Lecture 17

PROBABILITY AND FREQUENCY IN EXCHANGEABLE SEQUENCES

We are now in a position to say quite a bit more about connections between
probability and fregquency. These are of two main types: (a) given an observed
frequency in a random experiment, to convert this information into a probabi-
lity assignment, and (b} given a probability assignment, to predict the
frequency with which some condition will be realized. We have seen, in Lectures
10 and 12, -how the principles of maximum entropy and transformation groups
lead to probability assignments which, if the quantity of interest happens
to be the result of some "random experiment,” correspond automatically to
predicted frequencies, and thus sclve problem (b) in some situations.

The rule of successipn gives us the scoluticn to problem {(a) in a wide
class of problems; 1f we have observed whether A was true in a very large

number of trials, and the conly knowledge we have about A is the result of

this random experiment, and the constancy of the "causal mechanigm,"” then

it says that the probability we should assign to & at the next trial becomes
practically equal to the observed freguency, Now, in fact, this is exactly
what pecple who define probability in terms of frequency do; cone postulates
the existence of an unknown "absolute" probability, whose numerical wvalue

is to be found by performing random experiments. Of course, vou must perform
a very large number of experiments. Then the observed freguency of A is
taken as the estimate cf the prcbability. As we saw in Lecture 15, even the

+]1 and +2 in Laplace's formula turn up when the "freguentist" refines his
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methods by taking the center of a confidence interval. 8o, I don't see how
ever. the most ardent advocate of the frequency theory of probability can
damn the rule of succession without thereby damning his own procedure; after
all polemics, there remains the simple fact that in his own procedure, he is
doing exactly what Laplace's rule of succession tells him to do. Indeed,
to define probability in terms of frequency is equivalent to saying that
the rule of succession is the cnly rule which can be used for converting

observational data into probability agssignments.

17.1. Prediction of Freguencies.

Now let's consider prcoblem (b) in this situation; to reason from a proba-

bility tc a freguency. This is simply a problem of parameter estimation,
not different in principle from any other. Suppose that instead of asking
for the probability that & will be true in the next trial, we wish to infer
something about the relative freguency of A in an indefinitely large number
of trials, on the basis of the evidence N,- We must take the limit of
Equation (16-22) as M > <«, m = <, in such a way that {(m/M) - f. Introducing
the proposition

Af = "The frequency of A true in an indefinitely large number

of trials is f£,"

we find in the limit that the probability density of Ay, given Nn, ig

(Af’N y = L MELY engg g Nen

n’  nl (N-n)! et
which is the same as our (Ap|NnJ in {16-20}, with f numerically egual to p.
According to (17-1) the most probable frequency is egual to (n/N), the ob-
served frequency in the past. But we have noted before that in parameter
estimation (if you object to my calling £ a "parameter," then let's just

call it "prediction"), the most probable value is usually a poorer estimate

than the mean value in the small sample case, where they can be appreciably
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different., The mean value estimate of the freguency is

Jﬁl n+ 1
£= ), f@g[N) af = 75— (17-2)

i.e., just the same as the value of (A[Nn) given by Laplace's rule of suc-

cession. Thus, we can interpret the rule in either way; the probability

which Laplace's theory assigns to A at a single trial is numerically egual

to the estimate of frequency which minimizes the expected square of the error.

You see how nicely this corresponds with the ralation.between'prbbébility
and frequency which we found in the maximum-entropy and transformation group
arguments.

Note also that the distribution {AfiNn} is gquite broad for small N,
confirming our expectation that no reliable predictions should be possible
in this case., As a numerical example, if A has been cbserved true once in
two trials, then £ = (A|Nn) = 1/2; but according to {(17~1) it ig still an
even bet that the true frequency £ lies outside the interval 0.326 < £ < 0.674.
With no evidence at all (N = n = 0), it would be an even bet that f lies
outside the interval 0.25 < f < §.75. More generally, the variance of (17-1)
is

var (Ag|N,) = £2 - £2 = £(1-F)/(+3) (17-3)
1/2

so that the expected error in the estimate (17-2) decreases like N More
detailed conclusions about the reliability of predictions, which we could
make Erom {(17-2) are for all practical purposes identical with those the
statistician would make by the method of confidence intervals.

All these results hold also for the generalized rule of succession.

