td>
<td>-3.1909E+01</td>
<td>2.6386E+02</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>47</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>0.950</td>
<td>-3.1903E+01</td>
<td>2.6447E+02</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>47</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Figure 17.2: While the unknown Polynomial Order package is running, it prints a listing that shows the distribution of the model indicator as a function of the annealing parameter. The 10 columns to the right are the number of simulations in model 0, 1, etc. As the annealing parameter increases these should cluster into one or two columns and the distribution of these simulations is the posterior probability for the polynomial order. In this example the data were a 6th order polynomial. Notice that as soon as the annealing parameter begins to increase the simulations quickly move to high order models and eventually they usually all end up in the 6th order polynomial model.
where we have left the prior probabilities in their symbolic form. Evaluating the integral over σ one obtains

$$P(mB_0B_1 \ldots B_m|DI) \propto P(m|I) \left[\prod_{j=0}^{m} P(B_j|I) \right] \left[\frac{Q}{2} \right]^{-\frac{N}{2}} \tag{17.18}$$

as the posterior probability for the parameters including the polynomial order, where

$$Q \equiv \sum_{i=1}^{N} \left(d_i - \sum_{j=0}^{m} B_j G_j(t_i) \right)^2$$

$$= N\delta^2 - 2 \sum_{j=0}^{m} B_j T_j + \sum_{j=0}^{m} B_j^2. \tag{17.19}$$

In evaluating the integral over σ there were a number of constants that were dropped. In model selection problems that is usually a bad thing to do and will, almost always, cause problems. Here we could do it because each polynomial model contains exactly the same constants and so they always cancel. Finally, substituting the prior probability for the polynomial order, Eq. (17.7), the prior probability for the amplitudes, Eq. (17.9) into Eq. (17.18), the joint posterior probability for the parameters is given by:

$$P(mB_0B_1 \ldots B_m|DI) \propto \exp \left\{ -\frac{(5 - m)^2}{2 \times 10^2} \right\} \left[\prod_{j=0}^{m} (2\pi\delta^2)^{-\frac{1}{2}} \exp \left\{ -\frac{(T_j - B_j)^2}{2\delta^2} \right\} \right] \left[\frac{Q}{2} \right]^{-\frac{N}{2}}. \tag{17.20}$$

It is this joint probability density function that is targeted by the Markov chain Monte Carlo simulations.

If one were to compute the posterior probability for the polynomial order using Eq. (17.20) and compare it to that given by Eq. (17.11). You would find you get different results. That’s because in computing these two sets of equations we used slightly different prior probabilities for the amplitudes. While these prior probabilities were not much different, they are nonetheless different and that difference would manifest itself as a slight difference in the final calculations. As far as which is right, they are both correct given the two sets of prior information. Regardless, they won’t differ by much and almost certainly, given the discrete nature of the posterior probability, won’t differ at all after you normalize the final posterior probability.

17.2 Outputs From the Unknown Polynomial Order Package

The Text outputs from the Unknown Polynomial Order package consist of: “Bayes.prob.model,” “BayesPolUnknown.mcmc.values,” “Bayes.params,” “Console.log” see Fig. 17.2, “Bayes.accepted” and a condensed output file “Bayes.Condensed.File.” These output files can be viewed using the Text Viewer or they can be viewed using File Viewer by navigating to the current working directory and then selecting the files. The format of the mcmc.values report is discussed in Appendix D and the other reports are discussed in Chapter ??.

The main new output from the Unknown Polynomial Order package is a plot of the posterior probability for the polynomial order, Fig. 17.3. The data used to generate this figure are the
Figure 17.3: The main new output in the Unknown Polynomial Order Package is the posterior probability for the polynomial order, here called polynomial number. This output figure contains 10 probabilities centered around the peak in the posterior probability.
Polynomials.6th.order.dat distributed in the Bayes.test.data. This figure consists of a bar chart of the posterior probability. However, there are only 10 output probabilities, while the posterior probability contains a maximum of 51 probabilities (orders 0 through 50). So these probabilities are centered around the location of the maximum, see Section 17.1.1 for a discussion of how this maximum is located. Usually all of the probability is concentrated in one or two probabilities around the maximum with an abrupt lower bound and a more gentle drop off as you go to higher orders. Consequently, after locating the maximum of the posterior probability for the model order, the lowest output probability is set 3 orders below the maximum and the maximum output probability is 6 orders above the maximum probability order. All this is illustrated in Fig. 17.3, there the maximum is 6, the lowest output order is $6 - 3 = 3$, and the highest is $6 + 6 = 12$.
Bibliography

[45] Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth, Augusta H. Teller, and Edward Teller (1953), “Equation of State Calculations by Fast Computing Machines,” Journal of Chemical Physics. The previous link is to the Americaian Institute of Physics and if you do not have access to Science Sitations you many not be able to retrieve this paper.

Index

A_k definition, 349
$H_{jk}(t_i)$ definition, 349
λ_ℓ definition, 349
g_{jk} eigenvalue, 349

Abscissa, 437
Computational, 436
Generating, 427
Loading, 39
Multicolumn, 437
Number Of Columns, 458
Total Data Values, 456

Aliases, 113, 126
Amplitudes orthonormal definition, 349

Analyze Image Pixel Package, 411
Modification History, 413
Phased Images, 397
Reports
Bayes Accepted, 413
Using, 413
Viewers
Fortran/C Models, 411
Image, 411
Prior Probabilities, 413
Widgets
Abscissa File, 411
Build, 411
Find Outliers, 411
Get Statistics, 413
System, 411
User, 411

Analyze Image Pixel Unique Package, 423
Highlight
Abscissa, 425
Data, 425
Input Image
Abscissa, 423

Data, 423
Reports
Bayes Accepted, 425
Console Log, 425
McMC Values, 425
Using, 425
Viewers
Fortran/C Models, 423
Image, 423
Prior Probabilities, 425
Widgets
Build, 423
Find Outliers, 423
Get Statistics, 425
System, 423
User, 423

