Bayesian Data-Analysis Toolbox
Release 4.23, Manual Version 3

G. Larry Bretthorst
Biomedical MR Laboratory
Washington University School Of Medicine,
Campus Box 8227
Room 2313, East Bldg.,
4525 Scott Ave.
St. Louis MO 63110
http://bayes.wustl.edu
Email: gbretthorst@wustl.edu

September 18, 2018
Chapter 25

MaxEnt Density Function Estimation

The Maximum Entropy Method of Moments package, which we will refer to as the MaxEnt package, uses Bayesian Probability theory to compute the posterior probability for the number of Lagrange multipliers need to represent a density function given a set of samples. The input data to this package are the samples drawn from an unknown density function. For example, the samples generated from the run of a Markov chain Monte Carlo simulation might serve as input. Indeed this is exactly what happens when the “Get MaxEnt Histogram” button is activated. For plotting purposes the samples must be numbered, so the input data are a two column Ascii file.

25.1 Using The Package

To use this package, you must do the following:

Select the “MaxEnt Histogram” package from the Package menu.

Load two column Ascii data using the “Files” menu.

Set the number of Lagrange Multipliers to use in the analysis, this can be set to a number or to “Automatic.” The automatic feature will cause the package to compute the posterior probability for the number of Lagrange multipliers.

Set the number of bins in the histogram.

Review the prior probabilities for package. The MaxEnt Histogram package does not allow the user to set prior probabilities.

Select the server that is to process the analysis.

Check the status of the selected server to determine if the server is busy, change to another server.

Run the the analysis on the selected server by activating the Run button.
Figure 25.1: MaxEnt Density Function Estimation Package Interface

To use the Density Function Estimation package:

1. Load a 2 column ascii data set containing samples from the density function in question.

2. Specify the order of the moment expansion used to represent the density function, or leave this combo box set as automatic if the package is to determine the optimal expansion order.

3. Specify the size of the discrete density function using "Size" combo box.

4. Select the server to run the analysis.

5. Run the analysis using the "Run" button.

6. Use "Get Job" to get the results from the server.

Figure 25.1: This is the interface to the MaxEnt Density Function Estimation package. This package will compute the posterior probability for the Lagrange Multipliers using a Maximum Entropy method of moments calculation with a given or unknown number of multipliers. For more on the actual calculations and the widgets see the text.
Get the results of the analysis by activating the Get Job button. If the analysis is running, this button will return the Accepted report containing the status of the current run. Otherwise, it will fetch and display the results from the current analysis.

Output from the package consists of an McMC Values report, See Fig. 25.2. The First part of the McMC Values report, not shown, details the parameter settings that were input to the analysis. After the parameter file values, the McMC Values Report has the first few moments of the data. These moments show up in the Bayesian Calculation as sufficient statistics, i.e., the only functions of the data needed to perform the inference calculations. Next there is a bar chart of the posterior probability for the number of multipliers needed to represent the data. This is followed by the Lagrange multipliers that had maximum posterior probability. Finally, the Lagrange multipliers computed as the mean and standard deviations of the Markov chain Monte Carlo.

There is also a console log, Figure 25.3 which contains counts of the number of simulations having one, two, etc Lagrange multipliers. This report shows the convergence of the simulations on the number of multipliers. The MaxEnt Density Function Estimation package outputs a running count of the number of simulations having one, two, etc. Lagrange multipliers to the console. This count is the unnormalized posterior probability for the number of Lagrange multipliers as a function of the annealing parameters. When the annealing parameter is small, the simulations distribute themselves according the the prior probability for the number of multipliers, Eq.(25.19) below, which is an $\exp(-m)$. So if there are 33 simulations having 0 multipliers, just on the prior one would expect 12 having 1 and about 3 having 2. As one can see, at small values of the annealing parameter, the simulations are distributed according the prior probability for the model. As the annealing parameter increases the data become increasingly important and the by the time the annealing parameters has reached 0.015 the simulations are definitely heading for a model containing 2 multipliers.

In addition to the McMC Values report and the console log, The interface also makes considerable use of Ascii Plot Viewer. The package outputs a number of plots unique to this package. The first of these is the posterior probability for the number of multipliers, Fig. 25.4. The horizontal axis is the number of Lagrange Multipliers and the vertical axis is the probability for indicated number of multipliers. In this problem, this probability was zero everywhere except when the number of multipliers was two and then the probability was one.

There are three other plots unique to this package, the estimated density function with error bars, Fig 25.12, is discussed in the following sections. In this package the “Data, Model and Residuals” plot is a unique and we will discuss that plot shortly. Finally, a gray scale plot of the density function with the samples also plotted, Fig. 25.5. This scatter plot is meant to illustrate how well the actual samples conform to the inferred Maximum Entropy method of moments density function. The data used in this plot are from the Bayesian Analysis test data, the Histogram subdirectory and the HistFreqW data set. These data samples are from an analysis run using the Bayesian Analysis software and then viewing one of the output histograms and finally activating the “View Samples” button and saving the samples. This particular set of samples is vary Gaussian like. Consequently, there is a bright area in the center of Fig. 25.5 which tapers off symmetrically as you move away from the mean. The horizontal axis is just the repeat simulation number from the Markov chain Monte Carlo simulations. The vertical axis is the parameter value from that simulation.

The “Data, Model and Residual” plot in the Maximum Entropy method of moments package, Fig. 25.6, is unusual for the following reasons: in most packages the data are a continuous function of time and don’t actually change all that much from one point to the next. However, in this package the data are a random sample out of an unknown underlying density function and smooth continuous
Figure 25.2: The MaxEnt Method Of Moments McMC Values Report

McMC Values Report for the Density Function Estimation Package

<table>
<thead>
<tr>
<th>Number</th>
<th>Moment</th>
<th>Cumulant</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-3.19602056E+02</td>
<td>-3.19602056E+02</td>
</tr>
<tr>
<td>2</td>
<td>1.02145560E+05</td>
<td>8.56739829E-02</td>
</tr>
<tr>
<td>3</td>
<td>-3.26459857E+07</td>
<td>-1.43628567E-04</td>
</tr>
<tr>
<td>4</td>
<td>1.04337504E+10</td>
<td>-1.29381267E-04</td>
</tr>
<tr>
<td>5</td>
<td>-3.33465926E+12</td>
<td>-3.27148438E-02</td>
</tr>
<tr>
<td>6</td>
<td>1.06576843E+15</td>
<td>-2.33284416E+01</td>
</tr>
</tbody>
</table>

Probability For The Number of Multipliers

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Given 2 Multipliers

The parameters that Maximized the posterior probability are:

<table>
<thead>
<tr>
<th>Description</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>LogZ given 2</td>
<td>4.83560181E+00</td>
</tr>
<tr>
<td>Lagrange Multiplier 1</td>
<td>3.95924945E-01</td>
</tr>
<tr>
<td>Lagrange Multiplier 2</td>
<td>-3.82316203E+00</td>
</tr>
</tbody>
</table>

The expected parameter values given a 2 Multiplier Model:

<table>
<thead>
<tr>
<th>Parameter Description</th>
<th>Mean Value</th>
<th>Std. Dev.</th>
<th>Peak Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>LogZ given 2</td>
<td>4.83560181E+00</td>
<td>4.62284E-02</td>
<td>4.83560E+00</td>
</tr>
<tr>
<td>Lagrange Multiplier 1</td>
<td>3.95924945E-01</td>
<td>7.68460E-02</td>
<td>3.95925E-01</td>
</tr>
<tr>
<td>Lagrange Multiplier 2</td>
<td>-3.82316203E+00</td>
<td>1.24154E-01</td>
<td>-3.82316E+00</td>
</tr>
</tbody>
</table>

Figure 25.2: The MaxEnt Density Function Estimation Package outputs a standard McMC Values report. The First part of this report, not shown, details the parameter settings that were input to the analysis. After the parameter file values, the McMC Values Report has the first few moments of the data. These moments show up in the Bayesian Calculation as sufficient statistics, i.e., the only functions of the data needed to perform the inference calculations. Next there is a bar chart of the posterior probability for the number of multipliers needed to represent the data. This is followed by the Lagrange multipliers that had maximum posterior probability. Finally, the Lagrange multipliers computed as the mean and standard deviations of the Markov chain Monte Carlo samples.
Figure 25.3: The MaxEnt Density Function Estimation Package Console Log

Phase	Annl Parm	<Likelihood>	<StdDevLike>	0	1	2	3	4	5	6	7	8	...
Annealing	45E-06	-1.2847E+04	1.2319E+04	33	11	2	2	0	0	0	0	0	...
2	12E-05	-8.7576E+03	2.9464E+03	40	5	3	0	0	0	0	0	0	...
3	46E-05	-8.0843E+03	1.1540E+03	40	4	2	2	0	0	0	0	0	...
4	0.001	-7.8142E+03	1.3536E+02	45	2	1	0	0	0	0	0	0	...
5	0.008	-7.6652E+03	3.2444E+02	37	1	5	3	2	0	0	0	0	...
6	0.011	-7.4675E+03	4.3092E+02	27	1	3	5	2	0	0	0	0	...
7	0.013	-7.2545E+03	4.1095E+02	14	1	2	2	4	6	0	0	1	0
8	0.015	-7.1117E+03	3.7322E+02	9	0	2	7	5	5	0	0	1	1
9	0.018	-6.9616E+03	2.3343E+02	2	0	3	5	4	0	0	1	1	...
10	0.022	-6.8851E+03	6.3603E+01	0	0	4	0	5	3	0	0	0	0

Figure 25.3: The MaxEnt Density Function Estimation Package outputs a running count to the console. This count is the unnormalized posterior probability for the number of Lagrange multipliers as a function of the annealing parameters. When the annealing parameter is small, the simulations distribute themselves according to the prior probability for the number of multipliers, Eq. (25.19) below, which is an exp(−m). So if there are 33 simulations having 0 multipliers, just on the prior one would expect 12 having 1 and about 3 having 2. As one can see, at small values of the annealing parameter, the simulations are distributed according to the prior probability for the model. As the annealing parameter increases the data become increasingly important and by the time the annealing parameters has reached 0.015 the simulations are definitely heading for a model containing 2 multipliers.