Taking the limit of (16-38) ag M > =, mi/M - fi, we find the joint probability

distribution for Ai to occur with frequency fi to be
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n n
_ {ntk-1)! 1 k )
= HITTTTH;T (£, T, ) S(Ep.L 46 -D) Qf .. .af (17-4)

The probability that the frequency fl will be in the range d4f. is found by

1

integrating (17-4) over all values of f2...fk compatible with fi > 0,

(f2+.,,+fk) =1 - fl. This can be carried out by application of Laplace

transforms in a well known way, and the result is

n N-n_+K-2
- 1
) af, = ——HKeD) ! £ T-g) af, (17-5)

1 - Y
1 n, ! (M n1+K 2y 71 1

(fl[nl...nk

from which we find the most probable and mean value estimates of fl to be

= 1 _
(fl) = R—3 (17-6)
_ nl+l
f1 = TR ; compare (16~ 39) (17-7}

Another interesting result is found by taking the limit of (Mm[Ap) in
(16-17) as M > ®, (m/M) > £. We easily find
(Af|Ap) = §{f-p) (17-8)
Likewise, taking the limit of (Ap[Nn) in {16-20) as N - «, we find

(AplAf) = & (p-f) (17-9)

which alsc follows from (17-8) by application of Baves' theorem. Therefore,

if B is any proposition, we have from our standard argument,

(B[a.)

1

! 1
A.) dp = Q/‘ Bla A )(A_|A) 4
fo @A |r) ap = [ @Blaa k(2

i

1
f (Bla } $(p-£) dp . (17-10)
¢ 1%

In the last step we used the property (1€6-1) that Ap automatically neutralizes
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any other statement about A. Thus, if £ and p are numerically egual, we
hawve (B]Ap) = (B[Af); Ap and Af are equivalent statements in their implication
for plausible reasoning.

To verify this eguivalence in one case, note that in the limit N - o,
(n/N) - £, (Mm[Nn) in Eguation (16-22) reduces to the binomial distribution
(Mmpr} as given by (16-17). The generalized formula (16~ ), in the cor-

responding limit, goes into the multinomial distribution,

fm. «..m [ £ (17-11)

1 k717 7k m o l...m ! 1 k )

This equivalence shows why it is so easy to confuse the notions of
probability and freguency, and why in many problems this confusion does no
harm. Whenever the available information consists of observed freguencies
in a large sample, and constancy of the "causal mechanism," Laplace's theory
becomes mathematically equivalent to the frequency theory. Most of the
"classical" problems of statistics (life insurance, etc.) are of just this
type; and as long as one works only on such problems, all is well. The harm
arises when we consider more general problems.

Today, physics and engineering ocffer many important applications for
probabkility theory in which there is an absolutely essential part of the
evidence which cannot be stated in terms of freguencies, and/or the quantities.
about which we need plausible inference have nothing to do with freguencies.
The axiom (probability) = (frequency), if applied consistently, would prevent

us from using probability theory in these problems.

17.2. OCne-Dimensional Neutron Multiplication.

Our discussion so far has been rather abstract; perhaps toe much so.
In order to make amends for this, I would like to show vou a specific physical

problem where these equations apply. This was first described in a short
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ncte by Bellman, Kalaba, and Wing (1957) and further developed in the recent
book of Wing (1962). Neutrons are traveling in fissionable material, and

we want te estimate how many new neutrons will ke produced in the long run

in consequence of one incident trigger neutron. In order to have a tractable
mathematical problem, we make some drastic simplifying assumptions:

{a) the neutrons travel only in the *x-direction, at a constant
velocity.

(b) each time a neutron, traveling either to the right or the left,
initiates a fission reaction, the result is exactly two neutrons,
one traveling to the right, one to the left. The net result is
therefore that any neutron will from time to time emit a progeny
neutron traveling in the opposite direction.

{c) the progeny neutrons are immediately able to produce still more
progeny in the same manner.

We fire a single trigger neutron into a thickness x of fissicnable material
from the left, and the problem i1s to predict the number of neutrons that

will emerge from the left and from the right, over all time, as a consegquence.
At least, that is what we would like to calculate. But of course, the number
of emerging neutrons is not determined by any of the given data, and so the
best we can do is to calculate the probability that exactly n neutrons will
be transmitted or reflected. I want to make a detailed comparison of the
Laplace theory and the frequency theory of probability, as applied to the
initial formulation of this problem. I am concerned mainly with the under-
lying rationale by which we relate probability theory to the physical model.