Ascii Data Viewer, 53
Assigning Probabilities, 118

Bandwidth, 111, 127
Bayes Analyze Package, 155
Levenberg-Marquardt, 171
Step, 194
Algorithm, 175
Amplitudes, 197, 198
Bayes Model, 159, 161
Bayesian Calculations, 167
Bruker, 162
Build BA Model, 159
Covariance, 174
Default Parameters Settings, 155
Error Messages, 200
Fid Model Viewer, 160
Interface, 156
Likelihood
Gaussian, 158
Student’s t-distribution, 158

484
INDEX

Log File, 193, 195
Lorentzian lineshape, 161
Marking Resonances, 157
Model
 J_0, 165
 J_p, 165
 J_s, 165
 Amplitude, 163, 164
 Bessel Function, 163
 Constants Models, 157
 Correlated, 157, 162, 164
 Equation, 161, 164, 164
 First Order Phase, 157, 162, 164
 First Point, 162, 164
 Gaussian, 163
 Imaginary Constant, 164
 Multi-Exponential, 163
 Multiple Data Sets, 165
 Multiplet Order, 164
 Multiplet Orders, 164
 Multiplets, 162
 Multiplets of Multiplets, 164
 Non-Lorentzian, 163
 Offsets, 162
 Real Constant, 164
 Relative Amplitude, 164–166
 Resonance Frequency, 165
 Shim Order, 163
 Shimming, 166
 Shimming Order, 164
 Uncorrelated, 157, 162, 164
 Zero Order Phase, 157, 162, 164
Model Interface, 160
Multiplets, 158
Newton-Raphson, 171
Noise File, 158
Noise Standard Deviation, 158
Outputs
 Bayes.accepted File, 177
 bayes.log.nnnn File, 177, 193, 193
 bayes.model.nnnn File, 177, 185, 197, 197
 bayes.noise File, 180
 bayes.noise.nnnn File, 158, 180
 bayes.output.nnnn File, 176, 186, 186
 bayes.params File, 176, 177
 bayes.params.nnnn File, 176, 177, 177
 bayes.probabilities.nnnn File, 177, 190, 190
 bayes.status.nnnn File, 177, 196, 200
 bayes.summary1.nnnn File, 177, 198, 198
 bayes.summary2.nnnn File, 177, 199, 199
 bayes.summary3.nnnn File, 177, 200, 200
 Global Parameters, 182, 183
 Model File, 184
 Probabilities file, 191
 Zero Order Phase, 182
Parameter File
 Activate Shims, 180
 Analysis Directory, 178
 By Fid, 181
 Data Type, 180
 Default Model, 181
 Directory Organization, 180
 Fid Model Name, 178
 File Version, 178
 First Fid, 181
 First Order Phase, 180, 183
 Imaginary Constant, 184
 Last Fid, 181
 lh, 182
 Maximum Candidates, 182
 Maximum New Resonances, 182
 Model Fid Number, 181
 Model Name, 184
 Model Names, 181
 Model Number, 184
 Model Points, 181
 Multiplets of Multiplets, 185
 Noise Start, 181
 Numerical Parameters, 178
 Output Format, 180
 Prior Odds, 182
 Procpar, 178
 Real Constant, 184
 Relative Amplitude, 183
 Resonance Model, 185
 Shim Order, 182
 Spectrometer Frequency, 182
 Text Parameters, 178
 Total Complex Data Values, 181
 Total Data Values, 181
 Total Sampling Time, 182
 True Reference, 182
<table>
<thead>
<tr>
<th>Units, 180</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use Noise StdDev, 180</td>
</tr>
<tr>
<td>User Reference, 182</td>
</tr>
<tr>
<td>Prior Probabilities, 167</td>
</tr>
<tr>
<td>Probabilities File, 191</td>
</tr>
<tr>
<td>Product Rule, 168</td>
</tr>
<tr>
<td>Relative Amplitude, 167</td>
</tr>
<tr>
<td>Remove Resonances, 159</td>
</tr>
<tr>
<td>Reports</td>
</tr>
<tr>
<td>Bayes Status, 155</td>
</tr>
<tr>
<td>Save/Reset, 159</td>
</tr>
<tr>
<td>Search, 166</td>
</tr>
<tr>
<td>Levenberg-Marquardt, 166</td>
</tr>
<tr>
<td>Short Parameter Description, 195</td>
</tr>
<tr>
<td>Siemens, 162</td>
</tr>
<tr>
<td>Status File, 196</td>
</tr>
<tr>
<td>Steepest Descents, 173</td>
</tr>
<tr>
<td>Sum Rule, 168</td>
</tr>
<tr>
<td>Summary File, 198</td>
</tr>
<tr>
<td>Summary Reports, 176</td>
</tr>
<tr>
<td>Summary2, 199</td>
</tr>
<tr>
<td>Summary3, 201</td>
</tr>
<tr>
<td>Units, 161</td>
</tr>
<tr>
<td>Using, 157</td>
</tr>
<tr>
<td>Varian/Agilent, 162</td>
</tr>
<tr>
<td>Widgets, 155</td>
</tr>
<tr>
<td>By, 158, 176</td>
</tr>
<tr>
<td>First Point, 157, 163</td>
</tr>
<tr>
<td>From, 158, 176</td>
</tr>
<tr>
<td>Imag Offset, 163</td>
</tr>
<tr>
<td>Imaginary Offset, 157</td>
</tr>
<tr>
<td>Mark, 159</td>
</tr>
<tr>
<td>Max New Res, 157</td>
</tr>
<tr>
<td>New, 159</td>
</tr>
<tr>
<td>Noise, 158</td>
</tr>
<tr>
<td>Phase, 157</td>
</tr>
<tr>
<td>Primary, 158</td>
</tr>
<tr>
<td>Real Offset, 157, 163</td>
</tr>
<tr>
<td>Remove, 159</td>
</tr>
<tr>
<td>Remove All, 159</td>
</tr>
<tr>
<td>Reset, 159, 193</td>
</tr>
<tr>
<td>Restore, 159</td>
</tr>
<tr>
<td>Save, 159</td>
</tr>
<tr>
<td>Secondary, 159</td>
</tr>
<tr>
<td>Shim Order, 157, 163</td>
</tr>
<tr>
<td>Signal, 158</td>
</tr>
<tr>
<td>To, 158, 176</td>
</tr>
</tbody>
</table>

