Bayesian Data-Analysis Toolbox
Release 4.23, Manual Version 3

G. Larry Bretthorst
Biomedical MR Laboratory
Washington University School Of Medicine,
Campus Box 8227
Room 2313, East Bldg.,
4525 Scott Ave.
St. Louis MO 63110
http://bayes.wustl.edu
Email: gbretthorst@wustl.edu

September 18, 2018
Appendix B

Markov chain Monte Carlo With Simulated Annealing

Most of the packages in the Bayesian Analysis software use Markov chain Monte Carlo simulations to approximate the Bayesian posterior probability. To understand how a Markov chain can be used to do this, suppose there is some quantity called \(M \). This quantity could be a set of parameters or it could be a selection of models and the object of the Bayesian calculation is to estimate the parameters or to determine which model best characterizes the data. While these two problems sound very different, they are really one and the same problem. To see this suppose \(M \) is just the decay rate constant in a simple exponential decay, then discrete values of \(M \), just specify a set of models \(\{M_1, M_2, \ldots, M_n\} \) and in parameter estimation we compute the posterior probability for each model, just as we do in model selection. So model selection and parameter estimation are fundamentally the same problem. The major difference is that in parameter estimation problems, the functional form of the models is the same, while it can be different in model selection.

The estimation problems addressed by the various packages are all structurally similar, suppose \(M \) consists of a set of parameters or model indicators, \(M \in \{M_1, M_2, \ldots, M_n\} \), and we wish to compute the posterior probability for an individual parameters \(P(M_1 \ldots M_n | DI) \) where \(M_j \) is the hypothesis of interest, \(D \) represents all of the data and \(I \) is the prior information. Applying the rules of Bayesian probability theory, the joint posterior probability for all of the parameters is given by

\[
P(M_1 \ldots M_n | DI) = \frac{P(M_1 \ldots M_n | I)P(D | M_1 \ldots M_n I)}{P(D | I)}
\]

(B.1)

which is Bayes' theorem [1]. For those unfamiliar with the rules of Bayesian probability theory, see Chapter ?? for a tutorial on probability theory or consult [31, 3, 11, 33, 61, 32] for more detailed descriptions of probability theory when treated as extended logic.

If we normalize this posterior probability at the end of the calculation, then \(P(D | I) \) can be dropped and one obtains:

\[
P(M_1 \ldots M_n | DI) \propto P(M_1 \ldots M_n | I)P(D | M_1 \ldots M_n I).
\]

(B.2)

Using logical independence and the product rule, the joint prior probability, \(P(M_1 \ldots M_n | DI) \), can
be factored to obtain

\[P(M_1 \ldots M_n|DI) \propto P(M_1|I) \cdots P(M_n|I)P(D|M_1 \ldots M_n|I) \] (B.3)

and it is this joint posterior probability that most of the Markov chain Monte Carlo simulation approximate. To determine exactly how an individual package implements this calculation, see the Chapter describing that package.

If all a Markov chain Monte Carlo simulation did was to approximate this joint posterior probability, it would not be very useful because what is really needed in the Bayesian calculation is not \(P(M_1 \ldots M_n|DI)\), but \(P(M_j|DI)\) where \(P(M_j|DI)\) is computed using the sum rule of probability theory:

\[P(M_j|DI) = \int_{M_1} \cdots \int_{M_n} P(M_1|I) \cdots P(M_n|I)P(D|M_1 \ldots M_n|I)\,dM_1 \cdots dM_n \] (B.4)

where the integrals are over all \(M_l\) except \(j\). In the Markov chain Monte Carlo simulation this part of the calculation is done using Monte Carlo integration which consists of sampling the joint posterior probability, the integrand, and then using the samples for each parameter as samples from the marginal posterior probability for each parameter separately.

B.1 Metropolis-Hastings Algorithm

All of the packages that implement their calculations using Markov chain Monte Carlo use the Metropolis-Hastings algorithm and you can read more about the Metropolis-Hastings algorithm at the previous Wikipedia link. You can consult the original 1953 paper [45] paper, Gilks et al. have written extensively on Markov chain Monte Carlo as used in Bayesian probability theory [24] and Radford Neal did his dissertation on that subject [46]. Here we will briefly summarize how the Metropolis-Hastings algorithm is used to approximate the Bayesian posterior probabilities.

At their heart all Markov chain simulations are random number generators in which you, the author, can choose the distribution of the random numbers. In the Bayesian calculations done in this software the chosen distribution is the joint posterior probability for all of the parameters and model indicators given the data and the prior information. By running the chain one can sample the joint posterior probability built into the Markov chain simulation. To run a Markov chain Monte Carlo simulation, one must be able to compute Eq. (B.3) for a given set of parameters and model indicators. Here is a very toy version of how one runs a Markov chain Monte Carlo simulation to sample the joint posterior probability:

1. One begins the process of generating a Markov chain by simply sampling the parameter from their valid range. We are going to call these parameters \(M_0\) and the joint posterior probability computed using \(M_0\) will be designated as \(P_0\).

2. Next propose a new value for one or more of the parameter. Call this new proposed set of parameters \(M_1\), and compute the joint posterior probability, \(P_1\) using the proposed values.

3. Accept the proposal if \(P_1\) is greater than \(P_0\). Here accepting the proposal means that you replace \(M_0\) and \(P_0\) by \(M_1\) and \(P_1\) respectively and go back to Step 2.
4. If P_1 is less than or equal to P_0, then draw a random number, r, from a uniform $(0-1)$ random number generator, and if the ratio P_1/P_0 is greater than r, accept the proposed value of P_1 and M_1, i.e., replace M_0 and P_0 with M_1 and P_1 and go to Step 2.

5. Otherwise, reject the proposed values. Here rejecting the proposed values simply means going back to Step 2 without replacing M_0 or P_0.

This simple 5 step procedure is all it takes to generate a Markov chain Monte Carlo simulation. Unfortunately, implementing the calculation in practice, is more of an art than a science and, shortly, we will describe a few of the tricks used in ensuring the calculations work correctly.

There are several major problems with the Markov chain Monte Carlo simulation as described so far: First, it is possible for the simulation to become stuck in local maxima and one would never know it. So one needs a mechanism for detecting simulations that are trapped in local maxima. Second, even if the chain converges correctly its very difficult to tell if the Markov chain has reached a stationary point. One can run a single chain over multiple steps and then look at the path of the simulation, but this is a very unreliable method of testing whether or not a simulation has converged because simulations often deviate from the maximum. And third, with a single chain it is very difficult to adjust the acceptance rate, the number of times a change to a simulation is accepted divided by the total number of times one changed the simulation.

In the following sections we are going to describe how multiple simulations, simulated annealing, killing simulations and adjusting the rate of acceptance in the simulation can be used to generate Markov chains that are highly robust, and almost impossible to get stuck in a local maxima.

