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Vorume VI MARCH, 1908 No. 1

BIOMETRIKA.

THE PROBABLE ERROR OF A MEAN.

By STUDENT.

Introduction.

ANY experiment may be regarded as forming an individual of a “ population”
of experiments which might be performed under the same conditions. A series
of experiments is a sample drawn from this population.

Now any series of experiments is only of value in so far as it enables us o form
a judgment as to the statistical constants of the population to which the experi-
ments belong. In a great number of cases the question finally turns on the value
of a mean, either directly, or as the mean difference between the two quantities.

If the number of experiments be very large, we may have precise information
as to the value of the mean, but if our sample be small, we have two sources of
uncertainty :—(1) owing to the “error of random sampling ” the mean of our series
of experiments deviates more or less widely from the mean of the population, and
(2) the sample is not sufficiently large to determine what is the law of distribution
of individuals. It is usual, however, to assume a normal distribution, because, in
a very large number of cases, this gives an approximation so close that a small
sample will give no real information as to the manner in which the population
deviates from normality: since some law of distribution must be assumed it is
better to work with a curve whose area and ordinates are tabled, and whose
properties are well known. This assumption is accordingly made in the present
paper, so that its conclusions are not strictly applicable to populations known not
to be normally distributed ; yet it appears probable that the deviation from
normality must be very extreme to lead to serious error. We are concerned here
solely with the first of these two sources of uncertainty.

The usual method of determining the probability that the mean of the popula-
tion lies within a given distance of the mean of the sample, is to assume a normal
distribution about the mean of the sample with a standard deviation equal to
8/Vn, where s is the standard deviation of the sample, and to use the tables of
the probability integral.
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2 The Probable Error of a Mean

But, as we decrease the number of experiments, the value of the standard
deviation found from the sample of experiments becomes itself subject to an increas-
ing error, until judgments reached in this way may become altogether misleading.

In routine work there are two ways of dealing with this difficulty: (1) an
experiment may be repeated many times, until such a long series is obtained that
the standard deviation is determined once and for all with sufficient accuracy.
This value can then be used for subsequent shorter series of similar experiments.
(2) Where experiments are done in duplicate in the natural course of the work,
the mean square of the difference between corresponding pairs is equal to the
standard deviation of the population multiplied by v2. We can thus combine
together several series of experiments for the purpose of determining the standard
deviation. Owing however to secular change, the value obtained is nearly always
too low, successive experiments being positively correlated.

There are other experiments, however, which cannot easily be repeated very
often; in such cases it is sometimes necessary to judge of the certainty of the
results from a very small sample, which itself affords the only indication of the
variability. Some chemical, many biological, and most agricultural and large
scale experiments belong to this class, which has hitherto been almost outside the
range of statistical enquiry.

Again, although it is well known that the method of using the normal curve
is only trustworthy when the sample is “large,” no one has yet told us very
clearly where the limit between “large ” and “small ” samples is to be drawn.

The aim of the present paper is to determine the point at which we may use
the tables of the probability integral in judging of the significance of the mean of
a series of experiments, and to furnish alternative tables for use when the number
of experiments is too few.

The paper is divided into the following nine sections:
I. The equation is determined of the curve which represents the frequency
distribution of standard deviations of samples drawn from a normal population.

II. There is shown to be no kind of correlation between the mean and the
standard deviation of such a sample.

III. The equation is determined of the curve representing the frequency
distribution of a quantity z, which is obtained by dividing the distance between
the mean of a sample and the mean of the population by the standard deviation
of the sample.

IV. The curve found in I. is discussed.

V. The curve found in IIL is discussed.

VI. The two curves are compared with some actual distributions.

VIL. Tables of the curves found in IIL are given for samples of different size.

VIII and IX. The tables are explained and some instances are given of their
use. \
X. Conclusions.
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SEctioN 1.

Samples of 7 individuals are drawh out of a population distributed normally,
to find an equation which shall represent the frequency of the standard deviations
of these samples,

If s be the standard deviation found from a sample =, @,...z, (all these being
measured from the mean of the population), then

e S(z?) (S (acl))2 _ S(@?®) S(@?) 28 (zma) .

n n n n? n?

Summing for all samples' and dividing by the number of samples we get the
mean value of s* which we will write 3,
oMM e (n—1)
= = ,
no n
where g, is the second moment coefficient in the original normal distribution of «:
since ;, &,, etc., are not correlated and the distribution is normal, products in-

(12)

volving odd powers of @, vanish on summing, so that —-"-*' is equal to 0.

If My represent the R moment coefficient of the distribution of s? about the
end of the range where s*=0,

MY =" = 1)
Again sh= {'ﬂg_lz_) _ (,_S:%;Q)z}z

_ (S (:;:,2))2 _28 fbwf) (S iwl))‘l + (M)*
S (2 ) 28 (a2 ) 28 (a:,‘) 48 (w;wz’) S (%)

n? n? nd n® nt

+ 68 (a;1 ,?)

+ other terms involving odd powers of =, etc.,
which will vanish on summation.

Now S (%) has n terms but S(222?) has in(n —1), hence summing for all
samples and dividing by the number of samples we get

M, ,(n—1) 2u n-1)  m (n—1)
nTH Ty w T et B

2.
=%5 {n*—2n -1} +’:@% (n—1) {n*—2n + 38}

Now since the distribution of « is normal, u, = 8u.% hence

('n —1)(n+1)

-1
M) =p? (1—3) {8n—3+n*—2n+8}=p o

n
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In a similar tedious way I find:
M) = ,ug*(n -1)(n+1)(n+3)

nd

M/ = (n—l)(n+1)(n+3)(n+a)

ni

and

The law of formation of these moment coefficients appears to be a simple one,
but I bave not seen my way to a general proof.

If now My be the R™ moment coefficient of s? about its mean, we have

M,= ,uf(" D+ —(n-1)) =24 21

,n2

My=pf {(’n Y@m+)@®+3) 3(-1) 2(n=1) (n= 1)3}

n? n n? n?