The problem of density estimation occurs in many disciplines. For example, in MRI it is often necessary to classify the types of tissues in an image. To perform this classification one must first identify the characteristics of the tissues to be classified. These characteristics might be the intensity of a T1 weighted image and in MRI many other types of characteristic weightings (classifiers) may be generated. In a given tissue type there is no single intensity that characterizes the tissue, rather there is a distribution of intensities. Often this distributions can be characterized by a Gaussian,
Figure 25.4: The first output generated by the MaxEnt Density Function Estimation package is a plot of the posterior probability for the number of Lagrange Multiples needed to represent the Maximum Entropy density function. Here that probability indicates that the data are Gaussian, i.e., all probabilities were zero except the 2 Lagrange multiplier model and its probability was one.
Figure 25.5: The Model Averaged Density Function And Samples

After the model averaged density function, the package outputs a gray scale plot of the posterior probability and the samples from the Markov chain Monte Carlo simulations. The horizontal axis is just the repeat simulation number from the Markov chain Monte Carlo simulations. The vertical axis is that simulations corresponding parameter value. This plot is meant as a visual aid in seeing how well the estimated density function and the samples agree.
Figure 25.6: In addition to the contour/scatter plot, the Maximum Entropy Method Of Moments package outputs a plot of the data, the model and the residuals. Because the data are a random sample drawn from an unknown underlying density function, we have plotted a binned histogram of the data samples, red line. The blue line is the estimated density function inferred by this package. Finally, the difference between the binned histogram and the estimated density function are shown in green. Note the fit in the wings is always much smaller in the wings and increases until you get to the center of the estimated histogram.
but just as often it is much more complicated. Either way, estimating the distribution of intensities is an inference problem. In the case of a Gaussian distribution, one must estimate the mean and standard deviation. However, in the Non-Gaussian case the shape of the density function itself must be inferred. Three common techniques for estimating density functions are binned histograms [52, 23], kernel density estimation [53, 51], and the maximum entropy method of moments [58, 43]. In the following section, the maximum entropy method of moments will be reviewed. Some of its problems and conditions under which it fails will be discussed. Then in later sections, the functional form of the maximum entropy method of moments probability distribution will be incorporated into Bayesian probability theory. It will be shown that Bayesian probability theory solves all of the problems with the maximum entropy method of moments. One gets posterior probabilities for the Lagrange multipliers, and, finally, one can put error bars on the resulting estimated density function.

In the problem being formulated, one has a data set consisting of samples drawn from an unknown density function. Figure 25.7 displays an illustrative set of such data samples, these data samples (gray circles) were generated in a Markov chain Monte Carlo simulation; although the source of the data samples is unimportant for the problem considered here. The horizontal axis is sample number and the vertical axis is the sample value. There are 2500 samples shown in this figure. The problem is to estimate both the density function and the uncertainty in the estimated density function. Often such data samples can be characterized by a Gaussian density function, but just as often the density function is more complicated. Either way, estimating the distribution of intensities is an inference problem. In the case of the Gaussian, one must estimate both the mean and standard deviation. However, in the Non-Gaussian case, the shape of the density function itself must be inferred. Three common techniques for estimating density functions are binned histograms [52, 23], kernel density estimation [53, 51], and the maximum entropy method of moments [58, 43]. In the following section, the maximum entropy method of moments will be reviewed and some of its problems and conditions under which it fails will be discussed. Then in the following sections, the functional form of the maximum entropy method of moments probability distribution will be incorporated into Bayesian probability theory. Because the resulting Bayesian calculations never solve for the Lagrange multipliers, probability theory never encounters the difficulties involved in solving the maximum entropy method of moments functional equations. As a Bayesian calculation, one gets posterior probabilities for both the number and values of the Lagrange multipliers as well as error bars on the resulting density function. The solid line in Fig. 25.7 is an example of the estimated density function with error bars generated using the techniques and procedures described in this paper.

25.3 Review of The Maximum Entropy Method Of Moments

Claude Shannon [58] derived the Shannon entropy as a measure of the information content of a discrete probability distribution. If this discrete probability distribution is represented by \(f_j \), then the Shannon entropy, \(S \), is given by

\[
S = -\sum_{j=1}^{n} f_j \log(f_j) \quad (0 \leq f_j \leq 1)
\]

where \(n \) is the number of discrete probabilities in the distribution. The entropy \(S \) is a measure of the information content of a probability distribution. It reaches its maximum value when all \(f_j = 1/n \).
Figure 25.7: In the density estimation problem addressed here, one as a set of samples (open circles) drawn from some unknown density function and one wishes to infer the distribution of the samples (solid line with error bars). This density function was estimated using Bayesian probability theory to determine what probabilities must be assigned. The maximum entropy method of moments was then used to assign the indicated probabilities. Finally, a Markov chain Monte Carlo simulation was used to draw samples from the posterior probability for the density function, see the text for the details.
and $S = \log(n)$, and it reaches its minimum value when one of the $f_j = 1$, and then $S = 0$. Thus the Shannon entropy maps discrete probability distributions onto the interval $0 \leq S \leq \log(n)$, with $S = \log(n)$ the completely uninformative state, and $S = 0$ the state of certainty. Everything in between represents increasing knowledge for decreasing entropy.

After deriving the entropy function, Shannon proceeded to use the entropy function as a way of assigning maximally uninformative probability distributions that are consistent with some given prior information. In the maximum entropy method of moments, the Shannon entropy is constrained by the power moments. Suppose the probabilities f_j are defined on a set of discrete points x_j. In this case, the expected value of the power moments is given by

$$\langle x^k \rangle = \sum_{j=1}^{n} x_j^k f_j \quad (k = 0, 1, \ldots, m) \quad (25.2)$$

where $k = 0$ is the normalization constraint. Because this is an equality, one can move the sum to the left-hand side of the equation, and because this equation is equal to zero one can multiply through by a constant, called a Lagrange multiplier, and the equation will still be zero:

$$\lambda_k \left[\langle x^k \rangle - \sum_{j=1}^{n} x_j^k f_j \right] = 0. \quad (25.3)$$

Additionally, if one has more than one constraint, one can sum over the constraints and the sum is still zero:

$$\sum_{k=0}^{m} \lambda_k \left[\langle x^k \rangle - \sum_{j=1}^{n} x_j^k f_j \right] = 0. \quad (25.4)$$

Because this equation is zero, it can be added to the Shannon entropy without changing its value:

$$S = -\sum_{j=1}^{n} f_j \log(f_j) + \sum_{k=0}^{m} \lambda_k \left[\langle x^k \rangle - \sum_{j=1}^{n} x_j^k f_j \right]. \quad (25.5)$$

To assign numerical values to the f_j, Eq. (25.5) is maximized with respect to variations in the f_i. The resulting equations can be solved for the functional form of the probability. Taking the derivative with respect to f_i and solving, one obtains:

$$f_i = Z(m, \lambda)^{-1} \exp \left\{ \sum_{k=1}^{m} \lambda_k x_i^k \right\} \quad (25.6)$$

where $Z(m, \lambda)$ is a normalization constant that is a function of both the number of Lagrange multipliers and their values. This equations gives the functional form of the maximum entropy method of moments probability distribution in terms of the Lagrange multipliers λ_j, but one must also satisfy the constraints, namely:

$$\langle x^k \rangle = \sum_{i=1}^{n} x_i^k f_i \quad (k = 1, \ldots, m). \quad (25.7)$$

Equations (25.6) and (25.7) are a system of coupled nonlinear equations for the Lagrange multipliers. To solve for the values of the Lagrange multipliers that maximize the entropy, one typically uses
Figure 25.8: The First 10 Power And Central Moments

<table>
<thead>
<tr>
<th>Moment</th>
<th>Power</th>
<th>Central</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9.96127964E-01</td>
<td>0.00000000E+00</td>
</tr>
<tr>
<td>2</td>
<td>9.92317063E-01</td>
<td>4.61424576E-05</td>
</tr>
<tr>
<td>3</td>
<td>9.88566722E-01</td>
<td>1.95337184E-08</td>
</tr>
<tr>
<td>4</td>
<td>9.84876378E-01</td>
<td>6.64319953E-09</td>
</tr>
<tr>
<td>5</td>
<td>9.81245478E-01</td>
<td>1.06175263E-11</td>
</tr>
<tr>
<td>6</td>
<td>9.77673479E-01</td>
<td>1.64171891E-12</td>
</tr>
<tr>
<td>7</td>
<td>9.74159848E-01</td>
<td>4.09097233E-15</td>
</tr>
<tr>
<td>8</td>
<td>9.70704063E-01</td>
<td>5.63247606E-16</td>
</tr>
<tr>
<td>9</td>
<td>9.67305611E-01</td>
<td>1.15656817E-18</td>
</tr>
<tr>
<td>10</td>
<td>9.63963991E-01</td>
<td>2.38918537E-19</td>
</tr>
</tbody>
</table>

Figure 25.8: The first 10 power and central moments computed from the samples shown in Fig. 25.7.

A Newton-Raphson [50] searching algorithm. This searching algorithm Taylor expands Eq. (25.5) about the current estimated values of the Lagrange multipliers to second order, and then solves for the values of the change in Lagrange multipliers that makes the derivatives go to zero. The procedure must be iterated a few times and, when it converges, it typically converges quadratically.