B.2 Multiple Simulations

We do not run a single Markov chain Monte Carlo simulation; rather we run an ensemble of simulations in parallel. Typically, the ensemble is on the order of a few 10’s, for example the defaults number of simulations used in the interface is 50, 50 because experience with running multiple simulations indicates that most of the time 50 simulations is enough to explore most parameter spaces; while running fewer increases the risk of nonconvergence and running more usually make things run longer without improving convergence.

For reasons that will become apparent shortly, we initialize the simulations from the prior probability for the parameters. We then run the simulations through a fixed number of steps. Here running a simulation means that we vary the parameters in one simulation, and then either accept or reject the modified simulation based on the prescription given above, Section B.1. This procedure is repeated for each parameter in each simulation and we repeat this procedure at least 25 times for each parameter. So for example if there are 50 simulations, 20 parameters, and each parameter is varied 25 times, the operations count is about $50 \times 20 \times 25 = 25,000$ operations to bring the ensemble of simulations to equilibrium.

Between annealing steps various statistics are computed from the multiple simulations and these statistics are used to aid in judging convergence. Additionally, the expected value of the logarithm of the likelihood is used in thermodynamic integration, Section C, and the trajectories of each simulation are good visual aids in determining convergence.
B.3 Simulated Annealing

These simulations are run using simulated annealing. In simulated annealing one introduces an annealing parameter, which we call β, into the calculation of the joint posterior probability, Eq. (B.3). This annealing parameter is introduced by raising the direct probability for the data to the β power:

$$P(M_1 \ldots M_n|\beta DI) = P(M_1|I) \cdots P(M_n|I) P(D|M_1 \ldots M_n I)^\beta$$

where we have modified the notation to indicate that the joint posterior probability is a function of β. It is this modified joint probability density function that is used in the Markov chain Monte Carlo simulation. When $\beta = 0$, the likelihood is raised to the power of zero and the data completely disappears from the problem, one is sampling the prior. Consequently, when the Markov chain Monte Carlo simulations are initialized they are initialized from the prior probability for the parameters. Also note, that when $\beta = 1$ we are sampling the full joint posterior probability for the parameters and model indicators. The annealing parameter, β, is varied from zero to one according to some annealing schedule, discussed shortly.

Typically one starts the simulations with $\beta = 0$ and runs the simulations until they reach equilibrium. Running the simulations means changing the parameters in a simulation and then accepting or rejecting the change according to the simple perception given earlier, Chapter B.1. For a given value of β, when running the simulations, the posterior probability will increase to an equilibrium point. That is to say, the posterior probability will quit increasing and simply fluctuate about the peak in the posterior probability.

Ounce the simulations are in equilibrium, we increase the annealing parameter by small amount. This has the effect of knocking the ensemble of simulations out of equilibrium, so we again run the simulations until they reach equilibrium at this new value of β. When the annealing parameter is increased, the likelihood becomes more important and the simulations will begin to cluster around the high likelihood regions. However, because the annealing parameter is still small, the simulations will explore a much larger part of parameter space simply because the likelihood is not let strongly constraining them. As the annealing parameter is increased the likelihood becomes increasing important and the simulations begin to cluster around increasingly high and higher likelihood regions.

B.4 The Annealing Schedule

The annealing schedule, the way the annealing parameter β is varied from zero to one, can be something as simple as varying the annealing parameter linearly to something much more elaborate. In earlier versions of the software, a linear annealing schedule was used. In a linear annealing schedule the annealing parameter was given by:

$$\beta = \frac{j}{n} \quad (0 \leq j \leq n)$$

where n is the number of nonzero steps taken in the annealing. This worked well for many problems, but sometimes ran into difficulty when the logarithm of the likelihood is very rapidly changing, because the first tentative steps in simulated annealing can raise the likelihood many hundreds of orders of magnitude and consequently the simulations can fail to local the global maximum of the posterior probability.
In the current version of the software the annealing parameter is adjusted dynamically as follows. The annealing parameter starts at zero, and the simulations are run until they reach equilibrium. Call this step n. For the next step, the $n + 1$ step, the annealing parameter is given by

$$\beta_{n+1} = \text{Min}(1, \beta_n + d\beta_n)$$ \hspace{1cm} (B.7)

where β_{n+1} is the value of β to be used in the next annealing step. If the minimum number of annealing steps is N, then $d\beta$ is given by:

$$d\beta = \text{Min} \left(\frac{1}{\sigma + N}, 1 - \beta \right)$$ \hspace{1cm} (B.8)

where σ is the standard deviation of the logarithm of the likelihood computed from the ensemble of simulations. Note that if the standard deviation of the logarithm likelihood is small, then this method of computing β just reduces to Eq. (B.6), i.e., a linear annealing schedule. However, when the simulations are first initialized by sampling the prior probability for the parameters, the standard deviation of the logarithm of the likelihood is usually large, and consequently, the simulations initially move slowly, gaining speed as the simulations converge on the global maxima.

It is this initial slow annealing that allows the multiple Markov chain simulations to explore the parameter space and locate the global maximum of the posterior probability. However, slowing the annealing down at small values of β is not enough to ensure that the simulations reach the global maximum; it is still possible for simulations to become stuck in local maxima.

B.5 Killing Simulations

As noted, slowing down the annealing for small values of β works very well for giving the simulations time to find the global maxima. However, it is not enough, it is still possible for simulations to become stuck in a local maxima. These trapped simulations must be found and fixed as quickly as possible if the simulations are to reach a stationary point.

Up to now the Markov chain simulations have been described as having multiple chains running in parallel using simulated annealing with an annealing parameter set dynamically based on the standard deviation of the logarithm of the likelihood. Each step in the Markov chain proceeds roughly as follows, the value of the annealing parameter is computed and set for this step in the simulated annealing cycle. Prior to setting to the annealing parameter, simulations should be in an equilibrium. However, incrementing the annealing parameter throws the simulations out of equilibrium and because the simulations are out of equilibrium, we make a number of other modifications to the simulations, we adjust the rate of acceptance, and we kill off a number of simulations.