=“23(_n%) {n*+4n+3—6n+6 —n?4 2n— 1}=8p,23(~q—z:~1—),

Mo=22 (—1) (14 1) (n 4 8) (14 3) = 32 (n— 1P~ 12 (n — 1P = (v — 1}

=k (?; b (03 +9n*+23n+15—32n+ 82 — 1202+ 24n— 12 —n?+ 3n*—3n+ 1}
_12ut(n—=1)(n+3)
- —“'_'_’h:r"‘"‘—‘_"—‘ .
Mg 8 . M, 3(n+3)
Hence B=i=n—1 B3z~ "n=1

B.—38—~6= = (6(n+3)~24~6(n—1) =0,
Consequently a curve of Professor Pearson’s type IIL may be expected to fit
the distribution of s
The equation referred to an origin at the zero end of the curve will be

M, 4;/.2 (n—=1)n* _
M, 8n2uf(n—1) 2;4,2
n—1 n—3

pﬁll—2—1=2

Consequently the equation- becomes

where v=2

and

n=3 _na
=Cr 2 e 2%,
which will give the distribution of s%

ne

The area of this curve is C f z v e 2 dy =1 (say).
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The first moment coefficient about the end of the range will therefore be

® n-l _na —2u, "ol M w=x ®p—-1 B8 _n2
waze%d'w Cl——2? & C| — iz ? e dx
0 . . n =0 n

7 = 7 +

The first part vanishes at each limit and the second is equal to

n—1
n '“2I_fn-—1
1] =" M

and we see that the higher moment coefficients will be formed by multiplying
successively by n : ! e, 1_@_—533 s, etc., just as appeared to be the law of formation
of M), M], M/, ete.

Hence it is probable that the curve found represents the theoretical distribu-
tion of ¢*; so that although we have no actual proof we shall assume it to do so in
what follows.

The distribution of s may be found from this, since the frequency of s is equal
to that of s* and all that we must do is to compress the base line suitably.

Now if % = ¢ (s?) be the frequency curve of s?
and Yo=Y (s) » » ’ w o S
then 9 d (s*) = yqds,
or yds = 2y,sds,

Ya =2sy,.
n=8 _nst

Hence Yo =205(s?) 2 e =
is the distribution of s. t

This reduces to Yo =20s""2¢ %,

nad

Hence y=Aam2¢ ** will give the frequency distribution of standard devia-
tions of samples of n, taken out of a population distributed normally with standard

deviation &. The constant A may be found by equating the area of the curve as

follows :—
na? na?

Area=4 f an—2e 2y, <Let I, represent f wpe—mdw)
0 0

) na?
Then I,= 97; i g]—c (— e__ﬁ) de
0

2 __”ig =0 @ _’Ef
=Z [— xP e 2""} + o (p— l)f xP%e 2y
n n 0

0.2
=Z(p=1) Iy,

since the first part vanishes at both limits.
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By continuing this process we find

Ip,= (%2)1—.‘_;3(11,— 8)(n—5)...8.11,

or =(12)'%3(n-3)(n—5). 4.217,
- ..4.21,
according as n is even or odd.
But 7, is e 2"2dw = «/2
@ n:v2 2 2
and T, is f we s = [—"—e W] L
0 n =0 n
Hence if n be even,
Area
.A. = 'n.—l ’
(n-3)(n-5)...8.1 \/
and if » be odd
A= Area

1°

—3)(n—5)...4.2(;—:)1%

Hence the equation may be written

N § n n:-l —12.:
Y= m-3)n-5)...3. 1’\/ (&5) 2 a"2¢ **(n even)

: = N n "_1'—2—1 n _n_%:
or Y= R m=s o E e () | e M odd)

where N as usual represents the total frequency.

Skction II.

To show that there is no correlation between (a) the distance of the mean of
a sample from the mean of the population and (b) the standard deviation of a
sample with normal distribution.

(1) Clearly positive and negative positions of the mean of the sample are
equally likely, and hence there cannot be correlation between the absolute value
of the distance of the mean from the mean of the population and the standard
deviation, but (2) there might be correlation between the square of the distance
and the square of the standard deviation.

Let ut= ('S—'%”-'))E and s*= S—(:f) - (Ai(—ai'—))z

n

Then’if m,/, M, be the mean values of u?* and % we have by the preceding
(n—1) Ha
n n'

part My = p, and m, ==
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Now u?s?

_ S (:1") (S (.731))2 _ (S (wl))-l

n n

- (Sﬁ_)) 19 8(@mz). (@) _S(ar)
n nd nt
_ 6oy

et other terms of odd order which will vanish on summation.

Summing for all values and dividing by the number of cases we get

2n=1) _ 2 g (=)

.Ru‘#sko'wia'gz"' mlM, + n“ ns

where R, is the correlation between %2 and s2

(n;ﬂl) ,(n— 1){ 3} = #22(71—1).

3+n- o

Rypoy op + py’

Hence Ry304s03 = 0 or there is no correlation between u? and s

SEecrioN III

To find the equation representing the frequency distribution of the means
of samples of n drawn from a normal population, the mean being expressed in
terms of the standard deviation of the sample.

ns?
s"%¢ 2 as the equation representing the distribution of s,

We have y= ”g_l

the standard deviation of a sample of n, when the samples are drawn from a
normal population with standard deviation o.

Now the means of these samples of n are distributed according to the equation
NaN ’;f:*
V2 271'0’

and we have shown that there is no correlation between z, the distance of the
mean of the sample, and s, the standard deviation of the sample.

y=

Now let us suppose # measured in terms of s, z.e. let us find the distribution

of z2=—

If we have y, = ¢ (#) and y, = (2) as the equations representing the frequency
of # and of z respectively, then

d.
hndx = y,dz = ya—:f,
'. y2 = syl.

* Airy, Theory of Errors of Observations, Part 11. § 6.
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o ns?z?
Hence Y= M e
27ro
is the equation representing the distribution of z for samples of # with standard

deviation s.
Now the chance that s lies between s and s+ ds is:
fs+ds C _ns?

