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Abstract : Kelvin showed the maximum e�ciency with which heat can be converted into work; but
there is a dual theorem about the maximum e�ciency with which heat at one temperature can be
converted into heat at another temperature. It has some surprising implications, in particular that
the e�ciency with which we heat our buildings could in principle be improved by a large factor.
This long known { but still little known { fact is of current pedagogical interest and practical
importance.

1. INTRODUCTION

For over 200 years the University of Glasgow, Scotland, has played a uniquely important role in
the development of thermodynamics. There the distinction between temperature as a measure of
intensity of something; and heat as a quantity of something, was �rst seen clearly by Joseph Black,
about 1760. This knowledge contributed to the work of his colleague, James Watt, in the �rst
practical means of converting heat into work. Then Carnot and others tried to �nd the maximum
theoretical e�ciency of this conversion, but the one who �nally succeeded was Wm. Thomson
(later Lord Kelvin) at the University of Glasgow.

Recently an addition to this was made, which is not only of theoretical interest as representing
in a sense the completion of the logical structure of classical thermodynamics; it has immediate
practical implications. Yet the principle is hardly new; it is such a simple and immediate conse-
quence of Thomson's work that it must have been known to Thomson in 1870. Today it cannot be
really unknown to anyone familiar with the theory of heat pumps. But to the best of our knowl-
edge it has not yet appeared in any physics textbook, stated in a form where it is seen as logically
independent of Carnot engines, and forming the natural dual theorem to the one on e�ciency of
Carnot engines. It seems appropriate that this way of looking at the result was �nally pointed out
by Robert S. Silver (1981), the James Watt Professor (now emeritus) of the University of Glasgow.

In Section 2 we give the almost trivial derivation, and in Section 3 we point out its practical
implications by numerical examples. Since a large part of the world's energy resources are actually
used for heating rather than production of work, these implications are not trivial. Section 4
points out another surprising application, and in the �nal Section 5 we speculate on possible
nonequilibrium generalizations.

2. THEORETICAL DERIVATION

We have a source of heat Q2 which is available at Kelvin temperature T2. By this we mean, as
was stressed long ago by J. Willard Gibbs (1886), that the source is capable of delivering that heat
to a heat reservoir which is at temperature T2; and T2 is the highest temperature to which it can
deliver that heat. If there is available a cold reservoir at temperature T1 < T2, then according to
classical thermodynamics we may exploit this temperature di�erence to obtain work W . Applying
the �rst and second laws: W = Q2 � Q1; Q1=T1 � Q2=T2 and solving these for W and Q1 we
have
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W � Q2

�
1�

T1
T2

�
; Q1 � Q2

T1
T2

(1)

with equality if and only if the engine is reversible. In the latter case the \wasted energy"

Q1(Carnot) = Q2

T1
T2

(2)

is delivered as heat to the reservoir at temperature T1. This is the standard result.

But now suppose that our objective is not to produce work, but to deliver the maximum
possible heat to that lower temperature reservoir. This is the conversion problem faced in every
home, where one has heat from a gas, oil, wood, or coal ame but wants heat at room temperature.
At present, we simply allow the primary heat Q2 to degrade itself directly to the lower temperature
T1 by passing through ducts, radiators, etc. Thus we obtain, at best (i.e., neglecting heat loss
through chimneys), the amount of heat Q1(direct) = Q2. But this is an irreversible process, since
there is a net entropy increase �S = Q2=T1 � Q2=T2 > 0 indicating that something has been
wasted, and we can do better. The �rst and second laws imply that, not only in conversion of heat
to work, but also in conversion of heat to heat, the maximum e�ciency will be attained if we can
carry out the process reversibly.

Suppose we have an ambient heat reservoir (the outside world) at temperature T0 < T1 and
we use a perfect Carnot engine to obtain the heat Q1(Carnot). Then we still have the work W
available, which we can use to drive a heat pump between T0 and T1, yielding the additional heat

Q1(pump) =
T1W

T1 � T0
: (3)

Combining (2) and (3), we have now obtained the total heat

Q1 = Q1(Carnot) +Q1(pump) = Q2

T1
T2

T2 � T0
T1 � T0

(4)

and there is always a net gain, since Q1 is always greater than Q2 whenever T0 < T1 < T2. But
while we know that a reversible Carnot engine delivers the maximum attainable work, this argument
does not make it obvious whether (4) is the maximum attainable heat.