Between annealing steps, the algorithm doing the Markov chain simulation kills off low probability simulations. To do this the algorithm computes the logarithm of the posterior probability for each simulation. This table of logarithms is then indexed, sorted, and used to replace low probability simulations. In this step typically 10% of the simulations are replaced by higher probability simulations. The program simply takes the lowest probability simulation and then replaces the simulation by one of the simulations having higher probability. The higher probability replacement is chosen by drawing a random number from a Gaussian having a standard deviation that is roughly one third of the total simulations. So when a simulation is replaced, it is replaced by a higher probability simulation, but not necessarily the highest probability simulation.
B.6 the Proposal

When doing a Metropolis-Hastings Markov chain Monte Carlo simulation one must be careful in proposing new values of a parameter. If the current value of a parameter is M_0, one proposes a new parameter value M_1 as follows:

$$M_1 = M_0 + \delta M$$ \hspace{1cm} (B.9)

where δM is the change that is being made to the parameter. The exact method one obtains this δM doesn’t matter except for one propriety that must be enforced. If the probability of moving from M_0 to M_1 is given by $P(M_1|M_0 I)$ then the probability of moving from M_1 to M_0 must be the same:

$$P(M_0|M_1 I) = P(M_1|M_0 I)$$ \hspace{1cm} (B.10)

That is to say jumps in the proposal probability must be symmetric. There are countless modifications and addendum to this rule and you can look at the various references on Markov chain simulations on what these modifications are, but in the calculations implemented in this software package, Eq. (B.10) is the rule implemented using a simple Gaussian proposal. A Gaussian proposal has a number of advantages, for example it is symmetric in its argument and thus automatically satisfies Eq. (B.10). Additionally, a Gaussian has one additional parameter that is important, its standard deviation. By adjusting the size of the standard deviation of the proposal one can control how often the Markov chain transitions from one proposed value to another.

Now one might ask why this is important and the answer is simple, if the proposal it too small the simulation will not explore the parameter space and if the proposal is too large, the change in the posterior probability will be so great that the probability of accepting the change is zero and again the simulations do now explore the parameter space. Consequently, it is important to monitor the size of the proposal and to adjust it between annealing steps to ensure it is neither too small or too large.

The way the programs that implement the Markov chain simulations control the proposal is by keeping track of the acceptance rate for a given parameter. The acceptance rate is simply the ratio of the number of times a proposed parameter was accepted divided by the total number of times one proposed a new parameter value. There is not hard and fast rule on how often one should accept a parameter, but too often or too little are both bad. Additionally, if one is to error, then err on the side of more exploration of the parameter space is probably a good thing. Consequently, the programs that implement these calculations try and keep the acceptance rate between 20 and 30%. If the acceptance rate falls below 20% the proposal is decreased and if the acceptance rate is above 30% the proposal is increased. If it is between 20 and 30% no change is made. There are many addendum that could be added to this description, but it captures what the program actually does. Indeed, there is an output report generated by most of the packages in the Bayesian Analysis Software called an accepted report and that report is available while a package is running and needles to say, its primary output is the current acceptance rate for the various parameters.
Bibliography

[45] Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth, Augusta H. Teller, and Edward Teller (1953), “Equation of State Calculations by Fast Computing Machines,” Journal of Chemical Physics. The previous link is to the American Institute of Physics and if you do not have access to Science Sitations you many not be able to retrieve this paper.

Index

A_k definition, 349
$H_{j\ell}(t_i)$ definition, 349
λ_ℓ definition, 349
g_{jk} eigenvalue, 349

Abscissa, 437
 Computational, 436
 Generating, 427
 Loading, 39
 Multicolumn, 437
 Number Of Columns, 458
 Total Data Values, 456

Aliases, 113, 126
Amplitudes orthonormal definition, 349

Analyze Image Pixel Package, 411
 Modification History, 413
 Phased Images, 397
 Reports
 Bayes Accepted, 413
 Using, 413

Viewers
 Fortran/C Models, 411
 Image, 411
 Prior Probabilities, 413

Widgets
 Abscissa File, 411
 Build, 411
 Find Outliers, 411
 Get Statistics, 413
 System, 411
 User, 411

Analyze Image Pixel Unique Package, 423

Highlight
 Abscissa, 425
 Data, 425

Input Image
 Abscissa, 423

Data, 423
Reports
 Bayes Accepted, 425
 Console Log, 425
 McMC Values, 425

Using, 425

Viewers
 Fortran/C Models, 423
 Image, 423
 Prior Probabilities, 425

Widgets
 Build, 423
 Find Outliers, 423
 Get Statistics, 425
 System, 423
 User, 423

Ascii Data Viewer, 53
Assigning Probabilities, 118

Bandwidth, 111, 127
Bayes Analyze Package, 155
 Levenberg-Marquardt, 171
 Step, 194
 Algorithm, 175
 Amplitudes, 197, 198
 Bayes Model, 159, 161
 Bayesian Calculations, 167
 Bruker, 162
 Build BA Model, 159
 Covariance, 174
 Default Parameters Settings, 155
 Error Messages, 200
 Fid Model Viewer, 160
 Interface, 156
 Likelihood
 Gaussian, 158
 Student’s t-distribution, 158
INDEX

Log File, 193, 195
Lorentzian lineshape, 161
Marking Resonances, 157
Model
 J_o, 165
 J_p, 165
 J_s, 165
Amplitude, 163, 164
Bessel Function, 163
Constants Models, 157
Correlated, 157, 162, 164
Equation, 161, 164, 164
First Order Phase, 157, 162, 164
First Point, 162, 164
Gaussian, 163
Imaginary Constant, 164
Multi-Exponential, 163
Multiple Data Sets, 165
Multiplet Order, 164
Multiplet Orders, 164
Multiplets, 162
Multiplets of Multiplets, 164
Non-Lorentzian, 163
Offsets, 162
Real Constant, 164
Relative Amplitude, 164–166
Resonance Frequency, 165
 Shim Order, 163
Shimming, 166
 Shimming Order, 164
Uncorrelated, 157, 162, 164
Zero Order Phase, 157, 162, 164
Model Interface, 160
Multiplets, 158
Newton-Raphson, 171
Noise File, 158
Noise Standard Deviation, 158
Outputs
 Bayes.accepted File, 177
 bayes.log.mnnn File, 177, 193, 193
 bayes.model.mnnn File, 177, 185, 197, 197
 bayes.noise File, 180
 bayes.noise.mnnn File, 158, 180
 bayes.output.mnnn File, 176, 186, 186
 bayes.params File, 176, 177
 bayes.params.mnnn File, 176, 177, 177
bayes.probabilities.mnnn File, 177, 190, 190
bayes.status.mnnn File, 177, 196, 200
bayes.summary1.mnnn File, 177, 198, 198
bayes.summary2.mnnn File, 177, 199, 199
bayes.summary3.mnnn File, 177, 200, 200
Global Parameters, 182, 183
Model File, 184
Probabilities file, 191
Zero Order Phase, 182
Parameter File
 Activate Shims, 180
 Analysis Directory, 178
 By Fid, 181
 Data Type, 180
 Default Model, 181
 Directory Organization, 180
 Fid Model Name, 178
 File Version, 178
 First Fid, 181
 First Order Phase, 180, 183
 Imaginary Constant, 184
 Last Fid, 181
 lb, 182
 Maximum Candidates, 182
 Maximum New Resonances, 182
 Model Fid Number, 181
 Model Name, 184
 Model Names, 181
 Model Number, 184
 Model Points, 181
 Multiplets of Multiplets, 185
 Noise Start, 181
 Numerical Parameters, 178
 Output Format, 180
 Prior Odds, 182
 Procpar, 178
 Real Constant, 184
 Relative Amplitude, 183
 Resonance Model, 185
 Shim Order, 182
 Spectrometer Frequency, 182
 Text Parameters, 178
 Total Complex Data Values, 181
 Total Data Values, 181
 Total Sampling Time, 182
 True Reference, 182

