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MANY PEOPLE have noted an amusing similarity between the
maser and the parametric amplifier, whose behavior is also gov-
erned by ‘‘pseudo-quantum’ laws, such as the Manley-Rowe
equations, reminiscent of £ = #iew. Relations giving a proportion-
ality between energy and frequency have a long history in phys-
ics, and are characteristic of many purely classical systems.
The best-known example is the adiabatic theorem, which played
an important role in the early development of quantum theory,
One finds that in any classical periodic system, the action in-
tegral over one period is an approximate invariant under slowly
varying perturbations. The derivation of this law is particularly
simple in the case of a harmonic oscillator with slowly varying
spring constant, Here the oscillator coordinate satisfies the
equation of motion ¥ + w?x = 0, If now we allow o to be a slowly
varying function of time, the BWK approximation to the solution
is

() = "\/1_5 expls [w(8)dd] (1)

and so the energy is

2

E = %mm + ;—mcﬁwz = (const.) (w). (2)

This adiabatic theorem has recently found several applications,
ranging from a simple derivation of the Slater perturbation formula
in microwave theory to the calculation of orbits in particle ac-
celerators,

Now consider a guantum-mechanical system such as a mol-
ecule in a maser, interacting with an electromagnetic field. We
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wish to show that the Schrédinger equation describing the time-
evolution of this system has a close mathematical analogy to
classical parametric systems, and in fact discloses a particular
form of classical Hamiltonian for which the action conservation law
becomes rigorous, independently of the magnitude or rate of change
of the perturbations. Let the stationary state vectors of the quan-
tum-mechanical system be u_ for the energy levels £ =7ow_,
and expand the time-dependent wave function in the usual way,

(1) = Z a (8) u,. (3)

n

The enquations of motion are then
Zﬁém = Z Hmnan = Emam + Z an(t) a, (4)

where V _  (7) are the matrix elements of the interaction with
fields, for example the product of dipole moment operator with
electric field E(¢). By introducing the quadratic form which rep-
resents the expectation value of the energy,

H=%"M,, ak*a, (5)

we can write the equations of motion in a form resembling the
classical Hamiltonian equations:

. o H . d H
iffa = iha* = - ——, (6)

m‘aan’f’

To increase the resemhlance, we introduce the real quantities
p.(8), ¢,(¢) defined by

p, —
R (1)
(2 Ao _)?

In terms of them, the quantity (5) becomes

1
H(q,p) = 3 Z (p,2+,%2q7>

1
* é Z [amn(pmpn + mmwn qmqn) + Qbmnwm gmpn] (8)
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where a_ (¢), b () are proportional to the real and imaginary
parts of V., and the Equations of motion (4) and (6) reduce to

d H . d H
_apm, pm=_agm.

¢ : (9)
Equations (8) and (9) are, of course, nothing but the Schrddinger
equation, in unconventional notation.

In consequence of the fact that A is Hermitian, the Equa-
tion of motion (4) has a rigorous constant of the motion

Z | @, I v constant (10)

m

[4

which in quantum theory we interpret as ‘‘conservation of proba-
bility.”” Using Equation (7), we find that in terms of p_, ¢, this
conservation law becomes

2

2 2 ;
P + ) gn Z lJ'fn
E = —= = constant (11)
2 ©_ - ©,

n

where W  is the energy stored in the n’th mode. Equation (11)
is also easily verified directly from Equations (8) and (9).

If we had been shown only the final Equations (8), (9), and (11),
and not the argument which I have used to derive them here, a
very different interpretation would seem natural. In Equations
(8) and (9) we have an assemblage of classical harmonic oscil-
lators perturbed by some external environment in a manner de-
scribed by the matrices a_ (¢), b (¢). Since the Hamiltonian
(8) is quadratic in the p_, ¢, for any particular values of the

mn 0, we could find a new set of normal modes; the effect
of the environment is to vary the spring constants. The set of
harmonic oscillators is not coupled directly to its environment,
but parametrically. Thus to every kind of level scheme which
one might use in a maser, there corresponds a purely classical
parametric system which would behave in just the same manner
and what is most important, would react back on the perturbing
environment in the same way as does the atom or molecule.