Now from a theoretical standpoint it is more general and more elegant to apply the �rst and
second laws directly to this process, as we did in (1). Since some heat Q0 is removed from the
outside reservoir, we must have

Q1 = Q0 + Q2;
Q1

T1
�
Q0

T0
+
Q2

T2
: (5)

Solving these equations for Q1 and Q0, we have

Q1 � Q2

T1
T2

T2 � T0
T1 � T0

; Q0 � Q2

T0
T2

T2 � T1
T1 � T0

(6)

with equality if and only if the process is reversible. Thus we obtain automatically the same
result (4), plus the statement that it is the maximum attainable heating, without invoking Carnot
engines at all. It is in this simple argument that the main theoretical and pedagogical interest of
this discussion lies.
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3. PRACTICAL IMPLICATIONS

Consider heating from a primary temperature T2 = 1000K to room temperature, T1 = 25C =
298K, with an outside temperature T0 = 0C = 273K. Comparing our ideal Q1 with the present
maximum Q2, we have from (7), the gain factor

G �
Q1

Q2

=
1� :273

1� :916
= 8:66 (7)

This seems at �rst glance quite startling; if we take into account that we are at present far from
getting even Q2 because of heat loss up chimneys, the conclusion is that it is in principle possible
to heat our homes with an order of magnitude less fuel than we are now consuming.

A better idea of the numerical improvement allowed by the second law is given in Fig. 1,
where we give contours of constant gain G � Q1=Q2 in the (T0; T2) plane for T1 = 25 oC, room
temperature. Even in cold climates, average gains of the order of 5 are indicated.
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Figure 1. Contours of Constant Gain in the (T0; T2) Plane, for T1 = 25 oC.

The reason for this high e�ciency is that T0 and T1 are not very di�erent on the Kelvin scale. With
the values of inside and outside temperature assumed in (7), one Joule of work will pump

T0=(T1 � T0) = 10:9 (8)

Joules of heat from the outside world, and deliver 11.9 joules to the inside. Unfortunately, presently
available heat pumps are far from realizing this theoretical e�ciency. Silver (1981) notes that if
present engines realize only half of the theoretical e�ciency, then the heat pump component of Q1

will be only a quarter of our calculated value.

Evidently, the development of heat pumps that approach the theoretical e�ciency for small
temperature di�erences would be of very great economic importance, and no physical law stands
in the way of realizing them. It is only a matter of the ingenuity of inventors; and the one who
succeeds will be one of the world's great benefactors. We suspect that the successful technology will
avoid the crude mechanical pumps of our present realizations, perhaps depending on thermoelectric
or electrochemical means that avoid all mechanical moving parts, although perhaps with circulating
uids.
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4. FREE OVENS FOR ESKIMOS

Note that the derivation of (6) is general in that it holds for any exchange of heat between three
reservoirs whatever the relative temperatures and the signs of the Qi, although the arrangement
of Carnot engines envisaged in our derivation of (4) would no longer apply. But this seems to
contradict one common statement of the second law, attributed to Kelvin, that \It is impossible for
heat to ow of itself from a cold reservoir to a hotter one". The statement actually made by Kelvin
is that it is impossible to do this without leaving changes in external bodies. Eq. (6) demonstrates
the need for this quali�cation; for it is quite possible for heat to ow spontaneously from room
temperature T1 to a higher temperature T2, if there is at the same time a compensating ow to a
lower temperature T0.

Suppose then that we want to heat an oven at the standard cooking temperature of T2 =
400F = 204C = 477K, using heat extracted from the air of a kitchen at room temperature
T1 = 25C = 298K. Our equations use the sign convention that Q1 is heat delivered to the reservoir
at T1, while Q0 and Q2 represent heat extracted from those at T0; T2. Therefore Q0; Q1; Q2 are
now all negative, so (�Q1) is the heat extracted from the room and (�Q2) is the resulting heat
delivered to the oven; but Eqs. (6) still hold. Writing the �rst as

(�Q2) � (�Q1)
1� T0=T1
1� T0=T2

; (9)

we see that the maximum heat that can be delivered to the oven is less than that extracted from
the room, but if the outside temperature T0 is low enough, the e�ciency can be quite high; unlike
room heating, oven heating becomes more e�cient as the outside temperature is lowered.