INDEX
INDEX

McMC Values, 238
Prob Model, 238

Viewers
Fid Data, 219
Fid Model, 221, 236
File, 222, 238
Metabolite, 221
Plot Results, 238
Text, 238

Widgets
Fid Model, 221
Fid Model Viewer, 221
Load System Metabolite File, 219
Load System Resonance File, 221
Load User Metabolite File, 219
Load User Resonance File, 221
Shift Left, 221
Shift Right, 221

Bayes Model, 159, 159
Bayes Test Data Package, 427

Parameters, 431

Reports
Bayes Accepted, 428
Condensed, 429
McMC Values, 429, 431–433

Viewers
Fortran/C Models, 427
Image, 428
Prior Probabilities, 427
Text Data, 430
Text Results, 429

Widgets
Images, 427
Slices, 427
Abscissa, 427
ArrayDim, 427
Build, 427
Get Job, 428
Max Value, 427
Noise SD, 427
Parameter Ranges, 428
Pe, 427
Ro, 427
Run, 428
Set (server), 428
Status, 428

Bayes.accepted
Body, 77
Header, 76

Behrens-Fisher Package, 311
Bayesian Calculations
Derived Probabilities, 320
Different Mean And Same Variance, 318
Different Mean And Variance, 319
Parameter Estimation, 321
Same Mean And Different Variance, 317
Same Mean And Variance, 315

Model Equation
Different Mean And Same Variance, 318
Different Mean And Variance, 319
Same Mean And Different Variance, 317
Same Mean And Variance, 315

Number of data sets, 311
Parameter Listing, 323

Prior Probabilities
Different Mean And Same Variance, 318
Different Mean And Variance, 319
Same Mean And Different Variance, 317
Same Means And Same Variance, 315

Reports
Bayes Accepted, 311, 322
Condensed, 322
Console Log, 322, 323
McMC Values, 322, 323
Prob Model, 322

Using, 311

Viewers
File, 322
Plot Results, 322, 324
Prior Probabilities, 311
Text, 322

Widgets
None, 311

Big Endian, 471, 473

Big Magnetization Transfer Package, 259
Bayesian Calculations, 259
Files
Bayes Analyze, 264
INDEX

Fid, 263
Peak Pick, 262
Model Equation, 261
Number of data sets, 259
Prior Probabilities, 261
Reports
 Bayes Accepted, 259, 262
 Condensed, 262
 Console log, 262
 McMC Values, 262
 Prob Model, 262
Using, 259
Viewers
 Ascii Data, 259
 File, 262
 Prior Probabilities, 259
 Text, 262
Widgets
 Find Outliers, 259
Big Peak/Little Peak Package, 207
Bayesian Calculations, 209
Fid Analyzed, 207
Model Equation, 210
 Metabolites, 209
 Solvent, 210
Number of data sets, 207
Prior Probabilities
 Metabolite, 207
 Solvent, 207
Removing Resonances, 207
Reports
 Bayes Accepted, 209, 216
 Condensed, 216
 Console log, 216
 McMC Values, 216
 Prob Model, 216
Using, 207
Viewers
 File, 216
 Model, 209
 Plot Results, 216
 Prior Probabilities, 207
 Text, 216
Widgets
 Metabolite, 207
 Solvent, 207
Binned Density Function Estimation, 355
Binned Histogram Package
 Reports
 Bayes Accepted, 357
 Viewers
 Ascii, 355
Binned Histograms Package
 Using, 357
 Viewers
 Prior Probabilities, 355
Bloch-McConnell Equations, 267, 277
Changing the Bayes Home Directory, 469
Compilers, 29
 CC, 29, 455
 Fortran, 29, 455
Correlations, 91
Diffusion Tensor Package, 247
 Ascii File Formats, 247, 254, 255
 Bayesian Calculations, 249
 Prior Probabilities
 Δ, 254
 Γ, 254
 δ, 254
 σ, 253
 Amplitudes, 253
 Eigenvalues, 253
 Euler Angles, 253
 Likelihood, 253
 Parameter, 254
Reports
 Bayes Accepted, 247, 255
 Condensed, 255
 Console log, 255
 McMC Values, 255
 Prob Model, 255
Symmetries, 253
Using, 247
Viewers
 File, 247, 255
 Plot Results, 255
 Prior Probabilities, 247, 253
 Text, 255
Widgets
 Abscissa Options, 248
INDEX

Find Outliers, 247
Include Constant, 247, 248, 255
Tensor Number, 247, 248, 255
Use b Matrix, 255
Use b Vectors, 255
Use g Vectors, 254
Discrete Fourier Transform, 110, 113, 123

Enter Ascii Model Package, 329
Bayesian Calculations, 332
Marginalization, 332
No Marginalization, 331
Fortran/C Models, 330, 335
Model Equation
Marginalization, 331
No Marginalization, 331
Output Names
Derived, 335
Parameters, 335
Reports
Bayes Accepted, 331, 335
Bayes Params, 335
Condensed, 335
Console log, 335
McMC Values, 335
Prob Model, 335
Using, 331
Viewers
Ascii Data, 329
File, 335
Fortran/C Models, 329
Plot Results, 335
Prior Probabilities, 329
Text, 335
Widgets
Build, 329
Find Outliers, 329
System, 329
User, 329

Enter Ascii Model Selection Package, 341
Bayesian Calculations
Marginalization, 346
No Marginalization, 344
Fortran/C Models, 341, 343, 353
Model Equation, 343
No Marginalization, 343
With Marginalization, 347
Output Names
Derived, 354
Parameters, 353
Reports
Bayes Accepted, 343, 353
Condensed, 353
Console log, 353
McMC Values, 353
Params File, 353
Prob Model, 353
Using, 343
Viewers
Ascii Data, 341
File, 353
Fortran/C Models, 341
Plot Results, 353
Prior Probabilities Not Used, 341
Text, 353
Widgets
Build Not Used, 341
Find Outliers, 341
System, 341
User, 341