Ag a consequence of this analogy, the decision whether a
maser or a parametric amplifier is best for any given application
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might involve the following reasoning. For many jobs which a
maser can do, we can in principle find a classical parametric
system which would do the same job. So it must be the practical
considerations, such as availability of materials with certain
relaxation times, stability of parameters, efficient parametric
circuit elements, etc,, which lead us to prefer one kind of device
to another. Many years ago, W. W, Ilansen proposed a theorem
which may or may not apply to this case; given two different
ways of accomplishing something, both of which will work in
principle, that one will be best which receives the greatest num-
ber of man-hours of development work.

DISCUSSION

I. R. SENITZXY: T would like to make two comments.

1. The spontaneous emission properties of the molecule have
not been completely considered, since the field has not been
quantized. Thus, a molecule may be regarded as a classical
parametric system only if some of the quantum-mechanical prop-
erties are neglected.

2. It seems that the essential difference hetween a maser and
a parametric amplifier (ignoring now the quantum-mechanical as-
pects mentioned above) is that a maser is a collection of many
loosely-coupled systems, while a parametric amplifier is a single
system. Thus, there is negligible correlation hetween the idler
oscillations of the many molecules of the maser, while the pa-
rametric amplifier has a single idler oscillation. Any effects,
therefore, which are due to idler oscillation (such as the ones
mentioned in my talk yesterday) will be entirely different in a
maser than in a parametric amplifier.

E. T. JAYNES: 1, Surely, When we write £(¢), we are implying
semiclassical radiation theory, However, as I showed in a re-
port last year, this theory does give spontaneous emission, with
the correct Einstein A-coefficients, if we take the expectation
value of dipole moment as the source for a classical electro-
magnetic field. Field quantization is not necessary for spon-
taneous emission.
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2. The ‘“‘idler oscillations’ involve the absolute phase of the
wave function (¢}, which is not observable. In the classical
Hamiltonian, [Equation (8)], this corresponds to the fact that
the interaction term involves coordinates and momenta in a form
which contains only the difference frequencies w - @ _, not the
sSums Cz)m + cun.

M. WEISS: In addition to deriving the Manley-Rowe relations by
means of conservation of the number of quanta, it is also pos-

sible to derive the Tien phase relations for a traveling wave
parametric amplifier by requiring the conservation of momentum.

Thus,
Go) ) ()
O B + | —
’UCP pump ?)CP signal ?)CP idler

‘Bsigna} + 6idler = Bpump‘

results in

It is to be noted that for momentum in a dispersive medium one
must use the phase velocity. This quantum analog is particularly
useful in the derivation of the phase relations of more than three
frequency traveling wave parametric amplifiers.

G. GOULD: Professor Townes has mentioned an early electron
masger, the triode. The Barkhauser-Kurz oscillator is more easily
understood. Electrons oscillate approximately harmonically in a
one-dimensional potential well between plate and cathode. The
electrons are injected into a band of levels whose vibrational
quantum numbers are n = [£/Av] — 3~ 108, An oscillating elec-
tric field induces transitions to empty lower and higher levels,
depending on phase, Those which absorb power are removed,
leaving a net induced emission of photons to the e.m. field.

Similarly, in the magnetron type of maser, stimulated emission
of radiation takes place as the electrons undergo transitions to
states of lower angular momentum quantum number.

M, W, P. STRANDBERG: An analytic definition which seems to
make physical sense has been given by Strandberg [Phys, Rev,
(1958), ‘‘Spin-Lattice Relaxation’]. A solid state maser or pa-
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ramagnetic amplifier by this definition is one in which the pump-
ing field interacts with a system which has such a short phase
memory that only the diagonal elements of the density matrix are
affected, for example, a system with T, << T, A parametric
amplifier is one such that the pumping field is able to impose
phase coherence on the system, so that both diagonal and off-
diagonal elements of the density matrix are affected.