Bayes Find Resonances Package, 239
Bayesian Calculations, 241
Current Fid, 239
Model Equation, 241
Number of data sets, 239
Phase Model
 Automatic, 239, 242
 Common, 239, 242
 Independent, 239, 242
Prior Probabilities, 243–245
Reports
 Bayes Accepted, 241, 246
 Condensed, 246
 Console log, 246
 McMC Values, 246
 Prob Model, 246
Using, 239, 241
Viewers
 Fid Data, 240
 Fid Model, 240, 246
 File, 246
 Plot Results, 246
 Text, 246
Widgets
 Build FID Model, 240, 241, 246
 Constant, 239, 242
 First Trace, 239
 Last Trace, 239
 Model Fid Number, 241
 Phase Model, 239, 242
Bayes Home Directory, 45, 49
Bayes Manual pdf, 469
Bayes Metabolite Package
 Widgets
 Shift Left, 222
 Shift Right, 222
Bayes Metabolite Package, 219
Aligning Resonances, 221
Bayesian Calculation, 225
Metabolite Locations, 221
Model Equation, 223
Reports
 Bayes Accepted, 221, 238
 Condensed, 238
 Console log, 238
INDEX

McMC Values, 238
Prob Model, 238

Viewers
Fid Data, 219
Fid Model, 221, 236
File, 222, 238
Metabolite, 221
Plot Results, 238
Text, 238

Widgets
Fid Model, 221
Fid Model Viewer, 221
Load System Metabolite File, 219
Load System Resonance File, 221
Load User Metabolite File, 219
Load User Resonance File, 221
Shift Left, 221
Shift Right, 221

Bayes Model, 159, 159
Bayes Test Data Package, 427

Parameters, 431

Reports
Bayes Accepted, 428
Condensed, 429
McMC Values, 429, 431–433

Viewers
Fortran/C Models, 427
Image, 428
Prior Probabilities, 427
Text Data, 430
Text Results, 429

Widgets
Images, 427
Slices, 427
Abscissa, 427
ArrayDim, 427
Build, 427
Get Job, 428
Max Value, 427
Noise SD, 427
Parameter Ranges, 428
Pe, 427
Ro, 427
Run, 428
Set (server), 428
Status, 428

Bayes.accepted
Body, 77
Header, 76

Behrens-Fisher Package, 311
Bayesian Calculations
Derived Probabilities, 320
Different Mean And Same Variance, 318
Different Mean And Variance, 319
Parameter Estimation, 321
Same Mean And Different Variance, 317
Same Mean And Variance, 315

Model Equation
Different Mean And Same Variance, 318
Different Mean And Variance, 319
Same Mean And Different Variance, 317
Same Mean And Variance, 315

Number of data sets, 311
Parameter Listing, 323

Prior Probabilities
Different Mean And Same Variance, 318
Different Mean And Variance, 319
Same Mean And Different Variance, 317
Same Means And Same Variance, 315

Reports
Bayes Accepted, 311, 322
Condensed, 322
Console Log, 322, 323
McMC Values, 322, 323
Prob Model, 322

Using, 311

Viewers
File, 322
Plot Results, 322, 324
Prior Probabilities, 311
Text, 322

Widgets
None, 311

Big Endian, 471, 473

Big Magnetization Transfer Package, 259
Bayesian Calculations, 259
Files
Bayes Analyze, 264
INDEX

Fid, 263
Peak Pick, 262
Model Equation, 261
Number of data sets, 259
Prior Probabilities, 261
Reports
Bayes Accepted, 259, 262
Condensed, 262
Console log, 262
McMC Values, 262
Prob Model, 262
Using, 259
Viewers
Ascii Data, 259
File, 262
Prior Probabilities, 259
Text, 262
Widgets
Find Outliers, 259

Big Peak/Little Peak Package, 207
Bayesian Calculations, 209
Fid Analyzed, 207
Model Equation, 210
Metabolites, 209
Solvent, 210
Number of data sets, 207
Prior Probabilities
Metabolite, 207
Solvent, 207
Removing Resonances, 207
Reports
Bayes Accepted, 209, 216
Condensed, 216
Console log, 216
McMC Values, 216
Prob Model, 216
Using, 207
Viewers
File, 216
Model, 209
Plot Results, 216
Prior Probabilities, 207
Text, 216
Widgets
Metabolite, 207
Solvent, 207

Binned Density Function Estimation, 355
Binned Histogram Package
Reports
Bayes Accepted, 357
Viewers
Ascii, 355
Binned Histograms Package
Using, 357
Viewers
Prior Probabilities, 355
Bloch-McConnell Equations, 267, 277
Changing the Bayes Home Directory, 469
Compilers, 29
CC, 29, 455
Fortran, 29, 455
Correlations, 91
Diffusion Tensor Package, 247
Ascii File Formats, 247, 254, 255
Bayesian Calculations, 249
Prior Probabilities
Δ, 254
Γ, 254
δ, 254
σ, 253
Amplitudes, 253
Eigenvalues, 253
Euler Angles, 253
Likelihood, 253
Parameter, 254
Reports
Bayes Accepted, 247, 255
Condensed, 255
Console log, 255
McMC Values, 255
Prob Model, 255
Symmetries, 253
Using, 247
Viewers
File, 247, 255
Plot Results, 255
Prior Probabilities, 247, 253
Text, 255
Widgets
Abscissa Options, 248
INDEX