Many propcnents of the frequency theory berate the Laplace theory on

purely philosophical grounds that have nothing to do with its success or failure
in applications. There is a more defensible position, held by scme, who

recognize that the present state of affairs gives them no reason for smugness,

17=-¢



and a good reason for caution. While they believe that at present the frequency
theory is superior, they alsoc say, as one of my correspondents did to me,
"I will most cheerfully renocunce the freguency theory for any theory that
yields me a better understanding and a more efficient formalism." The trouble
is that the current statistical literature gives us no opportunity to see the
Laplace theory in actual use so that valid comparisons could be made; and
that is the situation I am trying to correct here.

First, let us formulate the problem as it would be done on the freguency
theory. Here is the way the "frequentist" would reason:

"The exeerimentalists have measured for us the relative frequency p = ad
of fission in a very swmall thickness 4 of this material. This means that
they have fired N trigger neutrons at a thin film of thickness A, and cobserved
fission in n cases. Since N is finite, we cannot find the exact value of
p from this, but it is approximately equal to the observed frequency {(n/N).
More precisely, we can find confidence limits for p. In similar situations,
we can expect that about k per cent of the time, the limits (Cramér, 1946;

p. 515)

N 2n + A2 T (N-n} 3z
N+>\2[ ON ik/_nﬁ_*?ﬁa’f‘ (17-12)

will include the true value of p, where A is the (100 - k} per cent value

of a normal deviate. For example, with A = /5} the range
n+1 N 1/2n(m—n) 1 n+1 /2n (0-n)
+ [ o -
N+2 T ON+2 NT T NZ T N2 K (17-13)
will cover the correct p in about 84 per cent of similar cases. [Again,
there's that +1 and +2 of Laplace’s rule of succession!] In general, the

connection between A and k is given by

MiN

A
i B
Vamf_, © dx = 160
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Equation (17-12) is an approximation valid when the numbers n and (N-n) are
sufficiently large; the exact confidence limits are difficult to express
analytically, and for small N one should consult the graphs of Pearson and
Clopper (1934). The number p is, of course, a definite, but imperfectly

known, physical constant characteristic of the figsionable material.

"Now in order to calculate the relative frequency with which n neutrons
will be reflected from a thickness x of this material, we have to make some
additional assumptions. We assume that the probability of fission per unit
length is always the same for each neutron independently of its history.

Due to the complexity of the causes operating, it seems reasonable to assume
this; but the real test of whether it is a valid assumption can come only
from comparison of the final results of cur calculation with experiment.
This assunption means that the probabilities of fission in successive slabs
of thickness A are independent so that, for example, the probability that
an incident neutron will undergo fission in the second slab of thickness 4,
but not in the first, is the product p(l-p).

"At this point we turn tc the mathematics and solve the problem by any
one of several possible techniques, emerging with the relative frequencies
pn(x), qn{x) for reflection or transmission of n neutrons, respectively.
fActually, the analytical solution has not yet been fcund, but the book of
Wing (1962) gives the results of numerical integration, which is equally
good for orr purposes.]

"We now compare these predictions with experiment. When the first trig-
ger neutron is fired intc the thickness x, we observe r, neutrons reflected
and t1 neutrons transmitted. This datum does not in any way affect the
assignments pn(x), qn(x), since the latter have no meaning in terms of a
single experiment, but are predictions only of limiting freguencies for an

indefinitely large number of experiments. We therefore must repeat
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the experiment many times, and record the numbers ri, ti for each experiment.
If we find that the frequency of cases for which ri = n tends sufficiently
close to pn(x) ['sufficiently close' being determined by certain significance
tests such as Chi-squared], then we conclude that the theory is satisfactory;
or at least that it is not rejected by the data. TIf, however, the observed
frequencies show a wide departure from ﬁn(x), then we know that there is
something wrong with our initial set of assumptions.