—_gh—2 o 20?
, amte ds

3

© 0 _ns
—2 202
.[o pretAnd A ds
which represents the N in the above equation.

Hence the distribution of z due to values of s which lie between s and s + ds is

3+d8 0 _nsi(1+2%) s+ds _ns?(1+29)
— sn—l e 202 dS stle 202 g
Z

ns? ns®

f o se s o f g"2g 2 ds
0 0

and summing for all values of s we have as an equation giving the distribution of 2

7‘ ) _ns’(l-!—z“)
— [ shlg 202 ds
2'"' Jo

a ~00 ns®

/ s"2e 209d3
0

Y =

By what we have already proved this reduces to

1n—-2 n-4 5 3 3
'1/——2'7—1‘—_'5.%_5’...1 -z—( 22) lfnbeodd
and to y=7—12:§’2—;% é 2(1+z-) 2 if n be even.

Since this equation is independent of & it will give the distribution of the
distance of the mean of a sample from the mean of the population expressed in
terms of the standard deviation of the sample for any normal population.

SectioN IV.
Some Properties of the Standard Deviation Frequency Curve.
By a similar method to that adopted for finding the constant we may find the

mean and moments: thus the mean is at [’H,
n—2

which is equal to 8; 3; EZ ::; - E e (if n be even),
i (n—2)(n—4)
()} (n—_3—)(n_5). \/21\/ (lfnbeodd)
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The second moment about the end.of the range is
L _(=1e

n—2 n
The third moment about the end of the range is equal to
In+_1 _ In+1 Ly

-['n—2 ln—l 171—2
= ¢? X the mean,

The fourth moment about the end of the range is equal to
Tniy _(n-1)(n+1) ot

1, n?
If we write the distance of the mean from the end of the range % and the

moments about the end of the range »,, »,, etc.

then n= V. =- 1 2 V; = _’”2 1 4
= — =— g ), = ——— v, = - ot,
! Mn’ 2 n ’ # \/')‘L ’ 4 n?

From this we get the moments about the mean
a-?
/“2=%(n" 1 _Dz)’

‘ ] o a3D
pe= (nD —3(n —1) D + 2% =n—l\/1—z{2D2—-2n+3},

pu= T (= 1~ 4D% + 6 (n—1) D~ 8D = % 2 — 1 — D (30"~ 2+ 6)}.

It is of interest to find out what these become when = is large.
In order to do this we must find out what is the value of D.

Now Wallis’s expression for 7 derived from the infinite product value of sin # is

2:.42.6%...(2n)
23250 (2n— 1)

T
§(2n+l)—1

If we assume a quantity 6 (= a +%‘ + etc.) which we may add to the 2n+1
in order to make the expression approximate more rapidly to the truth, it is easy

1 + 1 etc. and we get

to show that 8 = — 3+ 16n

T 1 1y _ 2¢. 42, 6° Ty (_L‘»ZL@'Z“ *
) (2”+§ * 1“67;) S35 (o1

. . 3 1
From this we find that whether # be even or odd D? approximates to n — 3 + &

when = is large.

* This expression will be found to give & much closer approximation to w than Wallis’s.

Biometrika vi



10 The Probable Error of a Mean

Substituting this value of D we get

Vo e
=".’E(] _ 1 = A 2z 16a7 _ 3 (1 1 _ _1_>

P =on 4)1)’ M 4n? ’ =g\ o, T 16m)
Consequently the value of the standard deviation of a standard deviation which

we have found -——‘T_-—-.T becomes the same as that found for the normal
Vin/1- &

curve by Professor Pearson (¢/V2n) when n is large enough to neglect the 1/4n in
comparison with 1.

Neglecting terms of lower order than ]I—L we find

2n -3 1 1
A= n(4n —3)’ B.=3 (l B Qﬁ) (1 +-%) )
Consequently as n increases 3, very soon approaches the value 3 of the normal
curve, but B3, vanishes more slowly, so that the curve remains slightly skew.
Dueram I.  Frequency curve giving the distribution of Standard Deviations of samples of 10 taken

from .a normal population,
1023

3 4y W2
Equation y=7_1;‘.§ ,129. \/;3_ 28e 20%,

/TN

N
Moge

“250° 50 760 1o 1250 150 1-760
Diagram I shows the theoretical distribution of the s.D. found from samples

of 10. 0
N10*® /248 -3

Y=133V 7o
SEcTtiON V.

2.
.1—rzfn be even

Do

n
j (L+22) 2,

Some properties of the curve y=2——:—73 .

=
Qr

R —

>
B v COl W

. "—; if n be odd
n—2 n—4
n—-3"n—>5
affords an easy way of drawing the curve, Also dz = df/cos* .

Writing 2= tan 6 the equation becomes y= ... ete. x cos™ @, which
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Hence to find the area of the curve between any limits we must find

L_Q.n"l'. ete. x [cns"“*‘ﬁd@

-3'n-—-5
- - n—3
_n .2.n ‘f . 3/cos"‘*0d0 cos Osm(fl}
n—3" n— -2 n—2 |
_n—4n-6 n—3 n—4 n-3
—n_5.n_7...etcfcos 3d0+;:—; ST ete [cos®-2 @ sin 6],

and by continuing the process the integral may be evaluated.

For example, if we wish to find the area between 0 and 6 for n =8 we have

area = g %’ . —f ;]_Ja cos® 8df
=32 [eneoao ] 2 2o guine
3w )y 53w
——0—+Etosﬂsm9+:—; 2 cos® @ sin 6+— g 2 cos® @ sin 6,
and it will be noticed that for n =10 we shall merely have to add to this same
expression the term ; (—: %‘ 2 o 0 sin 6.

The tables at the end of the paper give the area between — o and 2
(or 0=—7§T:md 0 =tan™? z).

This is the same as ‘5 + the area between =0, and @ =tan'z, and as the
whole area of the curve is equal to 1, the tables give the probability that the
mean of the sample does not differ by more than z times the standard deviation
of the sample from the mean of the population.