Find Outliers, 247
Include Constant, 247, 248, 255
Tensor Number, 247, 248, 255
Use b Matrix, 255
Use b Vectors, 255
Use g Vectors, 254
Discrete Fourier Transform, 110, 113, 123

Enter Ascii Model Package, 329
Bayesian Calculations, 332
Marginalization, 332
No Marginalization, 331
Fortran/C Models, 330, 335
Model Equation
Marginalization, 331
No Marginalization, 331
Output Names
Derived, 335
Parameters, 335
Reports
Bayes Accepted, 331, 335
Bayes Params, 335
Condensed, 335
Console log, 335
McMC Values, 335
Prob Model, 335
Using, 331
Viewers
Ascii Data, 329
File, 335
Fortran/C Models, 329
Plot Results, 335
Prior Probabilities, 329
Text, 335
Widgets
Build, 329
Find Outliers, 329
System, 329
User, 329

Enter Ascii Model Selection Package, 341
Bayesian Calculations
Marginalization, 346
No Marginalization, 344
Fortran/C Models, 341, 343, 353
Model Equation, 343
No Marginalization, 343
With Marginalization, 347
Output Names
Derived, 354
Parameters, 353
Reports
Bayes Accepted, 343, 353
Condensed, 353
Console log, 353
McMC Values, 353
Params File, 353
Prob Model, 353
Using, 343
Viewers
Ascii Data, 341
File, 353
Fortran/C Models, 341
Plot Results, 353
Prior Probabilities Not Used, 341
Text, 353
Widgets
Build Not Used, 341
Find Outliers, 341
System, 341
User, 341

Errors In Variables Package, 303
Ascii File Formats
Errors In X and Y Known, 303, 309
Errors In X Known, 303, 309
Errors In Y Known, 303, 309
Errors Unknown, 303, 309
Bayesian Calculations, 305
Data Error Bars, 303
Files
Ascii, 303
Bayes Analyze, 303
Peak Pick, 303
Model Equation, 305
Number of data sets, 303
Reports
Bayes Accepted, 305, 309
Condensed, 309
Console log, 309
McMC Values, 309
Prob Model, 309
Using, 305
Viewers
Ascii Data, 303
File, 309
Plot Results, 309
Text, 309
Widgets
Given Errors In, 303
Order, 303
Exponentials
Given Package, 137
Inversion Recovery Package, 151
Magnetization Transfer Package, 267
Unknown Number of Package, 143
Fid Data Viewer, 53
Fid Model Viewer, 68
File Format
Ascii, 436
File Viewer, 80
Files
4dfp, 59, 428, 430, 470, 471
Header, 473
Reading, 471
Abscissa, 39, 77, 470
afh, 53
ASCII, 35, 36
Ascii, 53, 54, 435
k-space, 437
 Abscissa, 435, 436, 437
Data, 435
Image, 436
Bayes Analyze, 36
Bayes.accepted, 51, 76
Bayes.params, 76, 79
Bayes.prob.model, 447
BayesManual.pdf, 469
Condensed, 77, 78
Console.log, 76, 79, 465
dir.info, 470
fid, 470, 470
ASCII, 36
ffh, 56
Model, 68, 70
procpar, 470
Siemens Raw, 36
Siemens Rda, 36
Spectroscopic, 53
Varian fid, 36
Fortran/C Models, 42, 455, 457, 458, 465–467
Images
4dfp, 38
Binary, 38
Bruker 2dseq, 38
Bruker stack, 38
DICOM, 38
FDF, 38
Multi-Column Text, 38
Siemens IMA, 38
k-space
Text, 36
Varian fid, 36
mcmc.values, 76, 449
Model Listing, 77
prob.model, 76
procpar, 470
Raw, 36
RDA, 36
Statistics, 65
System.err.txt, 469
System.out.txt, 469
Varian fid, 36
WaterViscosityTable, 469
Fortran/C Model Viewer, 93
Popup Editor, 93
Fortran/C Models, 42, 330, 335, 353, 455
Abscissa, 463
Body, 463
Abscissa, 457
Declarations, 462
Derived Parameters, 457, 459, 463
Edit/Create New Model, 42, 455
I/O, 464
Marginalization, 464
$G_f(\Omega, t_i)$, 464
Amplitude Range, 465
Example, 465, 466
Model Vectors, 465
Ordering Amplitudes, 465
Parameter File, 465, 467
Parameter Order, 465
Parameters, 465
Model Files, 455
Model Selection, 464
No Marginalization, 457
\(S(t_i) \), 455
Example, 456
Parameter File, 458, 459, 465
Parameters, 463
Signal, 463
Subroutine Interface, 460
 Abscissa, 462
 Current Set, 460
 Derived Parameters, 461
 Maximum No Of Data Values, 461
 Number Of Abscissa Columns, 461
 Number Of Data Columns, 461
 Number Of Derived Parameters, 461
 Number Of Model Vectors, 461
 Number Of Parameters, 460
 Signal, 462
 Total Complex Data Values, 461
Subroutines and Functions, 464

Frequency Estimation, 114, 132

Given Exponential Package, 137
 Bayesian Calculations, 140
 Files
 Ascii, 137
 Bayes Analyze, 137
 Peak Pick, 137
 Model Equation, 139
 Number of data sets, 139
 Prior Probabilities, 139–141
Reports
 Bayes Accepted, 137, 141
 Condensed, 141
 Console log, 141
 McMC Values, 141
 Prob Model, 141
Symmetries, 141, 148
Using, 137
Viewers
 File, 141
 Plot Results, 141
 Prior Probabilities, 137, 139
 Text, 141
Widgets
 Constant, 137, 139
 Find Outliers, 137
 Given Order, 27
 Include Constant, 27
 Order, 137, 139