"Now, of course, the theory is either right or wrong. If it is wrong,
then in principle the entire theory is demolished, and we have to start all
over again, trying to find the right theory. In practice, it may happen
that only one minor feature of the theory has to be changed, so that most
of the old calculations will still be useful in the new theory."

k ok d ok ke % ok % Kk Kk K * ok * ¥ K Kk Kk Kk k Kk ¥ kX * k % k X%

Now let's state this same problem in terms of Laplace's theory. We
regard it simply as an exercise in plausible reasoning, in which we make the
best possible guesses as to the outcome of a single experiment, or of any
finite number of them. We are not concerned with the prediction, or even
the existence, of limiting frequencies; because any assertion about the out-
come of an impossible experiment is obviocusly an empty statement, and cannot
be relevant to any application. We reason as follows:

The experimentalists have provided us with the evidence Nn’ by firing
N neutrons at a thin film of thickness A, and observing fission in n cases.
Since by hypothesis the only prior knowledge was that a neutron either will
or will not undexrgo fission, we have just the situation wherxe Laplace's rule
of succession applies and the probability, on this evidence, of fission for

the (N+1)'th neutron in thickness A, 1s

y = DFL (17-14)

F N
( N+1| n N+ 2

lre
ill
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where

F
m

1l

"the m'th neutron will underge fission,"

Whether N is large or small, the guestion of the "accuracy" of this probabi-
lity deoes not arise--it is exact by definiticn. Of course, we will prefer

to have as large a value of N as possible, since this increases the weight

of the evidence Nn and makeg the probability p, not more accurate, but more
stable. The probability p is manifestly not a physical property of the fis-
sionable material, but is only a means of describing our state of knowledge
about it, on the basis of the evidence N, . For, if the preliminary experiment
had yvielded a different result N oy then we would of course assign a different
probability p'; but the properties of the fissionable material would remain

the same.

We now fire a neutron at a thickness x = Mp, Define the propositions,

F? = "The neutron will cause fission in the n'th slab of thickness A"

£1 "The neutron will not cause fission in the n'th slab.”

11t

The probability of fission in slab 1 is then
1
p= (FN) =5 {17-15)

But now the probability that fission will occur in the second but not the
first slab, 1s not p{l-p) as in the first treatment. At this point we see
one of the fundamental differences between the theories. From our Rule 1,

we have

(F2f1|N )
n

{F2|le )(fl[N ) = ==
n n

(n+l) (N-n+1)
{N+2) (N+3)

(17-16)

. . . . 21 21
The difference is that in calculating the probability (F If Nn), we must
take into account the evidence fl, that a neutron has passed through one

more thickness A without fission. This amounts to one more experiment in
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addition to that leading to N_ - The evidence fl is fully as cogent as N

and it would be clearly inconsistent to take one into account and ignore the
other. Continuing in this way, we find that the probability that the incident
neutron will emit exactly m first-generation progeny in passing through thick-

ness MA is just the expression

_ /My {ntm) 1 (W+1) ! (N+M-n-m) !
{MmJNn) h (m) n! (N-n) ! (N+M+1) !

which we have derived before, Eg. (16-22). Now if N is not a very large

{(17-17)

number, this may differ appreciably from the value
_ (M Myq_ .y M-m
(Mp[Ag) = (m) p {(l-p) (17-18)

which one obtains in the frequency approach. However, note again that as the
welght of the evidence Nn increases, we find (AP'JND) -+ §({p" - gq, and

(Mman) > (MmrAp)

in the limit N =+ =, (n/N} + p. The difference in the two results is negli-
gible whenever N>>M; i.e. when the weight of the evidence Nn greatly exceeds
that of Mm' Now let's study the difference between (17-17) and (17-18) more
closely. From (17-17) we have for the mean value estimate of m, on the
Laplace theory,

n+l

17-19
N+2 ( )

m= M

To state the accuracy of this estimate, we can calculate the variance of the

distribution (17-17). This is nmost easily done by using the representation
(16-21):
2 oM 2 1
n® =} mf(M[A)(A|N)dP
n=0 0 . p P n
(N+1) ! J/I 2 n N-n
= — Mp + M{M-1 1- d
SRTEREEA (Mp M-1)p"] p (1-p) D
_ nt+1l _ (n+l) (n+2) )
= Mg PRl (N+2) (N+3) (17-20)
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which gives the wvariance

o o NM#2  n+l n+l
V=m -mn = "3 Y52 |1- E:E] (17-21)
while, from (17-18), the frequency theory gives
Eé = Mp (17-22)
VO = (;E-— EQJO = Mp(l-p) (17-23)