Errors In Variables Package, 303
Ascii File Formats
Errors In X and Y Known, 303, 309
Errors In X Known, 303, 309
Errors In Y Known, 303, 309
Errors Unknown, 303, 309
Bayesian Calculations, 305
Data Error Bars, 303
Files
Ascii, 303
Bayes Analyze, 303
Peak Pick, 303
Model Equation, 305
Number of data sets, 303
Reports
Bayes Accepted, 305, 309
Condensed, 309
Console log, 309
McMC Values, 309
Prob Model, 309
Using, 305
Viewers
Ascii Data, 303
File, 309
Plot Results, 309
Text, 309

Widgets
Given Errors In, 303
Order, 303

Exponentials
Given Package, 137
Inversion Recovery Package, 151
Magnetization Transfer Package, 267
Unknown Number of Package, 143

Fid Data Viewer, 53
Fid Model Viewer, 68

File Format
Ascii, 436

File Viewer, 80

Files
4dfp, 59, 428, 430, 470, 471
Header, 473
Reading, 471
Abscissa, 39, 77, 470
afh, 53
ASCII, 35, 36
Ascii, 53, 54, 435
k-space, 437
Abscissa, 435, 436, 437
Data, 435
Image, 436
Bayes Analyze, 36
Bayes.accepted, 51, 76
Bayes.params, 76, 79
Bayes.prob.model, 447
BayesManual.pdf, 469
Condensed, 77, 78
Console.log, 76, 79, 465
dir.info, 470
fid, 470, 470
ASCII, 36
ffh, 56
Model, 68, 70
procpar, 470
Siemens Raw, 36
Siemens Rda, 36
Spectroscopic, 53

Varian fid, 36
Fortran/C Models, 42, 455, 457, 458, 465–467

Images
4dfp, 38
Binary, 38
Bruker 2dseq, 38
Bruker stack, 38
DICOM, 38
FDF, 38
Multi-Column Text, 38
Siemens IMA, 38
k-space
Text, 36
Varian fid, 36
mcmc.values, 76, 449
Model Listing, 77
prob.model, 76
procpar, 470
Raw, 36
RDA, 36
Statistics, 65
System.err.txt, 469
System.out.txt, 469
Varian fid, 36
WaterViscosityTable, 469

Fortran/C Model Viewer, 93
Popup Editor, 93

Fortran/C Models, 42, 330, 335, 353, 455
Abscissa, 463
Body, 463
Abscissa, 457
Declarations, 462
Derived Parameters, 457, 459, 463
Edit/Create New Model, 42, 455
I/O, 464
Marginalization, 464
$G_j(\Omega, t_i)$, 464
Amplitude Range, 465
Example, 465, 466
Model Vectors, 465
Ordering Amplitudes, 465
Parameter File, 465, 467
Parameter Order, 465
Parameters, 465
Model Files, 455
INDEX

Model Selection, 464
No Marginalization, 457
\(S(t_i) \), 455
Example, 456
Parameter File, 458, 459, 465
Parameters, 463
Signal, 463
Subroutine Interface, 460
 Abscissa, 462
 Current Set, 460
 Derived Parameters, 461
 Maximum No Of Data Values, 461
 Number Of Abscissa Columns, 461
 Number Of Data Columns, 461
 Number Of Derived Parameters, 461
 Number Of Model Vectors, 461
 Number Of Parameters, 460
 Signal, 462
 Total Complex Data Values, 461
Subroutines and Functions, 464
Frequency Estimation, 114, 132

Given Exponential Package, 137
 Bayesian Calculations, 140
Files
 Ascii, 137
 Bayes Analyze, 137
 Peak Pick, 137
Model Equation, 139
Number of data sets, 139
Prior Probabilities, 139–141
Reports
 Bayes Accepted, 137, 141
 Condensed, 141
 Console log, 141
 McMC Values, 141
 Prob Model, 141
Symmetries, 141, 148
Using, 137
Viewers
 File, 141
 Plot Results, 141
 Prior Probabilities, 137, 139
 Text, 141
Widgets
 Constant, 137, 139
 Find Outliers, 137
 Given Order, 27
 Include Constant, 27
 Order, 137, 139

Given Polynomial Order Package, 285
 Bayesian Calculations, 288
Files
 Ascii, 285
 Bayes Analyze, 285
 Peak Pick, 285
 Gram-Schmidt, 287
Model Equation, 287
Number of data sets, 285
Prior Probabilities, 289
Reports
 Bayes Accepted, 285, 291
 Condensed, 291
 Console log, 291
 McMC Values, 291
 Prob Model, 291
Scatter Plots, 292
Using, 285
Viewers
 File, 290
 Plot Results, 291
 Text, 290
Widgets
 Set Order, 285

Histograms
 Binned, 381
 Kernel Density, 381

Image Model Selection Package, 415
 Abscissa, 415
 Fortran/C Models, 415, 417
Reports
 Bayes Accepted, 417
Using, 417
Viewers
 Fortran/C Models, 415
 Image, 415
Widgets
 Noise SD, 415
 System, 415
Use Gaussian, 415
User, 415
Image Viewer, 59
Images
 Flip
 Horizontal, 63
 Vertical, 63
 Grayscale, 63
 ImageJ, 63
 Original, 63
Inversion Recovery Package, 151
 Bayesian Calculations, 153
 Model Equation, 153
 Number of data sets, 153
 Prior Probabilities, 153
Reports
 Bayes Accepted, 151, 154
 Condensed, 154
 Console Log, 154
 McMC Values, 154
 Prob Model, 154
Using, 151
Viewers
 Plot Results, 154
 Prior Probability, 151
Widgets
 Find Outliers, 151
Kernel Density Function Package, 361
 Ascii File Format, 361
 Bayesian Calculations, 369
 Data Requirements, 361
 Data, Model And Residuals, 369
Kernels, 369
 Biweight, 362
 Cosine, 362
 Epanechnikov, 362
 Exponential, 362
 Gaussian, 362, 370
 nonnegative, 361
 Real Valued, 361
 Triangular, 362
 Tricube, 362
 Triweight, 362
 Uniform, 362
Likelihood, 371
Number of data sets, 364
Plots
 Expected Density Function, 367, 368
 Mean Density Function, 367, 368
 Posterior Probability for the Kernel Type, 365
 Posterior Probability for the Number Of
 Kernels, 366
 Scatter Plots of Model Averaged Density
 Function, 368
 Standard Deviation of the Mean Density
 Function, 367, 368
Prior Probabilities
 Kernel Center, 371
 Kernel Smoothing Parameter, 371
 Kernel Type, 370
 Number Of Kernels, 370
Reports
 Bayes Accepted, 364
 Condensed, 372
 McMC Values, 372
 Prob Model, 372
Using, 364
Viewers
 Ascii, 361
Widgets
 Kernel Type, 364
 Output Size, 364
Levenberg-Marquardt, 171
Linear Phasing Package, 395, 409
 Interface, 397
 Model Equation, 398
Widgets
 cf, 403
 Display, 403
 Display Array Element, 403
 fn, 403
 fn1, 403
 Image Type, 402
 Load An Image, 402
 np, 403
 nv, 403
 Process, 403
Load Working Directory, 33
Logical Independence, 117
INDEX