Given Polynomial Order Package, 285
 Bayesian Calculations, 288
 Files
 Ascii, 285
 Bayes Analyze, 285
 Peak Pick, 285
 Gram-Schmidt, 287
 Model Equation, 287
 Number of data sets, 285
 Prior Probabilities, 289
Reports
 Bayes Accepted, 285, 291
 Condensed, 291
 Console log, 291
 McMC Values, 291
 Prob Model, 291
 Scatter Plots, 292
Using, 285
Viewers
 File, 290
 Plot Results, 291
 Text, 290
Widgets
 Set Order, 285

Histograms
 Binned, 381
 Kernel Density, 381

Image Model Selection Package, 415
 Abscissa, 415
 Fortran/C Models, 415, 417
Reports
 Bayes Accepted, 417
Using, 417
Viewers
 Fortran/C Models, 415
 Image, 415
Widgets
 Noise SD, 415
 System, 415
Use Gaussian, 415
User, 415
Image Viewer, 59
Images
 Flip
 Horizontal, 63
 Vertical, 63
 Grayscale, 63
 ImageJ, 63
 Original, 63
Inversion Recovery Package, 151
 Bayesian Calculations, 153
 Model Equation, 153
 Number of data sets, 153
 Prior Probabilities, 153
Reports
 Bayes Accepted, 151, 154
 Condensed, 154
 Console Log, 154
 McMC Values, 154
 Prob Model, 154
Using, 151
Viewers
 Plot Results, 154
 Prior Probability, 151
Widgets
 Find Outliers, 151
Kernel Density Function Package, 361
 Ascii File Format, 361
 Bayesian Calculations, 369
 Data Requirements, 361
 Data, Model And Residuals, 369
Kernels, 369
 Biweight, 362
 Cosine, 362
 Epanechnikov, 362
 Exponential, 362
 Gaussian, 362, 370
 nonnegative, 361
 Real Valued, 361
 Triangular, 362
 Tricube, 362
 Triweight, 362
 Uniform, 362
Likelihood, 371
Number of data sets, 364
Plots
 Expected Density Function, 367, 368
 Mean Density Function, 367, 368
 Posterior Probability for the Kernel Type, 365
 Posterior Probability for the Number Of Kernels, 366
 Scatter Plots of Model Averaged Density Function, 368
 Standard Deviation of the Mean Density Function, 367, 368
Prior Probabilities
 Kernel Center, 371
 Kernel Smoothing Parameter, 371
 Kernel Type, 370
 Number Of Kernels, 370
Reports
 Bayes Accepted, 364
 Condensed, 372
 McMC Values, 372
 Prob Model, 372
Using, 364
Viewers
 Ascii, 361
Widgets
 Kernel Type, 364
 Output Size, 364
Levenberg-Marquardt, 171
Linear Phasing Package, 395, 409
 Interface, 397
 Model Equation, 398
Widgets
 cf, 403
 Display, 403
 Display Array Element, 403
 fn, 403
 fn1, 403
 Image Type, 402
 Load An Image, 402
 np, 403
 nv, 403
 Process, 403
Load Working Directory, 33
Logical Independence, 117
INDEX

Magnetization Transfer Kinetics Package, 275
- Arrhenius Plot, 281
- Bayesian Calculation, 278
- Boltzmann’s Constant, 277
- Eyring Equation, 275, 276, 277, 280
- Model Equation, 277
- Planck’s Constant, 277
- Prior Probabilities, 279

Reports
- Bayes Accepted, 277, 281
- Condensed, 281
- Console log, 281
- McMC Values, 281
- Prob Model, 281

Sum and Difference Variables, 280

Transmission coefficient, 277

Universal Gas Constant, 277

Using, 277

van’t Hoff Plot, 281

Viewers
- Ascii File, 275
- File, 281
- Prior Probabilities, 275
- Text, 281

Widgets
- Load, 275, 281
- Set, 275
- Uncertainty, 275

Magnetization Transfer Package, 265

Bayesian Calculations, 267

Files
- Ascii, 265
- Bayes Analyze, 265
- Inversion Recovery, 272
- Peak Pick, 265

Model Equation, 267

Number of data sets, 265

Prior Probabilities, 265, 270

Reports
- Bayes Accepted, 267, 272
- Condensed, 272
- Console log, 272
- McMC Values, 272
- Prob Model, 272

Three Column Data, 265

Using, 267

Viewers
- Ascii Data, 265
- Fid Data, 272
- File, 271
- Plot Results, 262, 272, 281
- Prior Probabilities, 265
- Text, 271

Widgets
- Find Outliers, 265

Marginalization, 100

Bayes Analyze Package, 174
- Behrens-Fisher, 315
- Big Magnetization Transfer, 261
- Big Peak/Little Peak, 211
- Diffusion Tensors, 252
- Enter Ascii Model Package, 331
- Errors In Variables, 306
- Fortran/C Models, 464
- Given Exponential, 139
- Inversion Recovery, 153
- Linear Phasing, 399
- Magnetization Transfer, 269
- Magnetization Transfer Kinetics, 278
- Metabolic Analysis, 225
- Nonexhaustive Hypotheses, 101
- Nuisance Hypotheses, 100
- Nuisance Parameter, 100
- Unknown Number of Exponentials, 146