To make this more concrete, suppose one computes the first 10 moments, of the samples shown in Fig. 25.7 and uses them in a maximum entropy method of moments calculation. What would happen to the maximum entropy distribution as more and more moments are incorporated into the calculation? The first 10 moments are shown in Fig. 25.8. Two sets of moments are shown, the power moments and the central moments. The power moments are given by

\[
\langle \text{Power Moment } k \rangle = \frac{1}{N} \sum_{i=1}^{N} d_i^k
\]

(25.8)

and the central moments are given by

\[
\langle \text{Central Moment } k \rangle = \frac{1}{N} \sum_{i=1}^{N} (d_i - \bar{d})^k
\]

(25.9)

where \(N \) is the total number of data values and \(\bar{d} \) is the mean data value.

If one incorporates the power moments one at a time into a maximum entropy method of moments calculation, the distributions shown in Fig. 25.9 result. The flat line marked with inverted triangles is the zeroth moment, i.e., a uniform distribution. The tilted line marked with closed triangles is an exponential distribution, and because the samples are far from exponentially distributed, this distribution is almost a uniform distribution. Finally, the remaining curves (solid unmarked lines) are the maximum entropy method of moments distributions corresponding to power moments two through seven. Note that these distributions are nearly identical, differing only near the peak values.

In Fig. 25.8, a total of 10 moments were given, however, in Fig. 25.9 only eight maximum entropy method of moment distributions are shown, corresponding to \(k = 0, 1, \ldots, 7 \). The reason for this is that the numerical calculation failed to converge when more than the 7 nontrivial moments
Figure 25.9: The maximum entropy moment distributions as a function of increasing numbers of moments. The flat line with open triangles is a normalized uniform density resulting from using only the zeroth moment. When the first moment is incorporated (line with closed triangles), not much changes because an exponential distribution cannot represent the distribution of samples shown in Fig. 25.7. However, for second and higher moments (dotted unmarked lines) all of the maximum entropy method of moments distributions closely resemble each other with only minor variations. Only density functions corresponding to moments zero through 7 are shown, the numerical algorithm failed to converge for power moments greater than 7.
were incorporated into the calculation. This is typical of the numerical calculations used in solving maximum entropy method of moments problems. Above some number of moments, the searching algorithm fails to converge or the numerical values of the moments were incompatible and no maximum entropy solution exists, see Meed and Papanicolaou [43] for the conditions under which the maximum entropy method of moments can fail.

This completes this review of the maximum entropy method of moments. Here is a short list of some of the problems with this technique:

1. The maximum entropy method of moments did not use the data samples shown in Fig. 25.7; rather one must compute a number of moments from the samples and use these moments in the calculations. From a Bayesian standpoint this is a rather ad hoc thing to do and has no justification whatsoever. By its very nature, Bayesian probability theory uses the raw data; not the moments, and if the moments are needed, they will show up automatically, they won’t have to be artificially forced into the problem.

2. There is no way to determine how many moments, Lagrange multipliers, are needed. That is to say, the maximum entropy method of moments has an arbitrary component to it: one must guess the number of moments, or simply continue adding moments until the procedure fails.

3. There is no way to consistently find the maximum entropy method of moments solution. From a finite data sample, the moments can be mutually incompatible and, consequently, no solution may exist [43]. And even if the maximum entropy solution exists, searching algorithms such as Newton-Raphson, which is commonly used on this problem [43, 50], may not be able to find it.

4. There is no way to put error bars on the Lagrange multipliers. Because the maximum entropy method of moments picks out an extremum, the question of putting error bars on the Lagrange multipliers almost does not make sense. After all, maximum entropy picks out a single point. Nonetheless, from a Bayesian perspective, for a finite amount of data one should be able to put error bars on the multipliers, or, better yet, compute the posterior probability for the Lagrange multipliers given the data and the prior information.

5. The same comments apply to the assigned density function. Because the maximum entropy method of moments picks out a single value, there is no way to determine how uncertain one is of the estimated density function. As far as maximum entropy is concerned, there is only a single density function. But from a Bayesian standpoint, this is simply false. From a finite sample, probability theory would never pick out a single density function; rather, probability theory will indicate a range of values that the density function could take on that are consistent with the available data and prior information.

When the maximum entropy method of moments works, it gives a good representation of the underlying density function that quickly converges as a function of the number of constraints (moments). However, the maximum entropy method of moments is not a Bayesian techniques: it does not use the raw data, there is no way to determine how uncertain one is of the resulting density function, and it is not uncommon for the maximum entropy method of moments to fail because the set of moments are incompatible. A true Bayesian calculation does none of these things. It would always give a results in terms of the calculated posterior probability distributions for the number and value of the Lagrange multipliers, and it would do this even if the calculated moments are incompatible.
25.4 The Bayesian Calculations

To resolve these difficulties, Bayesian probability theory will be applied to compute the posterior probability for the number of Lagrange multipliers. The posterior probability for the number of multipliers \(m \) given all of the data \(D \) is computed using Bayes’ theorem [1]:

\[
P(m|D) = \frac{P(m|I)P(D|mI)}{P(D|I)} \tag{25.10}
\]

where \(P(m|I) \) is the prior probability for the number of Lagrange multipliers, \(P(D|mI) \) is a marginal direct probability for the data given the number of multipliers. Finally, \(P(D|I) \) is a normalization constant and is computed using the sum and product rules of probability theory:

\[
P(D|I) = \sum_{m=1}^{\nu} P(D|mI) = \sum_{m=1}^{\nu} P(m|I)P(D|mI) \tag{25.11}
\]

where \(\nu \) is some given upper limit on the number of Lagrange multipliers.

In Eq. (25.10), the Lagrange multipliers do not appear. Consequently, Eq. (25.10) is a marginal posterior probability where the Lagrange multipliers have been removed from the right-hand side using the sum rule of probability theory:

\[
P(m|DI) \propto P(m|I) \int P(D|\lambda_1 \cdots \lambda_m|mI)d\lambda_1 \cdots d\lambda_m \tag{25.12}
\]

where \(P(D|\lambda_1 \cdots \lambda_m|mI) \) is the joint probability for all of the data \(D \equiv \{d_1, \ldots, d_N\} \) and the Lagrange multipliers given the number of multipliers \(m \) and the prior information \(I \). Note that the normalization constant has been dropped, the equal sign has been replaced by a proportionality sign, and this probability distribution must be normalized at the end of the calculation. Applying the product rule to the right-hand side of this equation results in:

\[
P(m|DI) \propto P(m|I) \int P(\lambda_1 \cdots \lambda_m|mI)P(D|\lambda_1 \cdots \lambda_m I)d\lambda_1 \cdots d\lambda_m. \tag{25.13}
\]

Assuming logical independence of the data samples, the right-hand side of this equation can be factored:

\[
P(m|DI) \propto P(m|I) \int P(\lambda_1 \cdots \lambda_m|mI) \prod_{i=1}^{N} P(d_i|\lambda_1 \cdots \lambda_m I)d\lambda_1 \cdots d\lambda_m. \tag{25.14}
\]

Finally, assuming logical independence of the Lagrange multipliers, \(P(\lambda_1 \cdots \lambda_m|mI) \) may also be factored to obtain

\[
P(m|DI) \propto P(m|I) \int \left[\prod_{j=1}^{m} P(\lambda_j|mI) \right] \left[\prod_{i=1}^{N} P(d_i|\lambda_1 \cdots \lambda_m I) \right] d\lambda_1 \cdots d\lambda_m. \tag{25.15}
\]

The direct probability for the data given the number of Lagrange multipliers and their values, \(P(d_i|m\lambda_1 \cdots \lambda_m I) \), is the maximum entropy method of moments probability given in Eq. (25.6).
Substituting Eq. (25.6) into Eq. (25.15) one obtains

\[P(m|DI) \propto P(m|I) \int \left[\prod_{j=1}^{m} P(\lambda_j|mI) \right] \left[\prod_{i=1}^{N} \frac{1}{Z(m, \lambda)} \exp \left\{ \sum_{k=1}^{m} \lambda_k d_i^k \right\} \right] d\lambda_1 \cdots d\lambda_m \]

(25.16)

as the posterior probability for the number of Lagrange multipliers given the data and the prior information. Expanding the products gives

\[P(m|DI) \propto P(m|I) \int \frac{P(\lambda_1|I) \cdots P(\lambda_m|I)}{Z(m, \lambda)^N} \exp \left\{ \sum_{k=1}^{m} \sum_{i=1}^{N} \lambda_k d_i^k \right\} d\lambda_1 \cdots d\lambda_m, \]

(25.17)

and evaluating the sum over the data values results in

\[P(m|DI) \propto P(m|I) \int \frac{P(\lambda_1|I) \cdots P(\lambda_m|I)}{Z(m, \lambda)^N} \exp \left\{ \sum_{k=1}^{m} \lambda_k N \bar{d}^k \right\} d\lambda_1 \cdots d\lambda_m \]

(25.18)

where the \(\bar{d}^k \) are the power moments of the samples defined in Eq. (25.7).

The functional form of Eq. (25.18) is interesting in several ways. First, the data do not appear in this equation, rather there are \(m \) power moments of the data. These power moments are called sufficient statistics. They are sufficient in that they are the only quantities needed for the inference; the data itself are irrelevant. Only maximum entropy distributions have sufficient statistics. In this case, the constraint functions are simple polynomials, \(x^k \), so the sufficient statistics are the power moments calculated using the data samples. Second, every term in the sum in Eq. (25.18) is of the form \(\lambda_k N \bar{d}^k \), which can always be driven to infinity by choosing \(\lambda_k \) suitably. So one might think that this could not possibly be a well-behaved probability density function. However, this is not the case, because this is a fully normalized probability density function and the normalization constant is a function of both the number of Lagrange multipliers and their values. Any attempt to drive the exponent to infinity simply results in a larger normalization constant that keeps everything finite.