If the freguentist takes the center of the confidence interval {17-13) as

his "best" estimate of p, then he will take p = (n+l)/(N+2) in these equations.
So, we both obtain the same estimate, but the variance (17-21) is greater

by the amount

M-1
— — ——— M l_ —_
v vo N3 p{1l-p} (17-24)

Why this difference? Why is it that the Laplace theory seems to determine

the value ©of m less precisely than the frequency theory? Well, appearances
are deceiving here. The fact is that the Laplace theory determines the value
of m more precisely than the freguency theory; the variance (17-23) is not

the entire measure of the uncertainty as to m on the frequency theory, because
there 1s still the uncertainty as to the "true" value of p. According to
{(17-23), p is uncertain by about t/§§T1:§T7ﬁ; so the mean value (17-22) is

uncertain by about

2p{l-p)
M LNB— (17-25)
in addition to the uncertainty represented by (17-23). If we suppose that

the uncertainties (17-23) and (17-25) are independent, the total mean square
uncertainty as to the value of m on the frequency theory would he represented

by the sum of (17-23} and

1_
M2 2p{l-p)

N (17-26)

which more than wipes out the difference (17-24). The factor 2 in (17-26)
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would of course be changed somewhat by adopting a different confidence level;
but no reascnable choice can change it wvery much.

In the freguency theory, the two uncertainties (17-23), (17-26) appear
as entirely separate effects which are determined by applying two different
principles; one by conventional probability theory, the other by confidence
intervals. In the Laplace theory no such distinction exists; both are given
automatically by a single calculation. We found exactly this same situation
back in our particle-ccunter problem [Lecture 9, Sec. 9.3.], when we comparsd
our robot's procedure with that of the orthodox statistician.

The mechanism by which the Laplace theory is able to do this is very
interegting. It is just the difference already noted; in the derivation of
(17-17) we are continually taking into account additional evidence accumulated
in the new experiment, such as fl in (17-16). In the freguency theory, the
uncertainty (17-25) in p arises because only a finite amount of data was
provided by the preliminary experiment given N - It is just for that reason
that the new evidence, such as fl, igs still relevant. In thus giving a
consistent treatment of all the evidence, the Laplace theory automatically
includes the effect of the finiteness of the preliminary data, which the
frequency theory is able to do only crudely by the introduction of confidence
intervals. In the Laplace theory there is no need to decide on any arbitrary
"confidence level" because probability theory, when consistently applied to
the whole problem, already tells us what weight should be given to the pre-
liminary data Nn.

What we get in return for this is not merely a more unified treatment;
in yvielding a smaller net uncertainty in m, the Laplace theory shows that
the two sources of uncertainty (17-23) and (17-26) of the frequency theory
are not independent; they have a small negative correlation, so that they

tend to compensate each other. That is the reason for Laplace's smaller
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prokable error. If you think about this wvery hard, you will be able to sece
intuitively why this negative correlation has to be there--I won't deprive
you of the pleasure of figuring it ocut for yourself. All this subtlety is
completely leost in the frequency theory.

"But," someone will obdject, "vyou are ignoring a very practical consid-
eration which was the original reason for introducing confidence intervals.

While I grant that in principle it is better to treat the whole problem in

a single calculation, in practice we usually have to break it up into two
different ones. After all, the preliminary data N was obtained by one group
of people, who had to communicate their results to another group, who then
carried out the second calculation applying this data. It is a practical
necessity that the first group be able to state their conclusions in a way

that tells honestly what they found, and how reliable it was. Their data

can also be used in many other ways than in yvour second calculation, and the
introduction of confidence intervals thus filled a very important practical
need for communication between different workers."

Of course, if you have followed everything in these lectures so far,
you know the answer to this. The memory storage problem was ovr original
point of departure, and the problem just discussed is a specific example of
just what I pointed out more abstractly in Eg. (l6-15). You see from (1&6-21).
and also in our Qeriwvation of (17-21), that the only property of the prelim-
inary data which we needed in order to analyze the whole problem was the
Ap-distribution (Ap|Nn) that resulted from the preliminary experiment. The
principle of confidence intervals was introduced to fill a very practical
need. But there was no need to introduce any new principle for this purpose;
it is already contained in prokability theory, which shows that the exact
way of communicating what you have learned is not by specifying confidence

intervals, but by specifying your final Ap-distribution.
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As a further point of comparison, note that in the Laplace theory there
was no need to introduce any "statistical assumption" about independence of
events in successive slabs of thickness A. In fact, the theory told us, as
in Eg. (17-16), that these probabilities are not independent when we have
only a finite amount of preliminary data; and it was just this fact that
enabled the Laplace theory to take account of the uncertainty which the
frequency theory describes by means of confidence intervals.