Magnetization Transfer Kinetics Package, 275
 Arrhenius Plot, 281
 Bayesian Calculation, 278
 Boltzmann’s Constant, 277
 Eyring Equation, 275, 276, 277, 280
 Model Equation, 277
 Plank’s Constant, 277
 Prior Probabilities, 279
 Reports
 Bayes Accepted, 277, 281
 Condensed, 281
 Console log, 281
 McMC Values, 281
 Prob Model, 281
 Sum and Difference Variables, 280
 Transmission coefficient, 277
 Universal Gas Constant, 277
 Using, 277
 van’t Hoff Plot, 281
 Viewers
 Ascii File, 275
 File, 281
 Prior Probabilities, 275
 Text, 281
 Widgets
 Load, 275, 281
 Set, 275
 Uncertainty, 275
Magnetization Transfer Package, 265
 Bayesian Calculations, 267
 Files
 Ascii, 265
 Bayes Analyze, 265
 Inversion Recovery, 272
 Peak Pick, 265
 Model Equation, 267
 Number of data sets, 265
 Prior Probabilities, 265, 270
 Reports
 Bayes Accepted, 267, 272
 Condensed, 272
 Console log, 272
 McMC Values, 272
 Prob Model, 272
 Three Column Data, 265
 Using, 267
 Viewers
 Ascii Data, 265
 Fid Data, 272
 File, 271
 Plot Results, 262, 272, 281
 Prior Probabilities, 265
 Text, 271
 Widgets
 Find Outliers, 265
 Marginalization, 100
 Bayes Analyze Package, 174
 Behrens-Fisher, 315
 Big Magnetization Transfer, 261
 Big Peak/Little Peak, 211
 Diffusion Tensors, 252
 Enter Ascii Model Package, 331
 Errors In Variables, 306
 Fortran/C Models, 464
 Given Exponential, 139
 Inversion Recovery, 153
 Linear Phasing, 399
 Magnetization Transfer, 269
 Magnetization Transfer Kinetics, 278
 Metabolic Analysis, 225
 Nonexhaustive Hypotheses, 101
 Nuisance Hypotheses, 100
 Nuisance Parameter, 100
 Unknown Number of Exponentials, 146
 Markov chain Monte Carlo, 132, 439
 Acceptance Rate, 444
 Annealing Schedule, 91, 442
 Dynamic, 443
 Linear, 442
 Killing Simulations, 443
 Maximum Posterior Probability, 91
 Metropolis-Hastings, 439
 Mixing, 91
 Monte Carlo Integration, 440
 Multiple Simulations, 441
 Posterior Probability, 440
 Random Number Generators, 440
 Repeats, 91
 Sampling, 91
 Simulated Annealing, 442
 the Proposal, 444
MaxEnt Density Function Estimation Package, 373
Data Requirements, 381
Plots
 Contour/Scatter, 375, 379
 Number Of Multipliers, 375, 378
Reports
 Bayes Accepted, 375
 Console Log, 375
Using, 375
Viewers
 Ascii, 373
 Plot, 375, 378
 Prior Probabilities, 373
Widgets
 Histogram Size, 373
 Order, 373
Maximum Entropy Method Of Moments, 102, 377, 381
 Advantages, 386
 Problems, 386
 Review, 381
Maximum Entropy Method Of Moments Package
 Bayesian Calculations, 387
Plots
 Data, Model and Residuals, 380
Menus
Files, 24, 35
 4dfp, 37, 38
 Abscissa, 35, 39
 ASCII, 35, 36
 Binary, 38
 Bruker, 37
 Bruker 2dseq, 38
 Bruker Stack, 38
 DICOM, 37, 38
 PDF, 37, 38
 fid, 36, 37
General Binary, 37
Images, 35
Import Working Directories in Batch, 40
Import Working Directory, 40
Load Images, 36, 37, 59
Load Working Directory, 35
Multi-Column Text, 37, 38
Save Working Directory, 35, 39
Siemens IMA, 37, 38
Single-Column Text, 38
Spectroscopic Fid, 35
Test Data, 35, 39
Text k-space, 36
Text k-space fid, 37
User Manual, 35, 39
Help, 24
Packages, 22, 24, 33, 40
Settings, 46
 Add Server, 48
 Auto Configure Server, 48
 McMC Parameters, 24, 46, 48
 Min Annealing Steps, 48, 48
 Port number, 48
 Preferences, 49, 63
 Remove Server, 48, 49
 Repetitions, 46, 48
 Server Name, 48
 Server Setup, 24, 26, 48
 Set Window Size, 49
 Simulations, 46, 48
 View Server Installation Info, 48, 49
Spectroscopy fid, 36
Utilities, 24, 50
 Memory Monitor, 50
 Software Updates, 50
 System Information, 50
WorkDir
 Creating, 22, 33, 46
 Deleting, 22, 33, 46
 List, 24, 46
 Loading, 46
 Name, 46
 Popup, 47
Model Comparison
 Big Peak/Little Peak Package, 211
 model orthonormal definition, 349
Mouse
 Control-left, 59
 Fid Data Viewer
 Left, 56
 Right, 56
 Shift-left, 59
 Multiple
 J-Coupling
Newton-Raphson, 171
Noise Standard Deviation, 64
Non-Linear Phasing Package, 405
Calculations, 407
Model Equation, 405, 407
Widgets
 Process, 409
 Write Ascii images, 409
 Write imaginary images, 409
Nuisance Parameter, 100, 115, 135
Nyquist Critical Frequency, 111, 127
orthonormal, 349
Outliers, 475
 Mean Parameter, 477
 Model, 475
 Prob Number of, 476
 Proposal, 475
 Red dot, 477
 Weighted Average, 477
Package
 Analyze Image Pixel Unique, 423
 Bayes Analyze, 20, 43, 57, 155, 200
 Bayes Find Resonances, 21, 239
 Bayes Test Data, 427
 Behrens-Fisher, 21, 44, 311
 Big Magnetization Transfer, 20, 43, 259
 Big Peak/Little Peak, 20, 43, 207
 Binned Density Function Estimation, 355
 Binned Histograms, 21, 44
 Diffusion Tensors, 20, 40, 247
 Enter ASCII Model, 42
 Enter Ascii Model, 20, 329
 Enter ASCII Model Selection, 42
 Enter Ascii Model Selection, 20, 341
 Errors In Variables, 21, 44, 303
 Find Resonances, 43
 Given Exponential, 20, 40, 137
 Given Polynomial Order, 285
 Image Model Selection, 415
 Image Pixel, 21, 45, 411
 Image Pixel Model Selection, 22, 45
 Inversion Recovery, 20, 40, 151
 Kernel Density Function, 361
 Linear Phasing, 21, 44, 395
 Magnetization Transfer, 20, 42, 265
 Magnetization Transfer Kinetics, 20, 43, 275
 Maximum Entropy Method Of Moments, 21, 44, 373
 Metabolic Analysis, 21, 43, 219
 Non-Linear Image Phasing, 21, 45, 405
 Polynomials
 of Given Order, 21, 44
 of Unknown Order, 21, 44
 Test ASCII Model, 42
 Test Ascii Model, 20, 337
 Unknown Number of Exponentials, 20, 40, 143
 Unknown Polynomial Order, 293
Parameter File, 42
 Number Of
 Abscissa, 458
 Data Columns, 458
 Model Vectors, 458
 Priors, 458
 Prior Probability, 459
 Amplitude, 460
 High, 459
 Low, 459
 Mean, 459
 NonLinear, 460
 Ordered, 460
 Parameter File, 459
 Peak, 459
 Prior Type, 460
 Standard Deviation, 459
Phase Cycling, 162
Plot Results Viewer, 71
Plots
 Data and Model, 81
 Data, Model and Residuals, 81
 Expected Log Likelihood, 88
 Logarithm of the Posterior Probability, 91
 Maximum Entropy Histogram, 84
 Maximum Entropy Histograms, 83
 McMC Samples, 83, 85
 Parameter Vs Posterior Probability, 86, 87
Posterior Probability, 82
Posterior Probability Vs Parameter Value, 86
Residuals, 81
Scatter, 88, 91
png graphics, 59
Posterior Probability Vs Parameter Value, 86
Power Spectrum, 112, 123, 124
Prior Probabilities
Bayes Phase, 399
Big Magnetization Transfer, 261
Big Peak/Little Peak, 212
Diffusion Tensor, 253
Enter Ascii Model, 331, 333
Errors In Variables, 306
Magnetization Transfer, 269
Magnetization Transfer Kinetics, 279
Non-Linear Phasing Package
A, 408
θ, 408
Prior Probability, 42, 65, 65
Exponential, 67, 459
Gaussian, 67, 104, 106, 459
Jeffreys’, 118
Normalization Constant, 67
Parameter, 68, 459
Positive, 68, 460
Uniform, 67, 103, 118, 459
Prior Viewer, 65, 93
Probabilities
Expected Log Likelihood, 453
Likelihood, 453
Posterior, 453
Prior, 453
Product Rule, 99, 119, 344, 439
Referencing
Setting, 59
Reports
Accepted File, 76
McMC Values File
General Description, 449
Maximum Posterior Probability Simulations, 451
Mean Values, 452
Prior, 450
Standard Deviations, 453
Restoring An Analysis, 22, 35, 40
ROI
Expanding, 63
Pixels, 63
Point, 62
Polygon, 62
Square, 62
Saving An Analysis, 35, 39
Schuster Periodogram, 112, 123
Screen Captures, 49
Settings
httpd server, 19
Software
Bayes Account, 29
CC, 29
Fortran, 29
Installation, 29
javaws, 29
OS requirements, 29
root requirements, 30
Start Up Window, 22, 33
Steepest Descents, 173
Subdirectories, 469
Bayes, 39
Bayes.model.fid, 470
Bayes.Predefined.Spec, 469
Bayes.test.data, 39
BayesAnalyzeFiles, 470
BayesAsciiModels, 93, 469
BayesOtherAnalysis, 35, 73, 470
fid, 36, 53
images, 36, 38, 39, 59, 470
model.compile, 470
plugins, 470
Properties, 470
Resources, 470
Spectroscopic
fid, 470
Working Directories, 470
Subroutine Names, 464
Sufficient Statistics, 122
Definition, 105
Location Parameter, 108
Sum Rule, 100, 119, 344, 440
INDEX 497