The whole area of the curve is equal to

m
n—2 n—4% )
—_— — ..etc.x, cos"2 6d6,
n—8 n->5 o

2

and since all the parts between the limits vanish at both limits this reduces to 1.

Similarly the second moment coefficient is equal to

n— +7
n—_—?.u...etc.x[ cos" % @ tan® 0d0
n—3 n->5 _

2
=n—2 n—4-' ete xf+§(cos"“0—cos"‘20)d0
n-8n=5"""%] .
3
_n=2_,_ 1
“n-3 -3

2--2
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Hence the standard deviation of the curve is 1/¥n—3. The fourth moment
coetlicient is equal to

4T
n_-_? 7_’_4‘ ... ete. x [ : cos®2 @ tan* 0dé
n—3 n->5 J =
+7
== 2 n—-:—4 ... €t X f ? (cos™ 80— 2 cos™ 40 + cos"%0) db
n—3 n—>5 -3
_n—2 n—4__2(7z—2)+1_ 3
" u—-3"n-5 n-—-38 T (n=3)(n-5)
The odd moments are of course zero as the curve is symmetrical, so
o, g 309 _g, 2
Bi=0,  B=r =84,

Hence as n increases the curve approaches the normal curve whose standard
deviation is 1/V/n — 3.
B, however is always greater than 3, indicating that large deviations are more
common than in the normal curve.

N 8642 .
i == Xgegeige— 10 = .
Diseram II. Solid curve y= § X753 7008 6, «x/s=tand
= 7a?
Broken line curve y= 7/21N e 25, the normal curve with the same s.p.
N2m.s
N
1215
N /j o~
*org 7 N
4 \
T /N
\
oY ¥ \

/ \
/) \
48— / \
/ \}
/ \
// \\
-9 : <
7 ~
P N
"] [ ————— 3
1-58 1-08 58 os 58 1-08 1-58

Distance of mean from mean of population

I have tabled the area for the normal curve with standard deviation 1/V/7 so as
to compare with my curve for n=10* It will be seen that odds laid according
to either table would not seriously differ till we reach z =8, where the odds are
about 50 to 1 that the mean is within that limit: beyond that the normal curve
gives a false feeling of security, for example, according to the normal curve it is
99,986 to 14 (say 7000 to 1) that the mean of the population lies between — w0
and + 1'3s whereas the real odds are only 99,819 to 181 (about 550 to 1).

* See p. 19.
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Now 50 to 1 corresponds to three times the probable error in the normal curve
and for most purposes would be considered significant; for this reason I have only
tabled my curves for values of # not greater than 10, but have given the n=9
and n=10 tables to one further place of decimals. They can be used as foundations
for finding values for larger samples*.

The table for n=2 can be readily constructed by looking out 8 =tan=z in
Chambers’ Tables and then ‘5 + 6/ gives the corresponding value.

Similarly 4 sin 8+ 5 gives the values when n = 8.
There are two points of interest in the n =2 curve. Here s is equal to half

the distance between the two observations. tan—lg =% so that.between + s and
— s lies 2 x g X 71]_ or half the probability, i.e. if two observations have been made
and we have no other information, it is an even chance that the mean of the
(normal) population will lie between them. On the other hand the second moment
coefficient is

+Z z
-1-f ® tan 040 = - [ta.n@— e]‘ — o,
w7 ™ <T
2 2
or the standard deviation is infinite while the probable error is finite.

SECTION VI. Practical Test of the foregoing Equations.

Before I had succeeded in solving my problem analytically, I had endeavoured
to do so empirically. The material used was a correlation table containing the
height and left middle finger measurements of 8000 criminals, from a paper by
W. R. Macdonell (Biometrika, Vol. 1. p. 219). The measurements were written
out on 3000 pieces of cardboard, which were then very thoroughly shuffled and
drawn at random. As each card was drawn its numbers were written down in a
book which thus contains the measurements of 3000 criminals in a random order.
Finally each consecutive set of 4 was taken as a sample—750 in all—and the
mean, standard deviation, and correlationt of each sample determined. The
difference between the mean of each sample and the mean of the population was
then divided by the standard deviation of the sample, giving us the z of Section ITI.

This provides us with two sets of 750 standard deviations and two sets of
750 2's on which to test the theoretical results arrived at. The height and left
middle finger correlation table was chosen because the distribution of both was
approximately normal and the correlation was fairly high. Both frequency curves,
however, deviate slightly from normality, the constants being for height 3, = 0026,
B,=3175, and for left middle finger lengths B,=0030, 8,=3'140, and in consequence
there is a tendency for a certain number of larger standard deviations to occur
than if the distributions were normal. This, however, appears to make very little
difference to the distribution of z.

* E.g. if n=11, to the corresponding value for n=9; we add 3x§x$x4x}cos8fsing: if n=13

we add as well 4 xIx5x3x}x4cosl¢siné and so on.
*+ I hope to publish the results of the correlation work shortly.
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Another thing which interferes with the comparison is the comparatively large
groups in which the observations occur. The heights are arranged in 1 inch groups,
the standard deviation being only 2:54 inches: while the finger lengths were
originally grouped in millimetres, but unfortunately I did not at the time see the
importance of having a smaller unit, and condensed them into two millimetre
groups, in terms of which the standard deviation is 2:74.

Several curious results follow from taking samples of 4 from material disposed
in such wide groups. The following points may be noticed :

(1) The means only occur as multiples of -25.

(2) The standard deviations occur as the square roots of the following types
of numbers #, n + ‘19, n + 25, n+ ‘50, n + 69, 2n + ‘75.

(3) A standard deviation belonging to one of these groups can only be
associated with a mean of a particular kind; thus a standard deviation of /2 can
only occur if the mean differs by a whole number from the group we take as
origin, while /1:69 will only occur when the mean is at » + *25.