Markov chain Monte Carlo, 132, 439

Acceptance Rate, 444
- Annealing Schedule, 91, 442
 - Dynamic, 443
 - Linear, 442
- Killing Simulations, 443
- Maximum Posterior Probability, 91
- Metropolis-Hastings, 439
- Mixing, 91
- Monte Carlo Integration, 440
- Multiple Simulations, 441
- Posterior Probability, 440
- Random Number Generators, 440
- Repeats, 91
- Sampling, 91
- Simulated Annealing, 442
- the Proposal, 444
MaxEnt Density Function Estimation Package, 373
Data Requirements, 381
Plots
 Contour/Scatter, 375, 379
 Number Of Multipliers, 375, 378
Reports
 Bayes Accepted, 375
 Console Log, 375
Using, 375
Viewers
 Ascii, 373
 Plot, 375, 378
 Prior Probabilities, 373
Widgets
 Histogram Size, 373
 Order, 373
Maximum Entropy Method Of Moments, 102, 377, 381
Advantages, 386
Problems, 386
Review, 381
Maximum Entropy Method Of Moments Package
 Bayesian Calculations, 387
Plots
 Data, Model and Residuals, 380
Menus
Files, 24, 35
 4dfp, 37, 38
 Abscissa, 35, 39
 ASCII, 35, 36
 Binary, 38
 Bruker, 37
 Bruker 2dseq, 38
 Bruker Stack, 38
 DICOM, 37, 38
 PDF, 37, 38
 fid, 36, 37
General Binary, 37
Images, 35
Import Working Directories in Batch, 40
Import Working Directory, 40
Load Images, 36, 37, 59
Load Working Directory, 35
Multi-Column Text, 37, 38
Save Working Directory, 35, 39
Siemens IMA, 37, 38
Single-Column Text, 38
Spectroscopic Fid, 35
Test Data, 35, 39
Text k-space, 36
Text k-spacefid, 37
User Manual, 35, 39
Help, 24
Packages, 22, 24, 33, 40
Settings, 46
 Add Server, 48
 Auto Configure Server, 48
 McMC Parameters, 24, 46, 48
 Min Annealing Steps, 48, 48
 Port number, 48
 Preferences, 49, 63
 Remove Server, 48, 49
 Repetitions, 46, 48
 Server Name, 48
 Server Setup, 24, 26, 48
 Set Window Size, 49
 Simulations, 46, 48
 View Server Installation Info, 48, 49
Spectroscopy fid, 36
Utilities, 24, 50
 Memory Monitor, 50
 Software Updates, 50
 System Information, 50
WorkDir
 Creating, 22, 33, 46
 Deleting, 22, 33, 46
 List, 24, 46
 Loading, 46
 Name, 46
 Popup, 47
Model Comparison
 Big Peak/Little Peak Package, 211
 model orthonormal definition, 349
Mouse
 Control-left, 59
 Fid Data Viewer
 Left, 56
 Right, 56
 Shift-left, 59
Multiplets
 J-Coupling
INDEX

Center, 159
Primary, 159
Secondary, 159

Newton-Raphson, 171
Noise Standard Deviation, 64
Non-Linear Phasing Package, 405
Calculations, 407
Model Equation, 405, 407
Widgets
 Process, 409
 Write Ascii images, 409
 Write imaginary images, 409
Nuisance Parameter, 100, 115, 135
Nyquist Critical Frequency, 111, 127

orthonormal, 349
Outliers, 475
 Mean Parameter, 477
 Model, 475
 Prob Number of, 476
 Proposal, 475
 Red dot, 477
 Weighted Average, 477

Packages
 Analyze Image Pixel Unique, 423
 Bayes Analyze, 20, 43, 57, 155, 200
 Bayes Find Resonances, 21, 239
 Bayes Test Data, 427
 Behrens-Fisher, 21, 44, 311
 Big Magnetization Transfer, 20, 43, 259
 Big Peak/Little Peak, 20, 43, 207
 Binned Density Function Estimation, 355
 Binned Histograms, 21, 44
 Diffusion Tensors, 20, 40, 247
 Enter ASCII Model, 42
 Enter Ascii Model, 20, 329
 Enter ASCII Model Selection, 42
 Enter Ascii Model Selection, 20, 341
 Errors In Variables, 21, 44, 303
 Find Resonances, 43
 Given Exponential, 20, 40, 137
 Given Polynomial Order, 285
 Image Model Selection, 415
 Image Pixel, 21, 45, 411
 Image Pixel Model Selection, 22, 45
 Inversion Recovery, 20, 40, 151
 Kernel Density Function, 361
 Linear Phasing, 21, 44, 395
 Magnetization Transfer, 20, 42, 265
 Magnetization Transfer Kinetics, 20, 43, 275
 Maximum Entropy Method Of Moments, 21, 44, 373
 Metabolic Analysis, 21, 43, 219
 Non-Linear Image Phasing, 21, 45, 405
 Polynomials
 of Given Order, 21, 44
 of Unknown Order, 21, 44
 Test ASCII Model, 42
 Test Ascii Model, 20, 337
 Unknown Number of Exponentials, 20, 40, 143
 Unknown Polynomial Order, 293
 Parameter File, 42
 Number Of
 Abscissa, 458
 Data Columns, 458
 Model Vectors, 458
 Priors, 458
 Prior Probability, 459
 Amplitude, 460
 High, 459
 Low, 459
 Mean, 459
 NonLinear, 460
 Ordered, 460
 Parameter File, 459
 Peak, 459
 Prior Type, 460
 Standard Deviation, 459
 Phase Cycling, 162
 Plot Results Viewer, 71

Plot Results Viewer, 71

Plots
 Data and Model, 81
 Data, Model and Residuals, 81
 Expected Log Likelihood, 88
 Logarithm of the Posterior Probability, 91
 Maximum Entropy Histogram, 84
 Maximum Entropy Histograms, 83
 MCMC Samples, 83, 85
 Parameter Vs Posterior Probability, 86, 87
INDEX