Test Ascii Model Package, 337
 Reports
 Bayes Accepted, 339
 Mcmc Values, 339
 Using, 339, 428
Viewers
 Ascii Data, 337
 Fortran/C Models, 337
 Prior Probabilities, 337
Widgets
 Build, 337
 Find Outliers, 339
 System, 337
 User, 337
Thermodynamic Integration, 445, 449

Uninstall, 49
Unknown Number of Exponentials Package, 143
 Bayesian Calculations, 145
 Model Equation, 145
 Reports
 Bayes Accepted, 143, 148
 Condensed, 148
 Console Log, 148, 149
 McMC Values, 148
 Prob Model, 148
 Using, 143
Viewers
 File, 148
 Plot Results, 149, 150
 Prior, 143
 Text, 148
Widgets
 Constant, 143
 Find Outliers, 143
 Order, 143
Unknown Polynomial Order Package, 293
 Bayesian Calculations, 295
Files
 Ascii, 293
 Bayes Analyze, 293
 Peak Pick, 293
Model Equation, 295
Number of data sets, 293
Reports
 Bayes Accepted, 293, 299
 Condensed, 299
 Console Log, 298, 299
 McMC Values, 299
 Polynomial Order Plot, 301
 Prob Model, 299
 Using, 293
Viewers
 File, 299
 Text, 299
Widgets
 Set Order, 293, 294
 Unknown Order, 293, 294

Viewers, 27, 52
ASCII Data, 36
 Ascii Data, 27, 53, 56, 63, 137, 265, 275, 285, 293, 311, 329, 337, 341
 Expanding Plot, 53
 Printing, 53
 Right click, 53
Bayes Model, 160
Fid Data, 27, 265
fid Data, 53, 56, 285, 293
 Auto Range, 59
 Autoscale, 56
 Clear Cursors, 56
 Clear Data, 57
 Copy, 59
 Cursor, 56
 Data Info, 57
 Expand, 56
 fn, 57
 Full, 56
 Get Peak, 56
 Phase Popup, 57
 Print, 59
 Properties, 59
 Referencing, 59
 Save As, 57, 59
 Set Preference, 57
 Units, 59
 Zoom, 59
Fid Model, 27
fid Model, 68, 186
 Build BA Model, 70, 159
 Data, 71
INDEX

Horizontal, 71
Model, 71
Overlay, 71
Report, 71
Residual, 71
Stacked, 71
Trace, 71
Vertical, 71
File, 28, 80
Fortran/C Models, 93, 330
Image, 27, 59, 415
 Autoset Grayscale, 61
 Copy Selected, 62
 Delete All, 61
 Delete Selected, 61
 Display Full, 61
 Element Selection, 60
 Export, 62
 Get Statistics, 64, 65
 Get Threshold Statistics, 65
 Grayscale, 63
 Image Selection, 60
 List, 59
 Load Selected Pixels, 61
 Max, 64
 Mean, 64
 Min, 64
 Right Click, 61
 RMS, 64
 Save Displayed, 62
 Save Statistics, 65
 Sdev, 64
 Set Image Area, 62
 Show Histogram, 61
 Show Info, 62
 Slice, 62
 Slice Selection, 60
 Statistics, 60
 Value, 64
 View Selected Pixels, 61
 Viewer Settings, 62
 Viewing, 62
 X Pos, 64
 Y Pos, 64
Plot Results, 28, 71
Prior, 27, 65
Prior Probabilities, 138, 312
Text, 141, 271, 281, 290, 309, 322, 335, 353
Text Results, 26, 28, 52, 74
 Bayes Analyze, 176