(4) All the four individuals of the sample will occasionally come from the
same group, giving a zero value for the standard deviation. Now this leads to an
infinite value of z and is clearly due to too wide a grouping, for although two men
may have the same height when measured by inches, yet the finer the measure-
ments the more seldom will they be identical, till finally the chance that four men
will have exactly the same height is infinitely small. If we had smaller grouping
the zero values of the standard deviation might be expected to increase, and a
similar consideration will show that the smaller values of the standard deviation
would also be likely to increase, such as ‘436, when 3 fall in one group and 1
in an adjacent group, or "50 when 2 fall in two adjacent groups. On the other
hand when the individuals of the sample lie far apart, the argument of Sheppard’s
correction will apply, the real value of the standard deviation being more likely to
be smaller than that found owing to the frequency in any group being greater on
the side nearer the mode.

These two effects of grouping will tend to neutralise each other in their effect
on the mean value of the standard deviation, but both will increase the variability.

Accordingly we find that the mean value of the standard deviation is quite
close to that calculated, while in each case the variability is sensibly greater. The
fit of the curve is not good, both for this reason and because the frequency is not
evenly distributed owing to effects (2) and (3) of grouping. On the other hand
the fit of the curve giving the frequency of z is very good and as that is the only
practical point the comparison may be considered satisfactory.

The following are the figures for height :—

Mean value of standard deviations; calculated 2:027 + ‘021
observed 2'020

EE——

Difference = — ‘001

” ”» »
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Standard deviation of standard deviations :—
Calculated ‘8556 + 015
Observed 9066
Difference = + 0510
. . . . 16 x 750 , _2%*
Comparison of Fit. Theoretical Equation: y=———a% <.
Vg
Salonterme | [ % | B || W RS NN Rl Rl ol B R R
dovistionot| @ |2 | 8 |8 2 | 8 | 8|8 |8 |g(8|8|8|8|28|8 8|33
ppulation | & | J | @ [H | T 0w [0 > (®|a|o|wle|o]|x|w]e|ES
) : NN TN NN NN et
Calculated
frequency | 13 |10} | 27 |454| 644 | 784 | 87 | 88 [81}| 71 (68 |45 |33 |23 |15 |94 | 5%
Observed
frequency | 3 144 | 243 | 37| 107 67 73 77 | 778 | 64 52# 495|135 | 28 | 124 |9 |114| 7
Difference | +1%| +4| —24| —8| +424| —113| —14| -11| —4| -7 |- 54| +44| +2| +5| —24| -3 | +6] ©

whence x?=48:06, P=-000,06 (about).

In tabling the observed frequency, values between ‘0125 and ‘0875 were
included in one group, while between *0875 and ‘0125 they were divided over the
two groups. As an instance of the irregularity due to grouping I may mention
‘that there were 31 cases of standard deviations 130 (in terms of the grouping)
which is *5117 in terms of the standard deviation of the population, and they were
therefore divided over the groups *4 to 5 and *5 to *6. Had they all been counted
in groups ‘5 to ‘6 * would have fallen to 29-85 and P would have risen to ‘03.
The x* test presupposes random sampling from a frequency following the given
law, but this we have not got owing to the interference of the grouping.

When, however, we test the 2’s where the grouping has not had so much effect
we find a close correspondence between the theory and the actual result.

There were three cases of infinite values of z which, for the reasons given
above, were given the next largest values which occurred, namely + 6 or — 6.
The rest were divided into groups of ‘1; ‘04, ‘05 and 06, being divided between
the two groups on either side.

The calculated value for the standard deviation of the frequency curve was
1 (4 *017) while the observed was 1'039. The value of the standard deviation is
really infinite, as the fourth moment coefficient is infinite, but as we have arbi-

1

1500
which the value of the probable error given above is obtained. The fit of the
curve is as follows:—

trarily limited the infinite cases we may take as an approximation ——— from
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Comparison of Fit. Theoretical Equation: y =§_cos‘0, z =tan 6.

|

Wl |9l v |y | w v | w w8
D s |
SO A I I SH I I O O 0 I I

e e e + l++ [+ |+ |+ T
Scaleof z| £ 1 2 |81 8 : S| 8 S |8| 8|88 8 s _§j

[S) N . ¥ ~ N

E(T|T T R R 8
1 !
Calculated i \
frequency | 5 | 9% |12}: 34} |44} |78} 1119 | 141 |119| 78} | 444 (344 | 13} | 9 5
Observ i
frequency | 9 |14} |11} 33 |43} 705i119§ 1514 |122| 674 | 49 (263! 16 (10 | 6 |
| ' I
I
!
i

: l
Difference | +4| +5| —2| ~14| 1] -8 +4 | +104| +3| =11 +4§l—8 +23 +1 +1

whence x?=12'44, P="56.

This is very satisfactory, especially when we consider that as a rule observa-
tions are tested against curves fitted from the mean and one or more other
moments of the observations, so that considerable correspondence is only to be
expected ; while this curve is exposed to the full errors of random sampling, its
constants having been calculated quite apart from the observations.

Diacram III. Comparison of Caleulated Standard Deviation Frequency Curve with 750 actual
Standard Deviations.

100

N //jﬂ\\

Frequency per #5tha
-3
b

\
1LY \L.

\\\
/ §\
I =
4 2 3 4 5 ® 7 8 9 10 +1 12 -3 14 Ik 146 17 I8 19.2:0 21 2:2 2:3 2°4 2°5
Scale of Standard Deviation of the Population

The left middle finger samples show much the-same features as those of the
height, but as the grouping is not so large compared to the variability the curves
fit the observations more closely. Diagrams IIL* and IV. give the standard devia-
tions and the 2’s for this set of samples. The results are as follows :—

* There are three small mistakes in plotting the observed values in Diagram III., which make the fit
appear worse than it really is.
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Mean value of standard deviations; calculated 2186 + ‘023
» n » observed 2179

Difference = — ‘007

Standard deviation of standard deviations :—

Calculated 9224 + 016
Observed ‘9802
Difference = 4 ‘0578

] Y
Comparison of Fit. Theoretical Equation: y= 16 x 750 ale” o .

whence x?=7:39, P=92.
A very close fit.