The only remaining steps in the calculation are to assign the prior probabilities appearing in Eq. (25.18) and to perform the indicated calculations. In the numerical calculations that are done, all probability assignments are discretely normalized to ensure that one has probability distributions, not density functions. Probability density functions can be larger than one, and because of the functional form of the posterior probability, Eq. (25.18), this is not allowed. The prior probabilities were assigned as follows. The prior probability for the number of multipliers, \(P(m|I) \), was assigned using an exponential prior probability:

\[P(m|I) \propto \frac{1}{Z_m(\nu)} \exp \left\{ -m \right\} \quad (1 \leq m \leq \nu) \]

(25.19)

were the \(\nu \) is the upper limit on the number of moments and expresses a belief that the number of multipliers should be small, rather than large. The normalization constant \(Z_m(\nu) \) was computed as

\[Z_m(\nu) = \sum_{m=1}^{\nu} \exp \left\{ -m \right\} = \frac{1 - e^{-\nu}}{e - 1} \]

(25.20)

and ensures that the prior probability for the number of Lagrange multipliers is normalized and always less than one.
The prior probability for each Lagrange multiplier was assigned using a Gaussian of the form:

$$P(\lambda_j | I) \propto \frac{1}{Z_{\lambda j}} \exp \left\{ -\frac{\lambda_j^2}{2\sigma^2_{\lambda}} \right\} \quad (\lambda_{\text{Min}} \leq \lambda_j \leq \lambda_{\text{Max}})$$ \hspace{1cm} (25.21)

where σ_λ is the standard deviation of this Gaussian, λ_{Min} is the smallest value the Lagrange multipliers can take on, λ_{Max} is the largest, and $Z_{\lambda j}$ is the normalization constant for the prior probability for the jth Lagrange multiplier. The standard deviation, σ_λ, was set so that the prior decayed to 7 e-foldings at λ_{Min} and λ_{Max}. This prior probability distribution was normalized discretely. To compute the normalization constant, the prior range was divided into 500 intervals and then summed. In this sum, the kth discrete value of the jth Lagrange multiplier is given by

$$\lambda_{jk} = \lambda_{\text{Min}} + d\lambda (k-1) \quad (1 \leq k \leq 501)$$ \hspace{1cm} (25.22)

with

$$d\lambda = \frac{(\lambda_{\text{Max}} - \lambda_{\text{Min}})}{500}. \hspace{1cm} (25.23)$$

The normalization constant was computed as

$$Z_{\lambda j} = \sum_{k=1}^{501} \exp \left\{ -\frac{\lambda_{jk}^2}{2\sigma^2_{\lambda}} \right\}. \hspace{1cm} (25.24)$$

It is this normalization constant that is used in Eq. (25.21).

The last normalization constant that must be set is $Z(m, \lambda)$, the normalization constant associated with the maximum entropy method of moments probability density function. Again, this probability density function was discretely normalized so that a probability distribution was actually used in the numerical calculations. Thus, all values computed using Eq. (25.6) will strictly be probabilities, not probability densities. The normalization constant is computed using the range of the data samples. If the minimum and maximum data value are represented by d_{Min} and d_{Max} respectively, then

$$x_i = d_{\text{Min}} + dx (k-1) \quad (1 \leq k \leq 501)$$ \hspace{1cm} (25.25)

with

$$dx = \frac{(d_{\text{Max}} - d_{\text{Min}})}{500} \hspace{1cm} (25.26)$$

and

$$Z(m, \lambda) = \sum_{i=1}^{501} \exp \left\{ \sum_{k=1}^{m} \lambda_k x_i^k \right\}. \hspace{1cm} (25.27)$$

Again, this normalization constant ensures that Eq. (25.6) is a probability distribution and sums to one on the x_i. The posterior probability for m is obtained by substituting Eqs. (25.19, 25.21 and 25.27) into Eq (25.18) to obtain:

$$P(m|DI) \propto \int \frac{\exp \left\{ -m \right\}}{Z_m Z_{\lambda} Z(m, \lambda)^N} \exp \left\{ -\sum_{j=1}^{m} \frac{\lambda_j^2}{2\sigma^2_{\lambda}} \right\} \exp \left\{ \sum_{k=1}^{m} \lambda_k N d_k^k \right\} d\lambda \hspace{1cm} (25.28)$$
where \(d\lambda \) means the integral over all \(m \) Lagrange multipliers. Equation (25.28) is the posterior probability for the number of Lagrange multipliers.

In addition to computing the posterior probability for the number of Lagrange multipliers, the posterior probability for \(\lambda_j \) given the number of Lagrange multipliers and the data is also needed. However, this calculation is so similar to the one just given that it will not be repeated. Rather, note that the integrand of Eq. (25.28) is the joint posterior probability for all of the parameters, \(P(m\lambda_1 \cdots \lambda_m | DI) \), and can be used to generate the posterior probability for any one of the Lagrange multipliers by applying the sum rule of probability theory:

\[
P(\lambda_j | mDI) \propto \int \frac{1}{Z^m Z(m, \lambda)^m} \exp \left\{-\sum_{j=1}^{m} \frac{\lambda_j^2}{2\sigma^2}\right\} \times \exp \left\{\sum_{k=1}^{m} \lambda_k N d_k\right\} d\lambda_1 \cdots d\lambda_{j-1} d\lambda_{j+1} \cdots d\lambda_m.
\]

To arrive at this result, eliminated the prior probability for the number of Lagrange multipliers, since this probability is a constant when \(m \) is given. Additionally, all the Lagrange multipliers, except \(\lambda_j \), were removed using marginalization. This results in the posterior probability for the single remaining Lagrange multiplier, \(\lambda_j \).

A Markov chain Monte Carlo simulation with simulated annealing was used to draw samples from the integrand of Eq. (25.28) using the data shown in Fig. 25.7. In a typical run, 50 simulations are run simultaneously and in parallel, and 50 samples from each simulation are gathered, so there are 2500 total Markov chain Monte Carlo samples for the number of multipliers and their values. Monte Carlo integration was then used to compute the posterior probability for the number of Lagrange
multipliers given the data and the prior information. The posterior probability for the number of multipliers is shown in Fig. 25.10(A). Note that this posterior probability indicates that only two Lagrange multipliers are needed to represent the density distribution of the data. Consequently, Bayesian probability theory strongly indicates that the data shown in Fig. 25.7 are Gaussianly distributed.

After determining that the number of Lagrange multipliers was two, the joint posterior probability for the two Lagrange multipliers was sampled. These Markov chain Monte Carlo samples are shown in Fig. 25.10(B). Each dot in this figure is one sample from one of the 2500 Markov chain Monte Carlo simulations. By using Monte Carlo integration, one can obtain samples from the posterior probability for each Lagrange multiplier, Fig. 25.11. These one dimensional samples can be used to compute mean and standard deviation estimates of the Lagrange multipliers. However, a means of visually displaying the samples is also desirable. A binned histogram could be used, but even with 2500 samples such histograms are often very rough. Consequently, the program that implements this calculation uses a Gaussian kernel density estimation procedure to generate its histograms.

The 51 bin histograms shown in Fig. 25.11 were generated using a Gaussian kernel that decays to 3 e-foldings over 6 bins. This kernel was centered on each Markov chain Monte Carlo sample and then added to the histogram by evaluating the kernel at each value of the histogram’s x-axis. As a consequence, each of the 2500 samples was smeared out over a 6 bin interval using the Gaussian kernel. Finally, the normalization is set so that the sum over the 51 bins was one. As can be seen from this figure, Lagrange multiplier 1 is estimated to be approximately 0.65 ± 0.08 and multiplier number 2 is approximately −4.4 ± 0.14. Note that these probability density functions for the Lagrange multipliers are not very compact, and the standard deviation of these probability density functions are 0.08 and 0.14, respectively. Given that there are about 2000 data values and the data are noiseless, this is not a very good determination. Thus, while maximum entropy gives one Lagrange multiplier for each moment, it does not indicate how uncertain one is of these values and the uncertainty in the value of the Lagrange multipliers can be large. In the example given here, they have a relative uncertainty of about 20% for multiplier 1 and about 7% for multiplier 2.

Each of the 2500 Markov chain Monte Carlo samples of the Lagrange multipliers shown in
Figure 25.12: The model averaged density function with error bars. A Markov chain Monte Carlo simulation was used to draw samples from the joint posterior probability for the number of multipliers and their values. A total of 2500 samples were drawn. Each sample corresponds to a density function that is consistent with the data and the prior information. The solid line in this plot is the mean value of the 2500 density function estimates and the error bars are the standard deviation of the estimates.

Fig. 25.10(B) corresponds to a density function estimate that is consistent with the given data and prior information. One can use the Lagrange multiplier samples to compute the unknown density function. For example, one could compute the density function at the values specified by Eq. (25.25). For each x_i, there are 2500 samples of the density function. For a given x_i, one can compute the mean and standard deviation. This mean and standard deviation are shown in Fig. 25.12. At each point in this plot, the mean is the solid line and the standard deviation is shown as the error bar. These error bars are a direct measure of the amount of uncertainty in the Lagrange multipliers and thus directly reflect the uncertainty in the underlying density function.

25.5 Summary and Conclusions

The maximum entropy method of moments is fraught with difficulties. It is computationally unstable. One cannot use the raw data; rather one must compute an unknown number of moments using the data and then use those moments in the maximum entropy method of moments. There is
no way to determine how many moments are needed and, finally, there is no way to determine how uncertain one is of the estimated density function.