Widgets
 Analyze Image Pixel Package
 Build, 411
 Find Outliers, 411
 Get Statistics, 413
 System, 411
 User, 411
 Analyze Image Pixel Unique Package
 Build, 423
 Find Outliers, 423
 Get Statistics, 425
 System, 423
 User, 423
 Ascii Data Viewer
 Delete, 53
 Left-mouse, 53
 Right-mouse, 53
 Bayes Analyze Package
 By, 158, 176
 First Point, 163
 From, 158, 176
 Imag Offset, 163
 Mark, 159
 Max New Res, 157
 New, 159
 Noise, 158
 Phase, 157
 Primary, 158
 Real Offset, 163
 Remove, 159
 Remove All, 159
 Reset, 159, 193
 Restore, 159
 Save, 159
 Secondary, 159
 Shim Order, 157, 163
 Signal, 158
 To, 158, 176
 Bayes Find Resonances Package
 Build FID Model, 240, 241, 246
 Constant, 239, 242
INDEX

First Trace, 239
Last Trace, 239
Model Fid Number, 241
Phase Model, 239, 242
Bayes Metabolite Package
Fid Model, 221
Fid Model Viewer, 221
Load System Metabolite File, 219
Load System Resonance File, 221
Load User Metabolite File, 219
Load User Resonance File, 221
Shift Left, 221, 222
Shift Right, 221, 222
Bayes Test Data Package
Images, 427
Slices, 427
Abscissa, 427
ArrayDim, 427
Build, 427
Get Job, 428
Max Value, 427
Noise SD, 427
Pe, 427
Ro, 427
Run, 428
Set (server), 428
Status, 428
System, 427
User, 427
Big Magnetization Transfer Package
Find Outliers, 259
Big Peak/Little Peak Package
Metabolite, 207
Solvent, 207
Diffusion Tensor Package
Abscissa Options, 248
Find Outliers, 247
Include Constant, 247, 248, 255
Tensor Number, 247, 248, 255
Use b Matrix, 255
Use b Vectors, 254, 255
Use g Vectors, 254
Enter Ascii Model Package
Find Outliers, 329
System, 329
User, 329
Enter Ascii Model Selection Package
Find Outliers, 341
System, 341
User, 341
Errors In Variables Package
Given Errors In, 303
Order, 303
Fid Data Viewer
Autoscale, 56
Clear Cursors, 56
Cursor A, 56
Cursor B, 56
Delta, 56
Display Type, 56
Expand, 56
Full, 56
Get Peak, 56
Left-mouse, 56
Options, 57, 59
Right-mouse, 56
Trace, 70
Fortran/C Model Viewer
Abscissa Spinner, 93
Add Prior, 96
Allow/Disallow Editing, 97
Cancel and Exit, 96
Changing Models, 94
Code, 93, 94
Compile Results, 97
Compiling, 96
Create/Edit Model, 93
Data Columns Spinner, 93
Derived, 96
Edit/Create New Model, 93, 94
High, 97
Low, 97
Mean, 97
Model, 96
Model Vectors, 93
Name (parameter), 97
Order, 97
Parameter Type, 97
Parameters button, 93, 94, 96
Prior Type, 97
Priors, 96
Remove All (priors), 96
| **Remove Prior**, 96 |
| **Remove Selected Model**, 93 |
| **Save and Load**, 96 |
| **Standard Deviation**, 97 |
| **Given Exponential Package** |
| Constant, 137, 139 |
| Find Outliers, 137 |
| Order, 137, 139 |
| **Given Polynomial Order Package** |
| Set Order, 285 |
| **Global** |
| Bayes Find Outliers, 27 |
| Cancel, 26, 51 |
| Edit Servers, 26 |
| Get Job, 26, 51, 137, 143, 151, 155, 209, 221, 241, 247, 259, 267, 277, 285, 293, 305, 311, 331, 339, 343, 357, 364, 375, 413, 417, 425, 428 |
| Reset, 27 |
| Restore Analysis, 22 |
| Save, 27 |
| **Image Model Selection Package** |
| System, 415 |
| User, 415 |
| **Image Viewer** |
| Element Number, 62 |
| Get Statistics, 64 |
| Get Threshold Statistics, 65 |
| Grayscale, 63 |
| Save Statistics, 65 |
| Slice Number, 62 |
| Value, 64 |
| X Pos, 64 |
| Y Pos, 64 |
| **Inversion Recovery Package** |
| Find Outliers, 151 |
| **Kernel Density Function Package** |
| Kernel Type, 364 |
| Output Size, 364 |
| **Linear Phasing Package** |
| cf, 403 |
| Display, 403 |
| Display Array Element, 403 |
| fn, 403 |
| fn1, 403 |
| Image Type, 402 |
| Load An Image, 402 |
| np, 403 |
| nv, 403 |
| Process, 403 |
| **Magnetization Transfer Kinetics Package** |
| Load, 275, 281 |
| Set, 275 |
| Uncertainty, 275 |
| **Magnetization Transfer Package** |
| Find Outliers, 265 |
| **MaxEnt Density Function Estimation Package** |
| Histogram Size, 373 |
| Order, 373 |
| **Non-Linear Phasing Package** |
| Process, 409 |
| Write Ascii images, 409 |
| Write imaginary images, 409 |
| **Prior Viewer** |
| High, 65 |
| Low, 65 |
| Mean, 65 |
| Prior Type, 67 |
| **Server** |
| Edit, 52 |
| Name, 26, 52, 52 |
| Set (server), 48 |
| Setup, 48, 52 |
| **Test Ascii Model Package** |
| Find Outliers, 339 |
| System, 337 |
| User, 337 |
| **Text Results Viewer** |
| Copy, 74 |
INDEX

Down arrow, 74
Enable Editing, 74
Print, 74
Save (a copy), 74
Save As, 74
Settings, 74
Up arrow, 74

Unknown Number of Exponentials Package
 Constant, 143
 Find Outliers, 143
 Order, 143

Unknown Polynomial Order Package
 Set Order, 293, 294
 Unknown Order, 293, 294

WorkDir
 Creating, 22, 33, 46
 Deleting, 22, 33, 46
 List, 24, 46
 Loading, 46
 Name, 46
 Popup, 47