Indeed, we have only to run a Carnot engine between T1 and T0 extracting the work W =
(�Q1) (1� T0=T1), then use that to run a heat pump between T0 and T2, which delivers the heat
(�Q2) = W=(1�T0=T2), in agreement with (9). If the outside temperature T0 is �40F = �40C =
233K then according to (9), 1000 calories of heat removed from the room can deliver 426 calories
to the oven. If this leaks back eventually to re{heat the room, it might appear that the \cost" of
running the oven was not the 1000 calories removed from the room, but only the 574 calories lost
to the outside.

But this leaking back is again an irreversible process in which something is wasted, and we can
do better. If the oven is well insulated, then when we are done with it the heat (�Q2) is still in it, so
we have only to run those Carnot engines backwards, obtaining the workW = 426 (1�T0=T2) from
which the heat pump can return the heat W=(1� T0=T1) = 1000 calories to the room, completely
restoring the status quo. The second law allows us to operate an oven, at whatever temperature we
please, at zero cost, the outside reservoir T0 serving only as a temporary repository for the entropy
that must be disposed of in heating the oven.

Unfortunately, the second law will not allow us to supply our cooling needs as easily; it o�ers
free (that is, zero operating cost) ovens to eskimos, but not free air{conditioning to hottentots
because they have no lower temperature reservoir to take up that entropy.

5. SPECULATIONS

How much generality and �nality do the above results have? As we stressed before (Jaynes, 1965),
in classical thermodynamics the notions of temperature and entropy are de�ned only for states of
thermal equilibrium; therefore the conventional second law that we considered above refers only to
the net result of processes that begin and end in states of thermal equilibrium.

Then classical thermodynamics does not in itself prohibit still more e�cient engines, if they
operate in nonequilibrium conditions ; it is simply silent on that question. Indeed, the surprisingly
high observed e�ciency of animal muscles, which operate in a nonequilibrium environment, has
been thought by some to be such a realized violation of the second law.
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Many have speculated about the possibility of non{biological engines that violate the second
law. The more careful writers have refrained from claiming that they are absolutely impossible in
principle. The Maxwell Demon, which is able to operate on a system directly at the microscopic
level, is the most familiar example; but Max Planck (1917) also noted that we expect \to make
a most serviceable application" of any phenomenon that is found to deviate from the second law,
and considered it a good policy to remain alert, on the lookout for such things.

Presumably, if fundamental limitations on conversion e�ciency in nonequilibrium conditions
exist, they will come instead from statistical mechanics; but in our opinion all existing attempts to
show this contain logical loopholes, and no absolutely convincing arguments of this nature have been
produced. We feel, as did Maxwell and Planck, that from the standpoint of logical demonstration
this is still an open question; dogmatic pronouncements on either side are premature.

However, a nonequilibrium generalization of the second law, that in essence goes back to
Boltzmann, does place de�nite restrictions on what can be accomplished reproducibly when our
technology, unlike the Maxwell Demon, is without knowledge of the microstate and is able to
operate only at the macroscopic level. Any macrostateM , equilibrium or nonequilibrium, represents
a certain phase volume W (M) occupied by all microstates compatible with M . A reproducible
process must work for all of those microstates; so it is a direct consequence of Liouville's theorem
that the entropy S = k logW cannot decrease in a reproducible macroscopic process (M1 ! M2)
that takes place between such states. The maximum e�ciency of a reproducible macroprocess is
attained when the phase volume of those degrees of freedom that actually take part in the interactions

is the same for the initial and �nal macrostates: W (M1) = W (M2).

Using this fact, we have shown (Jaynes, 1989) that the high e�ciency of animal muscles may
be predicted from two data: the heat of reaction 0:43 ev of hydrolysis of the ATP molecule and
the value 37C of body temperature. Presumably, similar e�ciencies are realizable in vitro, using
systems that are never in thermal equilibrium. However, these phenomena do not really violate
the principles explained by Maxwell, Gibbs, Planck, and Einstein long ago; they represent only the
recognition that reversible operation need not be slow. In a nonequilibrium environment, maximum
e�ciency may require the reversible entropy{preserving process to be fast on the molecular time
scale, so that the useful work is done before the inevitable �nal thermalization can take place. This,
we suggest, is the secret of the high e�ciency of muscles. The �eld now seems wide open for new
and important advances.
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