However, if one uses the maximum entropy formalism to assign the probability for the data given both the number of moments and the value of the Lagrange multipliers, then maximum entropy will assign Eq. (25.6) as the functional form of the probability distribution. One can then use the rules of Bayesian probability theory to compute the posterior probability for the parameters, including the number of Lagrange multipliers. Because the Bayesian calculations are all computed using a forward calculation, i.e., given the values of the parameters, compute a probability, and never attempt to solve for the values of the multipliers that satisfy the constraints, Eq. (25.7), one never runs into computational difficulties. Additionally, the final results are all expressed as probability distributions, so one always knows how uncertain one is of all of the parameters. Finally, because the calculations are implemented using a Markov chain Monte Carlo simulation, one has samples from the joint posterior probability for all of the parameters appearing in Eq. (25.28). These samples can be used to form a mean and standard deviation estimate of each point in the unknown density function, thus putting error bars on the unknown density functions value.
Bibliography

[45] Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth, Augusta H. Teller, and Edward Teller (1953), “Equation of State Calculations by Fast Computing Machines,” Journal of Chemical Physics. The previous link is to the American Institute of Physics and if you do not have access to Science Sitations you many not be able to retrieve this paper.

Index

A_k definition, 349
$H_{jk}(t_i)$ definition, 349
λ_ℓ definition, 349
g_{jk} eigenvalue, 349

Abscissa, 437
Computational, 436
Generating, 427
Loading, 39
Multicolumn, 437
Number Of Columns, 458
Total Data Values, 456

Aliases, 113, 126
Amplitudes orthonormal definition, 349

Analyze Image Pixel Package, 411
Modification History, 413
Phased Images, 397
Reports
Bayes Accepted, 413
Using, 413
Viewers
Fortran/C Models, 423
Image, 423
Prior Probabilities, 425
Widgets
Build, 423
Find Outliers, 423
Get Statistics, 425
System, 423
User, 423

Ascii Data Viewer, 53
Assigning Probabilities, 118

Bandwidth, 111, 127
Bayes Analyze Package, 155
Levenberg-Marquardt, 171
Step, 194
Algorithm, 175
Amplitudes, 197, 198
Bayes Model, 159, 161
Bayesian Calculations, 167
Bruker, 162
Build BA Model, 159
Covariance, 174
Default Parameters Settings, 155
Error Messages, 200
Fid Model Viewer, 160
Interface, 156
Likelihood
Gaussian, 158
Student’s t-distribution, 158
INDEX

Log File, 193, 195
Lorentzian lineshape, 161
Marking Resonances, 157
Model
\(J_0 \), 165
\(J_p \), 165
\(J_s \), 165
Amplitude, 163, 164
Bessel Function, 163
Constants Models, 157
Correlated, 157, 162, 164
Equation, 161, 164, 164
First Order Phase, 157, 162, 164
First Point, 162, 164
Gaussian, 163
Imaginary Constant, 164
Multi-Exponential, 163
Multiple Data Sets, 165
Multiplet Order, 164
Multiplet Orders, 164
Multiplets, 162
Multiplets of Multiplets, 164
Non-Lorentzian, 163
Offsets, 162
Real Constant, 164
Relative Amplitude, 164–166
Resonance Frequency, 165
Shim Order, 163
Shimming, 166
Shimming Order, 164
Uncorrelated, 157, 162, 164
Zero Order Phase, 157, 162, 164
Model Interface, 160
Multiplets, 158
Newton-Raphson, 171
Noise File, 158
Noise Standard Deviation, 158
Outputs
Bayes.accepted File, 177
bayes.log.mnn File, 177, 193, 193
bayes.model.mnn File, 177, 185, 197, 197
bayes.noise File, 180
bayes.noise.mnn File, 158, 180
bayes.output.mnn File, 176, 186, 186
bayes.params File, 176, 177
bayes.params.mnn File, 176, 177, 177
bayes.probabilities.mnn File, 177, 190, 190
bayes.status.mnn File, 177, 196, 200
bayes.summary1.mnn File, 177, 198, 198
bayes.summary2.mnn File, 177, 199, 199
bayes.summary3.mnn File, 177, 200, 200
Global Parameters, 182, 183
Model File, 184
Probabilities file, 191
Zero Order Phase, 182
Parameter File
Activate Shims, 180
Analysis Directory, 178
By Fid, 181
Data Type, 180
Default Model, 181
Directory Organization, 180
Fid Model Name, 178
File Version, 178
First Fid, 181
First Order Phase, 180, 183
Imaginary Constant, 184
Last Fid, 181
lh, 182
Maximum Candidates, 182
Maximum New Resonances, 182
Model Fid Number, 181
Model Name, 184
Model Names, 181
Model Number, 184
Model Points, 181
Multiplets of Multiplets, 185
Noise Start, 181
Numerical Parameters, 178
Output Format, 180
Prior Odds, 182
Procpar, 178
Real Constant, 184
Relative Amplitude, 183
Resonance Model, 185
Shim Order, 182
Spectrometer Frequency, 182
Text Parameters, 178
Total Complex Data Values, 181
Total Data Values, 181
Total Sampling Time, 182
True Reference, 182
INDEX

McMC Values, 238
Prob Model, 238

Viewers
Fid Data, 219
Fid Model, 221, 236
File, 222, 238
Metabolite, 221
Plot Results, 238
Text, 238

Widgets
Fid Model, 221
Fid Model Viewer, 221
Load System Metabolite File, 219
Load System Resonance File, 221
Load User Metabolite File, 219
Load User Resonance File, 221
Shift Left, 221
Shift Right, 221

Bayes Model, 159, 159
Bayes Test Data Package, 427

Parameters, 431

Reports
Bayes Accepted, 428
Condensed, 429
McMC Values, 429, 431–433

Viewers
Fortran/C Models, 427
Image, 428
Prior Probabilities, 427
Text Data, 430
Text Results, 429

Widgets
Images, 427
Slices, 427
Abscissa, 427
ArrayDim, 427
Build, 427
Get Job, 428
Max Value, 427
Noise SD, 427
Parameter Ranges, 428
Pe, 427
Ro, 427
Run, 428
Set (server), 428
Status, 428

Bayes.accepted
Body, 77
Header, 76

Behrens-Fisher Package, 311
Bayesian Calculations
Derived Probabilities, 320
Different Mean And Same Variance, 318
Different Mean And Variance, 319
Parameter Estimation, 321
Same Mean And Different Variance, 317
Same Mean And Variance, 315
Model Equation
Different Mean And Same Variance, 318
Different Mean And Variance, 319
Same Mean And Different Variance, 317
Same Mean And Variance, 315
Number of data sets, 311
Parameter Listing, 323

Prior Probabilities
Different Mean And Same Variance, 318
Different Mean And Variance, 319
Same Mean And Different Variance, 317
Same Means And Same Variance, 315

Reports
Bayes Accepted, 311, 322
Condensed, 322
Console Log, 322, 323
McMC Values, 322, 323
Prob Model, 322

Using, 311

Viewers
File, 322
Plot Results, 322, 324
Prior Probabilities, 311
Text, 322

Widgets
None, 311

Big Endian, 471, 473

Big Magnetization Transfer Package, 259
Bayesian Calculations, 259
Files
Bayes Analyze, 264
Fid, 263
Peak Pick, 262
Model Equation, 261
Number of data sets, 259
Prior Probabilities, 261
Reports
Bayes Accepted, 259, 262
Condensed, 262
Console log, 262
McMC Values, 262
Prob Model, 262
Using, 259
Viewers
Ascii Data, 259
File, 262
Prior Probabilities, 259
Text, 262
Widgets
Find Outliers, 259
Big Peak/Little Peak Package, 207
Bayesian Calculations, 209
Fid Analyzed, 207
Model Equation, 210
Metabolites, 209
Solvent, 210
Number of data sets, 207
Prior Probabilities
Metabolite, 207
Solvent, 207
Removing Resonances, 207
Reports
Bayes Accepted, 209, 216
Condensed, 216
Console log, 216
McMC Values, 216
Prob Model, 216
Using, 207
Viewers
File, 216
Model, 209
Plot Results, 216
Prior Probabilities, 207
Text, 216
Widgets
Metabolite, 207
Solvent, 207
Binned Density Function Estimation, 355
Binned Histogram Package
Reports
Bayes Accepted, 357
Viewers
Ascii, 355
Binned Histograms Package
Using, 357
Viewers
Prior Probabilities, 355
Bloch-McConnell Equations, 267, 277
Changing the Bayes Home Directory, 469
Compilers, 29
CC, 29, 455
Fortran, 29, 455
Correlations, 91
Diffusion Tensor Package, 247
Ascii File Formats, 247, 254, 255
Bayesian Calculations, 249
Prior Probabilities
Δ, 254
Γ, 254
δ, 254
σ, 253
Amplitudes, 253
Eigenvalues, 253
Euler Angles, 253
Likelihood, 253
Parameter, 254
Reports
Bayes Accepted, 247, 255
Condensed, 255
Console log, 255
McMC Values, 255
Prob Model, 255
Symmetries, 253
Using, 247
Viewers
File, 247, 255
Plot Results, 255
Prior Probabilities, 247, 253
Text, 255
Widgets
Abscissa Options, 248
INDEX

Find Outliers, 247
Include Constant, 247, 248, 255
Tensor Number, 247, 248, 255
Use b Matrix, 255
Use b Vectors, 255
Use g Vectors, 254

Discrete Fourier Transform, 110, 113, 123

Enter Ascii Model Package, 329
Bayesian Calculations, 332
Marginalization, 332
No Marginalization, 331
Fortran/C Models, 330, 335
Model Equation
Marginalization, 331
No Marginalization, 331
Output Names
Derived, 335
Parameters, 335
Reports
Bayes Accepted, 331, 335
Bayes Params, 335
Condensed, 335
Console log, 335
McMC Values, 335
Prob Model, 335
Using, 331
Viewers
Ascii Data, 329
File, 335
Fortran/C Models, 329
Plot Results, 335
Prior Probabilities, 329
Text, 335
Widgets
Build, 329
Find Outliers, 329
System, 329
User, 329