Posterior Probability, 82
Posterior Probability Vs Parameter Value, 86
Residuals, 81
Scatter, 88, 91
png graphics, 59
Posterior Probability Vs Parameter Value, 86
Power Spectrum, 112, 123, 124
Prior Probabilities
 Bayes Phase, 399
 Big Magnetization Transfer, 261
 Big Peak/Little Peak, 212
 Diffusion Tensor, 253
 Enter Ascii Model, 331, 333
 Errors In Variables, 306
 Magnetization Transfer, 269
 Magnetization Transfer Kinetics, 279
 Non-Linear Phasing Package
 A, 408
 \(\theta \), 408
Prior Probability, 42, 65, 65
 Exponential, 67, 459
 Gaussian, 67, 104, 106, 459
 Jeffreys', 118
 Normalization Constant, 67
 Parameter, 68, 459
 Positive, 68, 460
 Uniform, 67, 103, 118, 459
Prior Viewer, 65, 93
Probabilities
 Expected Log Likelihood, 453
 Likelihood, 453
 Posterior, 453
 Prior, 453
Product Rule, 99, 119, 344, 439
Referencing
 Setting, 59
Reports
 Accepted File, 76
 McMC Values File
 General Description, 449
 Maximum Posterior Probability Simulations, 451
 Mean Values, 452
 Prior, 450
 Standard Deviations, 453
 Restoring An Analysis, 22, 35, 40
 ROI
 Expanding, 63
 Pixels, 63
 Point, 62
 Polygon, 62
 Square, 62
 Saving An Analysis, 35, 39
 Schuster Periodogram, 112, 123
 Screen Captures, 49
 Settings
 httpd server, 19
Software
 Bayes Account, 29
 CC, 29
 Fortran, 29
 Installation, 29
 javaws, 29
 OS requirements, 29
 root requirements, 30
Start Up Window, 22, 33
Steepest Descents, 173
Subdirectories, 469
 Bayes, 39
 Bayes.model.fid, 470
 Bayes.Predefined.Spec, 469
 Bayes.test.data, 39
 BayesAnalyzeFiles, 470
 BayesAsciiModels, 93, 469
 BayesOtherAnalysis, 35, 73, 470
 fid, 36, 53
 images, 36, 38, 39, 59, 470
 model.compile, 470
 plugins, 470
 Properties, 470
 Resources, 470
 Spectroscopic
 fid, 470
 Working Directories, 470
Subroutine Names, 464
Sufficient Statistics, 122
 Definition, 105
 Location Parameter, 108
Sum Rule, 100, 119, 344, 440
INDEX

Test Ascii Model Package, 337
 Reports
 Bayes Accepted, 339
 Mcmc Values, 339
 Using, 339, 428
Viewers
 Ascii Data, 337
 Fortran/C Models, 337
 Prior Probabilities, 337
Widgets
 Build, 337
 Find Outliers, 339
 System, 337
 User, 337
Thermodynamic Integration, 445, 449

Uninstall, 49
Unknown Number of Exponentials Package, 143
 Bayesian Calculations, 145
 Model Equation, 145
 Reports
 Bayes Accepted, 143, 148
 Condensed, 148
 Console Log, 148, 149
 McMC Values, 148
 Prob Model, 148
 Using, 143
Viewers
 File, 148
 Plot Results, 149, 150
 Prior, 143
 Text, 148
Widgets
 Constant, 143
 Find Outliers, 143
 Order, 143
Unknown Polynomial Order Package, 293
 Bayesian Calculations, 295
Files
 Ascii, 293
 Bayes Analyze, 293
 Peak Pick, 293
Model Equation, 295
Number of data sets, 293
Reports
 Bayes Accepted, 293, 299
Condensed, 299
Console Log, 298, 299
McMC Values, 299
Polynomial Order Plot, 301
Prob Model, 299
Using, 293
Viewers
 File, 299
 Text, 299
Widgets
 Set Order, 293, 294
 Unknown Order, 293, 294

Viewers, 27, 52
ASCII Data, 36
Ascii Data, 27, 53, 56, 63, 137, 265, 275, 285, 293, 311, 329, 337, 341
 Expanding Plot, 53
 Printing, 53
 Right click, 53
 Bayes Model, 160
 Fid Data, 27, 265
fid Data, 53, 56, 285, 293
 Auto Range, 59
 Autoscale, 56
 Clear Cursors, 56
 Clear Data, 57
 Copy, 59
 Cursor, 56
 Data Info, 57
 Expand, 56
 fn, 57
 Full, 56
 Get Peak, 56
 Phase Popup, 57
 Print, 59
 Properties, 59
 Referencing, 59
 Save As, 57, 59
 Set Preference, 57
 Units, 59
 Zoom, 59
Fid Model, 27
fid Model, 68, 186
 Build BA Model, 70, 159
 Data, 71
INDEX

Horizontal, 71
Model, 71
Overlay, 71
Report, 71
Residual, 71
Stacked, 71
Trace, 71
Vertical, 71

File, 28, 80
Fortran/C Models, 93, 330
Image, 27, 59, 415
 Autoset Grayscale, 61
 Copy Selected, 62
 Delete All, 61
 Delete Selected, 61
 Display Full, 61
 Element Selection, 60
 Export, 62
 Get Statistics, 64, 65
 Get Threshold Statistics, 65
 Grayscale, 63
 Image Selection, 60
 List, 59
 Load Selected Pixels, 61
 Max, 64
 Mean, 64
 Min, 64
 Right Click, 61
 RMS, 64
 Save Displayed, 62
 Save Statistics, 65
 Sdev, 64
 Set Image Area, 62
 Show Histogram, 61
 Show Info, 62
 Slice, 62
 Slice Selection, 60
 Statistics, 60
 Value, 64
 View Selected Pixels, 61
 Viewer Settings, 62
 Viewing, 62
 X Pos, 64
 Y Pos, 64
Plot Results, 28, 71
Prior, 27, 65

Prior Probabilities, 138, 312
Text, 141, 271, 281, 290, 309, 322, 335, 353
Text Results, 26, 28, 52, 74
Bayes Analyze, 176

