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Statistical Mechanics is a field of sharp dichotomies, with few attempts
to strike a balance. Some writers show an exclusive preoccupation with
minutiae of mathematical rigor to the neglect of physical considerations;
and vice versa. The same is true with regard to emphasis on principles vs.
applications, Boltzmannian distribution functions vs. Gibbsjan canonical
ensembies, stochastic models vs. correlation functions, philosophical
interpretation vs. pragmatic prediction, etc.

As noted in a Foreward by N. N. Eogo]iubov, this work is unigue in
that the authors try to strike a reasonable balance in these respects.

In this reviewer's opinion, they come closer than anyone else to achieving
this, but miss a point of basic understanding needed to bridge the most
fundamental dichotomy.

The many applications have a neat and elegant quality. As one would
expect from other well-known works of Akhiezer, the treatment of macro-
scopic electrodynamics is particularly thorough. The derivation of
macrosﬁopic hydrodynamics extracts a surprising amount of information
from Galilean invariance; and some of the special properties of superfluids
dre then seen as resulting from fajlure of Galilean invariance. The Wigner
distribution function, hitherto a rather mysterious and unwieldy thing
defined on the 6N-dimensional phase space, becomes by use of quantized
wave functions a Wigner distribution operator in ordinary position-velocity

space, a much simpler and more useful quantity.
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The applications are so interesting, useful, and well presented that
it is a temptation to concentrate entirely on'them, passing over the less
happy discussion of fundamentals. However, to do so would run counter to
the purpose of the work as indicated by the authors in the Preface. The
applications, valuable as they may be, are given to explicate certain general
principles that the authors adopt as fundamental to statistical mechanics.
It is really these principles that are being expounded, and we owe it to
the authors to examine the work in that 1ight.

Indeed, the useful applications of statistical mechanics are connected
rather loosely to those fundamentals. In any particular application, the
jmportant and undoubtedly correct results usually turn out to be derivable
from many different philosophical viewpéints. The danger of a too narrow
viewpoint is not so much that one will make a wrong prediction, but rather
that he will think that the validity of his result depends on extraneous
assumptions that are actually unnecessary. Therefore, instead of asking
which viewpoint is “"correct"--a matter of personal opinion--it is better
to ask which viewpoint Teads us to the most general results with the fewest
assumptions--a matter of demonstrable fact.

The three general principles that the authors expound are the
"contraction of distribution functions", the "attenuation of correlations”,
and the "ergodic relation". According to the first, after a short initial
"kinetic phase" a joint probability distribution for the positions and
momenta of n particles becomes a functional of (i.e., is determined by)
the Boltzmann single-particle distribution f{x,p,t). This was advanced
by Bogoliubov in 1947 as a tentative conjecture; the intervening years
seem to have brought, if not proof, at Teast confidence; for it is now

asserted as a general principle.



However, this is not a criticism; for generally by a “principle"” of
statistical mechanics is meant some proposition that one wants to adopt,
but cannot prove {(for if it could be proved, then it would be a result,
not a principle). Of course, this necessarily entails the risk that one's
principles will be disproved.

The second principle is that as the separat%on of particles increases,
their probability distributions become independent (in particular, uncor-
related). There seems also to be a presumption, at first glance quite
plausible, that the range of correlations is short, of the order of the
range of forces (p. 12}, or at most a few times the mean free path. However,
some caution is needed in assuming this. For example, from the theory of
response functions given in Chapter 4, the acoustic Green's function is
(kT)'1 times the space-time correlation function of the air pressure
fluctuations, <8P(x,t)8P(x',t')>. It follows that, if a student in
the back of a lecture hall can hear the teacher's voice, it is only because
thermal pressure fluctuations at the student's ear and the teacher's mouth
are correlated, over a distance of perhaps 109 mean free paths. If the
distance required for attenuation of correlations is larger than the size
of the macroscopic system under study, then the principle does not seem
to have much content.

The third principle seeks to deal with ardilemma of interpretation
that haunts us throughout the work, starting literally on page 1. Over
and over again'we find the statement that a system "makes a transition
into a state of statistical equilibrium". The quantum—mechaniéal version
of this is, notationally, easier to describe. Given an initial "statistical

operator” or density matrix p(0), common teaching holds that its time
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development is given by the Schrddinger equation of motion:
o(t) = exp(-iHt)p(0)exp(iHt) . - (1)

On the other hand, equally common teaching holds that a system in thermal

equilibrium at temperature T is described by a Gibbsian canonical

distribution:

p. = exp(-H/KT) . (2)

Suppose, then, that a system with Hamiltonian H, in an initial nonequilibrium
state described by p(0), is left to itself and comes eventually to thermal
equilibrium. If one believes both of those common teachings, he seemsforced
. to the conclusion that dynamical evolution (1) must in the course of time

take us to the "state of statistical equilibrium" (2):

p(t} =+ ¢ (3)

C

But it is trivial to pro&e that (3) cannot, in general, be true. For (1)
is a unitary transformation, and so not only is the information entropy
S; = -k Tr{po Tnp) a constant, each individual eigenvalue of p(t) is a
constant of the motion. If the eigenvalues of the initial o(0) are not
the same as those of Per then no unitary transformation can carry o (0)
into p..

The d1fficu]ty was not seen so clearly in equilibrium theory, where
one simply postulated the canonical form (2) and never paid much attention
to (1). But as soon as we have to explain how a system manages to get into
the equilibrium state (2), we have the basic dilemma of irreversible
statistical mechanics. If we deny the validity of (1) we are denying
that the system obeys the Schrodinger equation. If we deny the validity

of (2) we are denying experimental facts. Yet it fs a mathematical theorem



that in general (1) and (2) are incompatible. Each writer on the subject
must find some way around this difficulty, most try simply to obscure it.
Akhiezer and Peletminskii are refreshingly clear and forthright on this
point; they simply ignore the mathematical theorem and assert the validity
of (3) [their equation (2.4.24)] as an "ergodic re}ation“. Equilibrium
is achieved by fiat.

In this reviewer's opinion, a basic point of understanding is missed
here, although it was recognized clearly by Khinchin about foriy years
ago. In trying to bridge the dichotomy between (1) and (2), to demand
that the distributions themselves become the same is far stronger than
necessary, and is almost always untrue. It is sufficient to show that their
physical predictions, for the particular macroscopic quantities of
interest, become the same. It may well be that the principle of contracted
distributions would have helped in demonstrating this, but for intervention
of the extraneous "ergodic relation”.

In summary, the work has a beautiful and impressive collection of
applications, which teachers of advanced statistical ﬁechanics‘wi]i want
to use. The discussion of fundamentals is dated, and would need much

revision before it would be suitable as a modern textbook.
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