Enter Ascii Model Selection Package, 341
Bayesian Calculations
Marginalization, 346
No Marginalization, 344
Fortran/C Models, 341, 343, 353
Model Equation, 343
No Marginalization, 343

With Marginalization, 347

Output Names
Derived, 354
Parameters, 353
Reports
Bayes Accepted, 343, 353
Condensed, 353
Console log, 353
McMC Values, 353
Params File, 353
Prob Model, 353
Using, 343
Viewers
Ascii Data, 341
File, 353
Fortran/C Models, 341
Plot Results, 353
Prior Probabilities Not Used, 341
Text, 353
Widgets
Build Not Used, 341
Find Outliers, 341
System, 341
User, 341

Errors In Variables Package, 303
Ascii File Formats
Errors In X and Y Known, 303, 309
Errors In X Known, 303, 309
Errors In Y Known, 303, 309
Errors Unknown, 303, 309
Bayesian Calculations, 305
Data Error Bars, 303
Files
Ascii, 303
Bayes Analyze, 303
Peak Pick, 303
Model Equation, 305
Number of data sets, 303
Reports
Bayes Accepted, 305, 309
Condensed, 309
Console log, 309
McMC Values, 309
Prob Model, 309
Using, 305
Viewers
Ascii Data, 303
File, 309
Plot Results, 309
Text, 309
Widgets
Given Errors In, 303
Order, 303
Exponentials
Given Package, 137
Inversion Recovery Package, 151
Magnetization Transfer Package, 267
Unknown Number of Package, 143

Fid Data Viewer, 53
Fid Model Viewer, 68
File Format
Ascii, 436
File Viewer, 80
Files
4dfp, 59, 428, 430, 470, 471
Header, 473
Reading, 471
Abscissa, 39, 77, 470
afh, 53
ASCII, 35, 36
Ascii, 53, 54, 435
k-space, 437
Abscissa, 435, 436, 437
Data, 435
Image, 436
Bayes Analyze, 36
Bayes.accepted, 51, 76
Bayes.params, 76, 79
Bayes.prob.model, 447
BayesManual.pdf, 469
Condensed, 77, 78
Console.log, 76, 79, 465
dir.info, 470
fid, 470, 470
ASCII, 36
ffh, 56
Model, 68, 70
procpar, 470
Siemens Raw, 36
Siemens Rda, 36
Spectroscopic, 53
Varian fid, 36
Fortran/C Models, 42, 455, 457, 458, 465–467
Images
4dfp, 38
Binary, 38
Bruker 2dseq, 38
Bruker stack, 38
DICOM, 38
FDF, 38
Multi-Column Text, 38
Siemens IMA, 38
k-space
Text, 36
Varian fid, 36
mcmc.values, 76, 449
Model Listing, 77
prob.model, 76
procpar, 470
Raw, 36
RDA, 36
Statistics, 65
System.err.txt, 469
System.out.txt, 469
Varian fid, 36
WaterViscosityTable, 469
Fortran/C Model Viewer, 93
Popup Editor, 93
Fortran/C Models, 42, 330, 335, 353, 455
Abscissa, 463
Body, 463
Abscissa, 457
Declarations, 462
Derived Parameters, 457, 459, 463
Edit/Create New Model, 42, 455
I/O, 464
Marginalization, 464
\(G_j(\Omega, t_i) \), 464
Amplitude Range, 465
Example, 465, 466
Model Vectors, 465
Ordering Amplitudes, 465
Parameter File, 465, 467
Parameter Order, 465
Parameters, 465
Model Files, 455
Model Selection, 464
No Marginalization, 457
$S(t_i)$, 455
Example, 456
Parameter File, 458, 459, 465
Parameters, 463
Signal, 463
Subroutine Interface, 460
 Abscissa, 462
 Current Set, 460
 Derived Parameters, 461
 Maximum No Of Data Values, 461
 Number Of Abscissa Columns, 461
 Number Of Data Columns, 461
 Number Of Derived Parameters, 461
 Number Of Model Vectors, 461
 Number Of Parameters, 460
 Signal, 462
 Total Complex Data Values, 461
Subroutines and Functions, 464
Frequency Estimation, 114, 132

Given Exponential Package, 137
 Bayesian Calculations, 140
Files
 Ascii, 137
 Bayes Analyze, 137
 Peak Pick, 137
Model Equation, 139
Number of data sets, 139
Prior Probabilities, 139–141
Reports
 Bayes Accepted, 137, 141
 Condensed, 141
 Console log, 141
 McMC Values, 141
 Prob Model, 141
Symmetries, 141, 148
Using, 137
Viewers
 File, 141
 Plot Results, 141
 Prior Probabilities, 137, 139
 Text, 141
Widgets
Constant, 137, 139
Find Outliers, 137
Given Order, 27
Include Constant, 27
Order, 137, 139

Given Polynomial Order Package, 285
 Bayesian Calculations, 288
Files
 Ascii, 285
 Bayes Analyze, 285
 Peak Pick, 285
Gram-Schmidt, 287
Model Equation, 287
Number of data sets, 285
Prior Probabilities, 289
Reports
 Bayes Accepted, 285, 291
 Condensed, 291
 Console log, 291
 McMC Values, 291
 Prob Model, 291
Scatter Plots, 292
Using, 285
Viewers
 File, 290
 Plot Results, 291
 Text, 290
Widgets
 Set Order, 285

Histograms
 Binned, 381
 Kernel Density, 381

Image Model Selection Package, 415
Abscissa, 415
Fortran/C Models, 415, 417
Reports
 Bayes Accepted, 417
Using, 417
Viewers
 Fortran/C Models, 415
 Image, 415
Widgets
 Noise SD, 415
 System, 415
Use Gaussian, 415
User, 415
Image Viewer, 59
Images
Flip
 Horizontal, 63
 Vertical, 63
Grayscale, 63
ImageJ, 63
Original, 63
Inversion Recovery Package, 151
 Bayesian Calculations, 153
 Model Equation, 153
 Number of data sets, 153
 Prior Probabilities, 153
Reports
 Bayes Accepted, 151, 154
 Condensed, 154
 Console Log, 154
 McMC Values, 154
 Prob Model, 154
Using, 151
Viewers
 Plot Results, 154
 Prior Probability, 151
Widgets
 Find Outliers, 151
Kernel Density Function Package, 361
 Ascii File Format, 361
 Bayesian Calculations, 369
 Data Requirements, 361
 Data, Model And Residuals, 369
Kernels, 369
 Biweight, 362
 Cosine, 362
 Epanechnikov, 362
 Exponential, 362
 Gaussian, 362, 370
 nonnegative, 361
 Real Valued, 361
 Triangular, 362
 Tricube, 362
 Triweight, 362
 Uniform, 362
Likelihood, 371
Number of data sets, 364
Plots
 Expected Density Function, 367, 368
 Mean Density Function, 367, 368
 Posterior Probability for the Kernel Type, 365
 Posterior Probability for the Number Of Kernels, 366
 Scatter Plots of Model Averaged Density Function, 368
 Standard Deviation of the Mean Density Function, 367, 368
Prior Probabilities
 Kernel Center, 371
 Kernel Smoothing Parameter, 371
 Kernel Type, 370
 Number Of Kernels, 370
Reports
 Bayes Accepted, 364
 Condensed, 372
 McMC Values, 372
 Prob Model, 372
Using, 364
Viewers
 Ascii, 361
Widgets
 Kernel Type, 364
 Output Size, 364
Levenberg-Marquardt, 171
Linear Phasing Package, 395, 409
Interface, 397
Model Equation, 398
Widgets
 cf, 403
 Display, 403
 Display Array Element, 403
 fn, 403
 fn1, 403
 Image Type, 402
 Load An Image, 402
 np, 403
 nv, 403
 Process, 403
Load Working Directory, 33
Logical Independence, 117
INDEX

Magnetization Transfer Kinetics Package, 275
 Arrhenius Plot, 281
 Bayesian Calculation, 278
 Boltzmann’s Constant, 277
 Eyring Equation, 275, 276, 277, 280
 Model Equation, 277
 Plank’s Constant, 277
 Prior Probabilities, 279
Reports
 Bayes Accepted, 277, 281
 Condensed, 281
 Console log, 281
 McMC Values, 281
 Prob Model, 281
Sum and Difference Variables, 280
Transmission coefficient, 277
Universal Gas Constant, 277
Using, 277
van’t Hoff Plot, 281
Viewers
 Ascii File, 275
 File, 281
 Prior Probabilities, 275
 Text, 281
Widgets
 Load, 275, 281
 Set, 275
 Uncertainty, 275
Magnetization Transfer Package, 265
 Bayesian Calculations, 267
Files
 Ascii, 265
 Bayes Analyze, 265
 Inversion Recovery, 272
 Peak Pick, 265
Model Equation, 267
Number of data sets, 265
Prior Probabilities, 265, 270
Reports
 Bayes Accepted, 267, 272
 Condensed, 272
 Console log, 272
 McMC Values, 272
 Prob Model, 272
Three Column Data, 265
Using, 267
Viewers
 Ascii Data, 265
 Fid Data, 272
 File, 271
 Plot Results, 262, 272, 281
 Prior Probabilities, 265
 Text, 271
Widgets
 Find Outliers, 265
Marginalization, 100
 Bayes Analyze Package, 174
 Behrens-Fisher, 315
 Big Magnetization Transfer, 261
 Big Peak/Little Peak, 211
 Diffusion Tensors, 252
 Enter Ascii Model Package, 331
 Errors In Variables, 306
 Fortran/C Models, 464
 Given Exponential, 139
 Inversion Recovery, 153
 Linear Phasing, 399
 Magnetization Transfer, 269
 Magnetization Transfer Kinetics, 278
 Metabolic Analysis, 225
 Nonexhaustive Hypotheses, 101
 Nuisance Hypotheses, 100
 Nuisance Parameter, 100
 Unknown Number of Exponentials, 146
Markov chain Monte Carlo, 132, 439
 Acceptance Rate, 444
 Annealing Schedule, 91, 442
 Dynamic, 443
 Linear, 442
 Killing Simulations, 443
 Maximum Posterior Probability, 91
 Metropolis-Hastings, 439
 Mixing, 91
 Monte Carlo Integration, 440
 Multiple Simulations, 441
 Posterior Probability, 440
 Random Number Generators, 440
 Repeats, 91
 Sampling, 91
 Simulated Annealing, 442
 the Proposal, 444
MaxEnt Density Function Estimation Package, 373