We see then that if the distribution is approximately normal our theory gives
us a satisfactory measure of the certainty to be derived from a small sample in
both the cases we have tested ; but we have an indication that a fine grouping is

N2mo®
< |w [ o |
S?lﬁn!ie:!im ~ R x| © 2~ ® > : : 2 :o -] ~ |~ E:
ﬁei,t'fo:ofgssssss33333333335
population | o | N e | ®w [w] w o | > |o ||| W (R[> |w |¢
) ’ ~ ~ ~ ~ ~ ~ ~ hed
Calculated
frequene(g 13 | 104 |27 | 45} |64}| 784 |87 | 88 | 813 |71 |58 |45 |33 |23 |15 | 9% |5y | 7
Observ
frequency | 2 | 14 |27} 51 |64)| 91 | 94f | 684 | 65) | 73| 48} | 404 | 42 (20 [ 224 |12 |5 | 7}
Difference | +3 | +3} | +4| +54| — | +128 | +75 |~ 195 | —16| +2 | -9 | -4} | +94 | —3| + 73| +24 | -3 | +3
whence x2=21'80, P="19.
Calculated value of standard deviation 1 (+ ‘017)
Observed " ' ” ‘982
Difference =~ =-—018
, . . . 2
Comparison of Fit. Theoretical Equation: =7—rcos‘0, z=tan@0.
wlwl v |w N
S|S| 9 [S|e 9 w (B8 |8 |89
S T I R e R R S I I R B i I S
1N T L T N B S S S D U B I
Scaleofz| 2 12| 2 |8 |8 | 2 |2!8|8|8|g!' 8|8 |8]|8§
o >
AR AR I - L AR
|
Calculated . |
giqucnc 5 | 9%| 13} 34} 44} | 78} |119|141|119 | 78} |44} | 344 [ 131 | 9% | 5
Serve
frequency | 4 |15§| 18 |33} /44 |75 |122(138|1204( 71 |46}(36 [11 |9 | 6
Difference | —1| 46| +4% | =1| —4| —3%| +3| —3| +1}| =74 | +2, +1}| —24| -4 | +1
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of advantage. If the distribution is not normal, the mean and the standard
deviation of a sample will be positively correlated, so that although both will have
greater variability, yet they will tend to counteract each other, a mean deviating
largely from the general mean tending to be divided by a larger standard deviation
Consequently I believe that the tables at the end of the present paper may be
used in estimating the degree of certainty arrived at by the mean of a few
experiments, in the case of most laboratory or biological work where the distribu-
tions are as a rule of a ‘cocked hat’ type and so sufficiently nearly normal.

3 ln odd tan—t
) n=2n-4 [2°2 T ot
SectioN VII. Tables of i S TR Y s cos" 2 df
i.v—rneven

Jor values of n from 4 to 10 nclusive.

T e M0
Together with '\;/TZL f e % dz for comparison when n=10.
mJ -

For comparison

=E = = = = = = n=10 7 £ -1
z(s)n4 n=>5 n=6 n="T n=8 n=9 (\/—ife2dm)
Nor ) -

‘1 6633 5745 +5841 *5928 ‘6006 | 60787 | ‘61462 60411
2 ‘6241 6458 ‘6634 6798 6936 | ‘70705 | ‘71846 ‘70159
3 *6804 *7096 *7340 7549 7733 | 78961 | ‘80423 78641
4 7309 7657 *7939 8175 ‘8376 | ‘85465 | ‘86970 85520
5 ‘7749 ‘8131 8428 ‘8667 8863 | ‘90251 | ‘91609 90691
‘6 ‘8125 ‘8518 8813 9040 ‘9218 | ‘93600 | ‘94732 94375
7 8440 *8830 9109 ‘9314 ‘9468 | ‘95851 | ‘96747 ‘96799
8 *8701 ‘8076 ‘9332 9512 ‘9640 | ‘97328 | ‘98007 ‘98253
‘9 ‘8915 ‘9269 *9498 ‘96562 ‘9766 | 98279 | -98780 99137
10 ‘9092 ‘9419 9622 ‘97561 ‘9834 | 98890 | ‘99252 *99820
9236 9537 ‘9714 ‘9821 ‘9887 | 99280 | ‘99539 99926
9354 ‘9628 9782 ‘9870 ‘9922 | 99528 | ‘99713. ‘99971
9451 ‘9700 ‘9832 *9905 ‘9946 | 99688 | -99819 ‘99986
9531 9756 ‘9870 ‘9930 9962 | 99791 | '99885 99989
9598 9800 9899 9948 ‘9973 | 99859 | ‘99926 *09999

‘9653 ‘9836 9920 ‘9961 ‘9981 | 99903 | ‘99951
9699 9864 ‘9937 [ -9970 ‘9986 | 99933 | ‘99968
9737 *0886 *9950 9977 ‘9990 | 99953 | ‘99978
9770 ‘9904 *9959 9983 ‘9992 | ‘99967 | ‘99985
9797 9919 *9967 9986 ‘9994 | 99976 | ‘99990

DO it ot ol g ot ot ko
SOOI G I

‘9821 9931 ‘9973 9989 ‘9996 | 99983 | ‘99993

21

22 *9841 9941 9978 *9992 ‘9997 | 99987 | °99995

2:3 ‘08568 | ' *9950 *9982 9993 ‘9998 | -99991 | ‘99996

2+4 ‘9873 9957 *9985 *9995 ‘9998 | 99993 | 99997

25 *9886 ‘9963 *9987 *9996 ‘9998 | -99995 | 99998

26 ‘9898 9967 9989 *9996 9999 | 99996 | ‘99999

2-7 9908 9972 9991 9997 9999 | 99997 | 99999

28 9916 ‘9976 *9992 9998 ‘9999 | -99998 | 99999

29 9924 ‘9978 9993 9998 *9999 | -99998 | '99999

30 *0931 9981 ‘9994 9998 — *99999 — —
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SecrioN VIII. Explanation of Tables.