Widgets
Analyze Image Pixel Package
 Build, 411
 Find Outliers, 411
 Get Statistics, 413
 System, 411
 User, 411
Analyze Image Pixel Unique Package
 Build, 423
 Find Outliers, 423
 Get Statistics, 425
 System, 423
 User, 423
Ascii Data Viewer
 Delete, 53
 Left-mouse, 53
 Right-mouse, 53
Bayes Analyze Package
 By, 158, 176
 First Point, 163
 From, 158, 176
 Imag Offset, 163
 Mark, 159
 Max New Res, 157
 New, 159
 Noise, 158
 Phase, 157
 Primary, 158
 Real Offset, 163
 Remove, 159
 Remove All, 159
 Reset, 159, 193
 Restore, 159
 Save, 159
 Secondary, 159
 Shim Order, 157, 163
 Signal, 158
 To, 158, 176
Bayes Find Resonances Package
 Build FID Model, 240, 241, 246
 Constant, 239, 242
INDEX

First Trace, 239
Last Trace, 239
Model Fid Number, 241
Phase Model, 239, 242
Bayes Metabolite Package
 Fid Model, 221
 Fid Model Viewer, 221
 Load System Metabolite File, 219
 Load System Resonance File, 221
 Load User Metabolite File, 219
 Load User Resonance File, 221
 Shift Left, 221, 222
 Shift Right, 221, 222
Bayes Test Data Package
 # Images, 427
 # Slices, 427
 Abscissa, 427
 ArrayDim, 427
 Build, 427
 Get Job, 428
 Max Value, 427
 Noise SD, 427
 Pe, 427
 Ro, 427
 Run, 428
 Set (server), 428
 Status, 428
 System, 427
 User, 427
Big Magnetization Transfer Package
 Find Outliers, 259
Big Peak/Little Peak Package
 Metabolite, 207
 Solvent, 207
Diffusion Tensor Package
 Abscissa Options, 248
 Find Outliers, 247
 Include Constant, 247, 248, 255
 Tensor Number, 247, 248, 255
 Use b Matrix, 255
 Use b Vectors, 254, 255
 Use g Vectors, 254
Enter Ascii Model Package
 Find Outliers, 329
 System, 329
 User, 329
Enter Ascii Model Selection Package
 Find Outliers, 341
 System, 341
 User, 341
Errors In Variables Package
 Given Errors In, 303
 Order, 303
Fid Data Viewer
 Autoscale, 56
 Clear Cursors, 56
 Cursor A, 56
 Cursor B, 56
 Delta, 56
 Display Type, 56
 Expand, 56
 Full, 56
 Get Peak, 56
 Left-mouse, 56
 Options, 57, 59
 Right-mouse, 56
 Trace, 70
Fortran/C Model Viewer
 Abscissa Spinner, 93
 Add Prior, 96
 Allow/Disallow Editing, 97
 Cancel and Exit, 96
 Changing Models, 94
 Code, 93, 94
 Compile Results, 97
 Compiling, 96
 Create/Edit Model, 93
 Data Columns Spinner, 93
 Derived, 96
 Edit/Create New Model, 93, 94
 High, 97
 Low, 97
 Mean, 97
 Model, 96
 Model Vectors, 93
 Name (parameter), 97
 Order, 97
 Parameter Type, 97
 Parameters button, 93, 94, 96
 Prior Type, 97
 Priors, 96
 Remove All (priors), 96
Remove Prior, 96
Remove Selected Model, 93
Save and Load, 96
Standard Deviation, 97

Given Exponential Package
 Constant, 137, 139
 Find Outliers, 137
 Order, 137, 139

Given Polynomial Order Package
 Set Order, 285

Global
 Bayes Find Outliers, 27
 Cancel, 26, 51
 Edit Servers, 26
 Get Job, 26, 51, 137, 143, 151, 155, 209, 221, 241, 247, 259, 267, 277, 285, 293, 305, 311, 331, 339, 343, 357, 364, 375, 413, 417, 425, 428
 Reset, 27
 Restore Analysis, 22
 Save, 27
 Set (server), 26, 52, 137, 143, 151, 155, 207, 221, 239, 247, 259, 265, 277, 285, 293, 305, 311, 329, 337, 343, 357, 364, 373, 413, 415, 425, 428

Image Model Selection Package
 System, 415
 User, 415

Image Viewer
 Element Number, 62
 Get Statistics, 64
 Get Threshold Statistics, 65
 Grayscale, 63
 Save Statistics, 65
 Slice Number, 62
 Value, 64
 X Pos, 64
 Y Pos, 64

Inversion Recovery Package
 Find Outliers, 151

Kernel Density Function Package
 Kernel Type, 364
 Output Size, 364

Linear Phasing Package
 cf, 403
 Display, 403
 Display Array Element, 403
 fn, 403
 fn1, 403
 Image Type, 402
 Load An Image, 402
 np, 403
 nv, 403
 Process, 403

Magnetization Transfer Kinetics Package
 Load, 275, 281
 Set, 275
 Uncertainty, 275

Magnetization Transfer Package
 Find Outliers, 265

MaxEnt Density Function Estimation Package
 Histogram Size, 373
 Order, 373

Non-Linear Phasing Package
 Process, 409
 Write Ascii images, 409
 Write imaginary images, 409

Prior Viewer
 High, 65
 Low, 65
 Mean, 65
 Prior Type, 67

Server
 Edit, 52
 Name, 26, 52, 52
 Set (server), 48
 Setup, 48, 52

Test Ascii Model Package
 Find Outliers, 339
 System, 337
 User, 337

Text Results Viewer
 Copy, 74
INDEX

Down arrow, 74
Enable Editing, 74
Print, 74
Save (a copy), 74
Save As, 74
Settings, 74
Up arrow, 74
Unknown Number of Exponentials Package
 Constant, 143
 Find Outliers, 143
 Order, 143
Unknown Polynomial Order Package
 Set Order, 293, 294
 Unknown Order, 293, 294
WorkDir
 Creating, 22, 33, 46
 Deleting, 22, 33, 46
 List, 24, 46
 Loading, 46
 Name, 46
 Popup, 47