Data Requirements, 381

Plots

Contour/Scatter, 375, 379

Number Of Multipliers, 375, 378

Reports

Bayes Accepted, 375

Console Log, 375

Using, 375

Viewers

Ascii, 373

Plot, 375, 378

Prior Probabilities, 373

Widgets

Histogram Size, 373

Order, 373

Maximum Entropy Method Of Moments, 102, 377, 381

Advantages, 386

Problems, 386

Review, 381

Maximum Entropy Method Of Moments Package

Bayesian Calculations, 387

Plots

Data, Model and Residuals, 380

Menus

Files, 24, 35

4dfp, 37, 38

Abscissa, 35, 39

ASCII, 35, 36

Binary, 38

Bruker, 37

Bruker 2dseq, 38

Bruker Stack, 38

DICOM, 37, 38

PFD, 37, 38

fid, 36, 37

General Binary, 37

Images, 35

Import Working Directories in Batch, 40

Import Working Directory, 40

Load Images, 36, 37, 59

Load Working Directory, 35

Multi-Column Text, 37, 38

Save Working Directory, 35, 39

Siemens IMA, 37, 38

Single-Column Text, 38

Spectroscopic Fid, 35

Test Data, 35, 39

Text k-space, 36

Text k-space fid, 37

User Manual, 35, 39

Help, 24

Packages, 22, 24, 33, 40

Settings, 46

Add Server, 48

Auto Configure Server, 48

McMC Parameters, 24, 46, 48

Min Annealing Steps, 48, 48

Port number, 48

Preferences, 49, 63

Remove Server, 48, 49

Repetitions, 46, 48

Server Name, 48

Server Setup, 24, 26, 48

Set Window Size, 49

Simulations, 46, 48

View Server Installation Info, 48, 49

Spectroscopy fid, 36

Utilities, 24, 50

Memory Monitor, 50

Software Updates, 50

System Information, 50

WorkDir

Creating, 22, 33, 46

Deleting, 22, 33, 46

List, 24, 46

Loading, 46

Name, 46

Popup, 47

Model Comparison

Big Peak/Little Peak Package, 211

model orthonormal definition, 349

Mouse

Control-left, 59

Fid Data Viewer

Left, 56

Right, 56

Shift-left, 59

Multipllets

J-Coupling
INDEX

Center, 159
Primary, 159
Secondary, 159
Newton-Raphson, 171
Noise Standard Deviation, 64
Non-Linear Phasing Package, 405
Calculations, 407
Model Equation, 405, 407
Widgets
Process, 409
Write Ascii images, 409
Write imaginary images, 409
Nuisance Parameter, 100, 115, 135
Nyquist Critical Frequency, 111, 127
orthonormal, 349
Outliers, 475
Mean Parameter, 477
Model, 475
Prob Number of, 476
Proposal, 475
Red dot, 477
Weighted Average, 477
Packages
Analyze Image Pixel Unique, 423
Bayes Analyze, 20, 43, 57, 155, 200
Bayes Find Resonances, 21, 239
Bayes Test Data, 427
Behrens-Fisher, 21, 44, 311
Big Magnetization Transfer, 20, 42, 265
Big Peak/Little Peak, 20, 43, 207
Binned Density Function Estimation, 355
Binned Histograms, 21, 44
Diffusion Tensors, 20, 40, 247
Enter ASCII Model, 42
Enter Ascii Model, 20, 329
Enter ASCII Model Selection, 42
Enter Ascii Model Selection, 20, 341
Errors In Variables, 21, 44, 303
Find Resonances, 43
Given Exponential, 20, 40, 137
Given Polynomial Order, 285
Image Model Selection, 415
Image Pixel, 21, 45, 411
Image Pixel Model Selection, 22, 45
Inversion Recovery, 20, 40, 151
Kernel Density Function, 361
Linear Phasing, 21, 44, 395
Magnetization Transfer, 20, 42, 265
Magnetization Transfer Kinetics, 20, 43, 275
Maximum Entropy Method Of Moments, 21, 44, 373
Metabolic Analysis, 21, 43, 219
Non-Linear Image Phasing, 21, 45, 405
Polynomials
of Given Order, 21, 44
of Unknown Order, 21, 44
Test ASCII Model, 42
Test Ascii Model, 20, 337
Unknown Number of Exponentials, 20, 40, 143
Unknown Polynomial Order, 293
Parameter File, 42
Number Of
Abscissa, 458
Data Columns, 458
Model Vectors, 458
Priors, 458
Prior Probability, 459
Amplitude, 460
High, 459
Low, 459
Mean, 459
NonLinear, 460
Ordered, 460
Parameter File, 459
Peak, 459
Prior Type, 460
Standard Deviation, 459
Phase Cycling, 162
Plot Results Viewer, 71
Plots
Data and Model, 81
Data, Model and Residuals, 81
Expected Log Likelihood, 88
Logarithm of the Posterior Probability, 91
Maximum Entropy Histogram, 84
Maximum Entropy Histograms, 83
MCMC Samples, 83, 85
Parameter Vs Posterior Probability, 86, 87
Posterior Probability, 82
Posterior Probability Vs Parameter Value, 86
Residuals, 81
Scatter, 88, 91
png graphics, 59
Posterior Probability Vs Parameter Value, 86
Power Spectrum, 112, 123, 124
Prior Probabilities
 Bayes Phase, 399
 Big Magnetization Transfer, 261
 Big Peak/Little Peak, 212
 Diffusion Tensor, 253
 Enter Ascii Model, 331, 333
 Errors In Variables, 306
 Magnetization Transfer, 269
 Magnetization Transfer Kinetics, 279
 Non-Linear Phasing Package
 A, 408
 θ, 408
Prior Probability, 42, 65, 65
Exponential, 67, 459
Gaussian, 67, 104, 106, 459
Jeffreys’, 118
Normalization Constant, 67
Parameter, 68, 459
Positive, 68, 460
Uniform, 67, 103, 118, 459
Prior Viewer, 65, 93
Probabilities
 Expected Log Likelihood, 453
 Likelihood, 453
 Posterior, 453
 Prior, 453
Product Rule, 99, 119, 344, 439
Referencing
 Setting, 59
Reports
 Accepted File, 76
 McMC Values File
 General Description, 449
 Maximum Posterior Probability Simulations, 451
 Mean Values, 452
 Prior, 450
Standard Deviations, 453
Restoring An Analysis, 22, 35, 40
ROI
 Expanding, 63
 Pixels, 63
 Point, 62
 Polygon, 62
 Square, 62
Saving An Analysis, 35, 39
Schuster Periodogram, 112, 123
Screen Captures, 49
Settings
 httpd server, 19
Software
 Bayes Account, 29
 CC, 29
 Fortran, 29
 Installation, 29
 javaws, 29
 OS requirements, 29
 root requirements, 30
Start Up Window, 22, 33
Steepest Descents, 173
Subdirectories, 469
 Bayes, 39
 Bayes.model.fid, 470
 Bayes.Predefined.Spec, 469
 Bayes.test.data, 39
 BayesAnalyzeFiles, 470
 BayesAsciiModels, 93, 469
 BayesOtherAnalysis, 35, 73, 470
 fid, 36, 53
 images, 36, 38, 39, 59, 470
 model.compile, 470
 plugins, 470
 Properties, 470
 Resources, 470
 Spectroscopic
 fid, 470
 Working Directories, 470
Subroutine Names, 464
Sufficient Statistics, 122
 Definition, 105
 Location Parameter, 108
Sum Rule, 100, 119, 344, 440
Test Ascii Model Package, 337
 Reports
 Bayes Accepted, 339
 Mcmc Values, 339
 Using, 339, 428
Viewers
 Ascii Data, 337
 Fortran/C Models, 337
 Prior Probabilities, 337
Widgets
 Build, 337
 Find Outliers, 339
 System, 337
 User, 337
Thermodynamic Integration, 445, 449