The tables give the probability that the value of the mean, measured from the
mean of the population, in terms of the standard deviation of the sample, will lie
between — o and 2. Thus, to take the table for samples of six, the probability
of the mean of the population lying between — oo and once the standard
deviation of the sample is *9622 or the odds are about 24 to 1 that the mean of
the population lies between these limits.

The probability is therefore ‘0378 that it is greater than once the standard
deviation and ‘0756 that it lies outside + 10 times the standard deviation.

SectioN IX. Illustrations of Method.

Tllustration I. As an instance of the kind of use which may be made of the
tables, I take the following figures from a table by A. R. Cushny and A. R. Peebles
in the Journal of Physiology for 1904, showing the different effects of the optical
isomers of hyoscyamine hydrobromide in producingsleep. The sleep of 10 patients
was measured without hypnotic and after treatment (1) with D. hyoscyamine
hydrobromide, (2) with L. hyoscyamine hydrobromide. The average number of
hours’ sleep gained by the use of the drug is tabulated below.

The conclusion arrived at was that in the usual dose 2 was, but 1 was not, of
value as a soporific.

Additional hours' sleep gained by the use of hyoscyamine hydrobromide.

Patient 1 (Dextro-) 2 (Laevo-) Difference (2-1)
1 + 7 +19 +12
2. -16 + 8 + 24
3. - 2 +11 +13
4. -12 + 1 +13
5. -1 -1 0
6. + 34 + 474 +10
7. + 37 + 55 +18
8. + 8 + 16 + 8
9. 0 + 46 + 46

10. +20 + 34 + 14

Mean + ‘75 Mean + 283  Mean + 138
S.D. 170 S.D. 190 S.D. 117

First let us see what is the probability that 1 will on the average give increase
of sleep; i.e. what is the chance that the mean of the population of which these
+°75

experiments are a sample is positive. m =44 and looking out z='44 in the
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table for ten experiment we find by interpolating between ‘8697 and ‘9161 that *44
corresponds to ‘8873, or the odds are ‘887 to *113 that the mean is positive.

That is about 8 to 1 and would 'correspond in the normal curve to about
1'8 times the probable error. It is then very likely that 1 gives an increase of
sleep, but would occasion no surprise if the results were reversed by further
experiments,

If now we consider the chance that 2 is actnally a soporific we have the mean

increase of sleep =%g or 1:23 times the s.0. From the table the probability

corresponding to this is "9974, ie. the odds are nearly 400 to 1 that such is the
case. This corresponds to about 415 times the probable error in the normal
curve. But I take it the real point of the authors was that 2 is better than 1.
This we must test by making a new series, subtracting 1 from 2. The mean
value of this series is + 1'58 while the s.p. is 1°17, the mean value being + 135
times the s.0. From the table the probability is ‘9985 or the odds are about 666
to 1 that 2 is the better soporific. The low value of the s.D. is probably due to
the different drugs reacting similarly on the same patient, so that there is corre-
lation between the results.

Of course odds of this kind make it almost certain that 2 is the better soporific,
and in practical life such a high probability is in most matters considered as
a certainty.

Lilustration I1. Cases where the tables will be useful are not uncommon in
agricultural work, and they would be more numerous if the advantages of being
able to apply statistical reasoning were borne in mind when planning the experi-
ments. I take the following instances from the accounts of the Woburn farming
experiments published yearly by Dr Voelcker in the Journal of the Agricultural
Society.

A short series of pot culture experiments were conducted in order to deter-
mine the causes which lead to the production of Hard (glutinous) wheat or Soft
(starchy) wheat. In three successive years a bulk of seed corn of one variety was
picked over by hand and two samples were selected, one consisting of “hard”
grains and the other of “soft.” Some of each of these were planted in both heavy
and light soil and the resulting crops were weighed and examined for hard and
soft corn.

The conclusion drawn was that the effect of selecting the seed was negligible
compared with the influence of the soil.

This conclusion was thoroughly justified, the heavy soil producing in each case
nearly 100 per cent. of hard corn, but still the effect of selecting the seed could
just be traced in each year.

But a curious point, to which Dr Voelcker draws attention in the 2nd year’s
report, is that the soft seeds produced the higher yield of both corn and straw. In



22 The Probable Error of a Mean

view of the well-known fact that the warieties which have a high yield tend to
produce soft corn, it is interesting to see how much evidence the experiments
afford as to the correlation between softness and fertility in the same variety.

Further, Mr Hooker* has shown that the yield of wheat in one year is largely
determined by the weather during the preceding harvest. Dr Voelcker’s results
may afford a clue as to the way in which the seed is affected, and would almost’
Justify the selection of particular soils for growing seed wheat+.

The figures are as follows, the yields being expressed in grammes per pot.

Year 1899 1900 1901
.| Standard
Average'| peviation| *
Soil Light | Heavy| Light | Heavy| Light | Heavy
Yield of corn from soft seed | 7:85| 889 | 1481 1355 7-48|15°39| 11-328
N , hard , 7-27| 8:32 1381|1336 | 797 | 1313 | 10-643
Difference ... ... .. |+°58| 457 |+1:00| +°19 | — 49 [+2:26| +685 | 778 88
Yield of straw from soft seed | 12:81 | 12-87 | 22-22 | 20-21 | 13:97 | 22°57 | 17442
” »,  hard ,, [10-71|12'48|21'64|20-26 | 1171 | 18-96 | 15-927
Difference ... vee |[+2°10| +39 | +78 | —°05 |+266 |+3°61| +1°515 1-261 1-20

If we wish to find the odds that soft seed will give a better yield of corn on the
average, we divide the average difference by the standard deviation, giving us

z="88.

Looking this up in the table for n =6 we find p=-9465 or the odds are
‘9465 : 535, about 18:1.

Similarly for straw 2z =120, p = 9782, and the odds about 45: 1.

In order to see whether such odds are sufficient for a practical man to draw a
definite conclusion, I take another set of experiments in which Dr Voelcker com-
pares the effects of different artificial manures used with potatoes on the large
scale.

The figures represent the difference between the crops grown with the use of
sulphate of potash and kainit respectively in both 1904 and 1905.

oewt, qr. Ib, ton cwt. qr. 1b.
1904 +10 8 20:+1 10 1 26
1905 + 6 0 8: + 183 2 8

* Journal of Royal Statistical Society, 1907,

+ And perh&ps a few experiments to see whether there is a correlation between yield and ¢ mellow-
ness’ in barley.

} (two experiments in each year).




By STUDENT 23

The average gain by the use of sulphate of potash was 15:25 cwt. and the
$.D. 9 cwt., whence, if we want the odds that the conclusion given below is right,
2=1'T corresponding, when n =4, to p =-9698 or odds of 32:1; this is midway
between the odds in the former example. Dr Voelcker says ‘It may now fairly be
concluded that for the potato crop on light land 1 cwt. per acre of sulphate of
potash is a better dressing than kainit.

As an example of how the tables should be used with caution, I take the
following pot culture experiments to test whether it made any difference whether
large or small seeds were sown.

Tllustration I71. In 1899 and in 1903 “ head corn” and “tail corn” were taken
from the same bulks of barley and sown in pots. The yields in grammes were
as follows:

1899 1903
Large seed ...... 139 73
Small seed ...... 144 87
+5 +6

The average gain is thus *55 and the s.D. ‘05, giving 2=11. Now the table
for n=2 is not given, but if we look up the angle whose tangent is 11 in
Chambers’ tables,

tan—1 11 84° 47 .
—'TSOT+'5=‘T8'OT +5="971,
so that the odds are about 83:1 that small corn gives a better yield than large.
These odds are those which would be laid, and laid rightly, by a man whose only
knowledge of the matter was contained in the two experiments. Anyone con-
versant with pot culture would however know that the difference between the two
results would generally be greater and would correspondingly moderate the
certainty of his conclusion. In point of fact a large scale experiment confirmed
the result, the small corn yielding about 15 per cent. more than the large.

I will conclude with an example which comes beyond the range of the tables,
there being eleven experiments.

To test whether it is of advantage to.kiln-dry barley seed before sowing, seven
varieties of barley were sown (both kiln-dried and not kiln-dried) in 1899 and four
in 1900 ; the results are given in the table.

It will be noticed that the kiln-dried seed gave on an average the larger yield
of corn and straw, but that the quality was almost always inferior. At first sight
this might be supposed to be due to superior germinating power in the kiln-dried
seed, but my farming friends tell me that the effect of this would be that the
kiln-dried seed would produce the better quality barley. Dr Voelcker draws the
conclusion “In such seasons as 1899 and 1900 there is no particular advantage in
kiln-drying before sowing.” Our examination completely justifies this and adds
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“and the quality of the resulting barley is inferior though the yield may be

greater.”

1bs. head corn per acre

Price of head corn in
shillings per quarter

cwts. straw per acre

Value of crop per acre
in shillings *

N.K.D.| K.D. Diff. |N.K.D.| K. D. Diff. IN. K. D.| K. D.| Diff. |N.K.D.| K. D. | Difi.'
1903 2009 +106 26% 263 0 19} 25 + 5 14 152 +111
1935 1915 - 20 28 261 — l% 223 24 +1 152 145 - "'!_;
1910 2011 +101 2945 281 -1 23 24 +1 158 161 + 2%
18994 | 2496 | 2463 | — 33| 30 29 | -1 | 23 28 | +5 | 204f | 1992 | -5
2108 2180 | + 72 273 a7 -3 22;},; 22% 0 162 164 +2
1961 1925 - 36 26 26 0 194 19¥ - } 142 139% | — 2%
2060 | 2122 | + 62 29 26 -3 24% 225 - 2& 168 155 -13
1444 1482 | + 38 29 281 -1 154 16 +% 118 117% | -3
1900 4| 1612 | 1642 | — 70| 28 28" | -1 18 173 | -3 | 128 1217 | =74
1316 1443 | 4127 30 29 -1 14} 154 +13 109 1164 | +7
1511 | 1535 | + 24| 285 | 28 | -3 | 17 17 | +3 | 1200 | 1208 | +2
Average | 18415 | 18752 | +337| 2845 | 2755 | —-91| 1995 |21°05 | +1°10 | 145'82 | 144'68 [+1-14
Standard - . . .
ran ation} - — |e1 ]| — — || = | — |2s| — — | 667
Standard
Devia,tion} —_ — 22°3 — —_— 28 — — *80 —_— —_ 2:40
=8 '

* Straw being valued at 15s. per ton.

In this case I propose to use the approximation given by the normal curve

with standard deviation

s
V(n —3)

and therefore use Sheppard’s tables, looking up

the difference divided by —-. The probability in the case of yield of corn per
Y 78 p Y y

acre is given by looking up

337 _
22:3

or the odds are about 14 : 1 that kiln-dried corn gives the higher yield.

1'51 in Sheppard’s tables. This gives p =934,

Similarly %13 = 3'25, corresponding to p ='9994,* so that the odds are very

great that kiln-dried seed gives barley of a worse quality than seed which has not

been kiln-dried.

Similarly it is about 11 to 1 that kiln-dried seed gives more straw and about
2 : 1 that the total value of the crop is less with kiln-dried seed.

* As pointed out in Section V. the normal curve gives too large a value for p when the probability
It matters little however to'a conclusion of

this kind whether the odds in its favour are 1,660 : 1 or merely 416: 1.

is large. I find the true value in this case to be p="9976.
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SEectioN X.
Conclustons.

I. A curve has been found representing the frequency distribution of standard
deviations of samples drawn from a normal population.

II. A curve has been found representing the frequency distribution of values
of the means of such samples, when these values are measured from the mean of
the population in terms of the standard deviation of the sample.

III. It has been shown that this curve represents the facts fairly well even
when the distribution of the population is not strictly normal.

IV. Tables are given by which it can be judged whether a series of experiments,
however short, have given a result which conforms to any required standard of
accuracy or whether it is necessary to continue the investigation.

Finally I should like to express my thanks to Professor Karl Pearson, without
whose constant advice and criticism this paper could not have been written,
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