Uninstall, 49
Unknown Number of Exponentials Package, 143
 Bayesian Calculations, 145
 Model Equation, 145
Reports
 Bayes Accepted, 143, 148
 Condensed, 148
 Console Log, 148, 149
 McMC Values, 148
 Prob Model, 148
 Using, 143
Viewers
 File, 148
 Plot Results, 149, 150
 Prior, 143
 Text, 148
Widgets
 Constant, 143
 Find Outliers, 143
 Order, 143
Unknown Polynomial Order Package, 293
 Bayesian Calculations, 295
Files
 Ascii, 293
 Bayes Analyze, 293
 Peak Pick, 293
Model Equation, 295
Number of data sets, 293
Reports
 Bayes Accepted, 293, 299
 Condensed, 299
 Console Log, 298, 299
 McMC Values, 299
 Polynomial Order Plot, 301
 Prob Model, 299
 Using, 293
Viewers
 File, 299
 Text, 299
Widgets
 Set Order, 293, 294
 Unknown Order, 293, 294
Viewers, 27, 52
ASCII Data, 36
 Ascii Data, 27, 53, 56, 63, 137, 265, 275,
285, 293, 311, 329, 337, 341
 Expanding Plot, 53
 Printing, 53
 Right click, 53
 Bayes Model, 160
 Fid Data, 27, 265
 Fid Data, 27, 53, 56, 63, 137, 265, 275,
285, 293, 311, 329, 337, 341
 Auto Range, 59
 Autoscale, 56
 Clear Cursors, 56
 Clear Data, 57
 Copy, 59
 Cursor, 56
 Data Info, 57
 Expand, 56
 fn, 57
 Full, 56
 Get Peak, 56
 Phase Popup, 57
 Print, 59
 Properties, 59
 Referencing, 59
 Save As, 57, 59
 Set Preference, 57
 Units, 59
 Zoom, 59
 Fid Model, 27
 Fid Model, 68, 186
 Build BA Model, 70, 159
 Data, 71
<table>
<thead>
<tr>
<th>Index Item</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horizontal</td>
<td>71</td>
</tr>
<tr>
<td>Model</td>
<td>71</td>
</tr>
<tr>
<td>Overlay</td>
<td>71</td>
</tr>
<tr>
<td>Report</td>
<td>71</td>
</tr>
<tr>
<td>Residual</td>
<td>71</td>
</tr>
<tr>
<td>Stacked</td>
<td>71</td>
</tr>
<tr>
<td>Trace</td>
<td>71</td>
</tr>
<tr>
<td>Vertical</td>
<td>71</td>
</tr>
<tr>
<td>File</td>
<td>28, 80</td>
</tr>
<tr>
<td>Fortran/C Models</td>
<td>93, 330</td>
</tr>
<tr>
<td>Image</td>
<td>27, 59, 415</td>
</tr>
<tr>
<td>Autoset Grayscale</td>
<td>61</td>
</tr>
<tr>
<td>Copy Selected</td>
<td>62</td>
</tr>
<tr>
<td>Delete All</td>
<td>61</td>
</tr>
<tr>
<td>Delete Selected</td>
<td>61</td>
</tr>
<tr>
<td>Display Full</td>
<td>61</td>
</tr>
<tr>
<td>Element Selection</td>
<td>60</td>
</tr>
<tr>
<td>Export</td>
<td>62</td>
</tr>
<tr>
<td>Get Statistics</td>
<td>64, 65</td>
</tr>
<tr>
<td>Get Threshold Statistics</td>
<td>65</td>
</tr>
<tr>
<td>Grayscale</td>
<td>63</td>
</tr>
<tr>
<td>Image Selection</td>
<td>60</td>
</tr>
<tr>
<td>List</td>
<td>59</td>
</tr>
<tr>
<td>Load Selected Pixels</td>
<td>61</td>
</tr>
<tr>
<td>Max</td>
<td>64</td>
</tr>
<tr>
<td>Mean</td>
<td>64</td>
</tr>
<tr>
<td>Min</td>
<td>64</td>
</tr>
<tr>
<td>Right Click</td>
<td>61</td>
</tr>
<tr>
<td>RMS</td>
<td>64</td>
</tr>
<tr>
<td>Save Displayed</td>
<td>62</td>
</tr>
<tr>
<td>Save Statistics</td>
<td>65</td>
</tr>
<tr>
<td>Sdev</td>
<td>64</td>
</tr>
<tr>
<td>Set Image Area</td>
<td>62</td>
</tr>
<tr>
<td>Show Histogram</td>
<td>61</td>
</tr>
<tr>
<td>Show Info</td>
<td>62</td>
</tr>
<tr>
<td>Slice</td>
<td>62</td>
</tr>
<tr>
<td>Slice Selection</td>
<td>60</td>
</tr>
<tr>
<td>Statistics</td>
<td>60</td>
</tr>
<tr>
<td>Value</td>
<td>64</td>
</tr>
<tr>
<td>View Selected Pixels</td>
<td>61</td>
</tr>
<tr>
<td>Viewer Settings</td>
<td>62</td>
</tr>
<tr>
<td>Viewing</td>
<td>62</td>
</tr>
<tr>
<td>X Pos</td>
<td>64</td>
</tr>
<tr>
<td>Y Pos</td>
<td>64</td>
</tr>
<tr>
<td>Plot Results</td>
<td>28, 71</td>
</tr>
<tr>
<td>Prior</td>
<td>27, 65</td>
</tr>
<tr>
<td>Prior Probabilities</td>
<td>138, 312</td>
</tr>
<tr>
<td>Text</td>
<td>141, 271, 281, 290, 309, 322, 335, 353</td>
</tr>
<tr>
<td>Text Results</td>
<td>26, 28, 52, 74</td>
</tr>
<tr>
<td>Bayes Analyze</td>
<td>176</td>
</tr>
</tbody>
</table>

Widgets

<table>
<thead>
<tr>
<th>Analyze Image Pixel Package</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Build</td>
<td>411</td>
</tr>
<tr>
<td>Find Outliers</td>
<td>411</td>
</tr>
<tr>
<td>Get Statistics</td>
<td>413</td>
</tr>
<tr>
<td>System</td>
<td>411</td>
</tr>
<tr>
<td>User</td>
<td>411</td>
</tr>
<tr>
<td>Analyze Image Pixel Unique Package</td>
<td></td>
</tr>
<tr>
<td>Build</td>
<td>423</td>
</tr>
<tr>
<td>Find Outliers</td>
<td>423</td>
</tr>
<tr>
<td>Get Statistics</td>
<td>425</td>
</tr>
<tr>
<td>System</td>
<td>423</td>
</tr>
<tr>
<td>User</td>
<td>423</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ascii Data Viewer</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delete</td>
<td>53</td>
</tr>
<tr>
<td>Left-mouse</td>
<td>53</td>
</tr>
<tr>
<td>Right-mouse</td>
<td>53</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bayes Analyze Package</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>By</td>
<td>158, 176</td>
</tr>
<tr>
<td>First Point</td>
<td>163</td>
</tr>
<tr>
<td>From</td>
<td>158, 176</td>
</tr>
<tr>
<td>Imag Offset</td>
<td>163</td>
</tr>
<tr>
<td>Mark</td>
<td>159</td>
</tr>
<tr>
<td>Max New Res</td>
<td>157</td>
</tr>
<tr>
<td>New</td>
<td>159</td>
</tr>
<tr>
<td>Noise</td>
<td>158</td>
</tr>
<tr>
<td>Phase</td>
<td>157</td>
</tr>
<tr>
<td>Primary</td>
<td>158</td>
</tr>
<tr>
<td>Real Offset</td>
<td>163</td>
</tr>
<tr>
<td>Remove</td>
<td>159</td>
</tr>
<tr>
<td>Remove All</td>
<td>159</td>
</tr>
<tr>
<td>Reset</td>
<td>159, 193</td>
</tr>
<tr>
<td>Restore</td>
<td>159</td>
</tr>
<tr>
<td>Save</td>
<td>159</td>
</tr>
<tr>
<td>Secondary</td>
<td>159</td>
</tr>
<tr>
<td>Shim Order</td>
<td>157, 163</td>
</tr>
<tr>
<td>Signal</td>
<td>158</td>
</tr>
<tr>
<td>To</td>
<td>158, 176</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bayes Find Resonances Package</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Build FID Model</td>
<td>240, 241, 246</td>
</tr>
<tr>
<td>Constant</td>
<td>239, 242</td>
</tr>
</tbody>
</table>
Remove Prior, 96
Remove Selected Model, 93
Save and Load, 96
Standard Deviation, 97
Given Exponential Package
 Constant, 137, 139
 Find Outliers, 137
 Order, 137, 139
Given Polynomial Order Package
 Set Order, 285
Global
 Bayes Find Outliers, 27
 Cancel, 26, 51
 Edit Servers, 26
 Reset, 27
 Restore Analysis, 22
 Save, 27
 Set (server), 26, 52, 137, 143, 151, 155, 207, 221, 239, 247, 259, 265, 277, 285, 293, 305, 311, 329, 337, 343, 357, 364, 373, 375, 413, 415, 425, 428
Image Model Selection Package
 System, 415
 User, 415
Image Viewer
 Element Number, 62
 Get Statistics, 64
 Get Threshold Statistics, 65
 Grayscale, 63
 Save Statistics, 65
 Slice Number, 62
 Value, 64
 X Pos, 64
 Y Pos, 64
Inversion Recovery Package
 Find Outliers, 151
Kernel Density Function Package
 Kernel Type, 364
 Output Size, 364
Linear Phasing Package
 cf, 403
 Display, 403
 Display Array Element, 403
 fn, 403
 fn1, 403
 Image Type, 402
 Load An Image, 402
 np, 403
 nv, 403
 Process, 403
Magnetization Transfer Kinetics Package
 Load, 275, 281
 Set, 275
 Uncertainty, 275
Magnetization Transfer Package
 Find Outliers, 265
MaxEnt Density Function Estimation Package
 Histogram Size, 373
 Order, 373
Non-Linear Phasing Package
 Process, 409
 Write Ascii images, 409
 Write imaginary images, 409
Prior Viewer
 High, 65
 Low, 65
 Mean, 65
 Prior Type, 67
Server
 Edit, 52
 Name, 26, 52, 52
 Set (server), 48
 Setup, 48, 52
Test Ascii Model Package
 Find Outliers, 339
 System, 337
 User, 337
Text Results Viewer
 Copy, 74
INDEX

Down arrow, 74
Enable Editing, 74
Print, 74
Save (a copy), 74
Save As, 74
Settings, 74
Up arrow, 74
Unknown Number of Exponentials Package
 Constant, 143
 Find Outliers, 143
 Order, 143
Unknown Polynomial Order Package
 Set Order, 293, 294
 Unknown Order, 293, 294
WorkDir
 Creating, 22, 33, 46
 Deleting, 22, 33, 46
 List, 24, 46
 Loading, 46
 Name, 46
 Popup, 47