Now this brings up a very fundamental point about probability theory,
which the fregquency theory fails to recognize; but which is essential for
applications to both communication theory and statistical mechanics, ag I
will show in later lectures. What do we mean by saying that two events are
"independent?"

In the frequency theory, the only kind of independence recognized is
causal independence; i.e. the fact that one event occurred does not in itself
exert any physical influence on the occurrence of the other. Thus, in the
coin-tossing example that I discussed iﬁ Lecture 16, the fact that the coin
comes up heads on one toss, of course, doesn't physically affect the result
of the next toss, and so on the frequency theory one would call the coin-
tossing experiment a typical case of "independent repetitions of a random
experiment;" the probability of a heads at both tosses must be the product
of the separate probabilities . But then, you lose any way of describing
the difference between the reasoning of Mr. A and Mr. B in that example!

In Laplace’s theory, "independence" means something entirely different,
which we see from a glance at our Rule 1: (AB|C} = (B]C)(AJBC}. Independence
means that (A|BC) = (AIC); i.e. knowledge that B is true does not affect
the prckability we assign to A. Thus, independence means not mere causal
independence, but logical independence. Even though heads at cne toss does

not physically predispose the coin to give heads at the next, the knowledge
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that we got heads may have a very great influence on our predictions as to
the next toss.

The importance of this is that the wvarious limit theorems, which I'11
say more about later, require independence in their derivations. Consequently,
even though there may be strict causal independence, if there is not also
logical independence, these limit theorems will not hold. Writers of the
freqguency school of thought, who deny that probability theory has anything
to do with inductive reasoning, recognize the existence only of causal con-
nections, and as a consequence, they have long been applying these limit
theorems to physical and communication processes where, I claim, they are
incorrect and completely misleading. This was noted long ago by Keynes (1921),
who stressed exactly this same point.

I think these comparisons make it wvery clear that, at least in this
kind of problem, the Laplace theory does provide the "better understanding

and more efficient formalism" that my colleague asked for.

17.3. The de Finetti Theorem.

S¢ far we have considered the notion of an Ap-distribution and derived

a certain class of probability distributions from it, under the restriction
that the ggyg_Ap-distribution is to be used for all trials. Intuitively,
this means that we have assumed the underlying "mechanism” as constant,
but unknown. It is c¢lear that this is a very restrictive assumption, and
the guestion arises, how general is the c¢lass of probability functions that
we can obtain in this way? In order to state the problem clearly, let us
define

1, if A is true on the n'th trial

0, if A is false on the n'th trial

Then a state of knowledge about N trials is described in the most general
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way by a probability function p(xl.;.xN} which could, in principle, bhe defined
arbitrarily (except for normalization) at each of the 2N points.

We now ask; what is a necessary and sufficilent condition on p(xl...xN)
for it to be derivable from an Ap—distribution? What test could we apply
to a given distribution p(xl...xN) to tell whether it is included in our
theory as given above? A necessary condition is clear from our previous
equations; any distribution obtainable in the way we have derived them neces-
sarily has the property that the probability that B is true in n specified
trials, and false in the remaining (N-n) trials, depends only on the numbers
n and N; i.e., not on EEEEE trials in 1 £ n £ N were sgpecified. If this is

s0, we say that p(xl...xN} defines an exchangeable sequence.

An important theorem of de Finetti (1937} asserts that the converse is

also true: any exchangeable probability function p(xl...x ) can be generated
N

by an A _-distribution. Thus there is a function (APIX) = g{p) such that
=

1
g{p) z O, ‘/‘ g{p) dp = 1, and the probability that in N trials A is true in
0

n specified trials and false in the remaining (¥N-n), is given by
! n Nen
P ) = j; p (1-p) g(p) dp (17-27)
This can be proved as follows. Wote that pn(l—p)N_n is a polynomial of degree
N:

N-n pn ZN_D (N—n

n I | k
p (1-p) = =0 n ) (~p) = Ek:O uk(N,n) P (17-28)

which defines ak(N,n). Therefore, if (17-27) holds, we would have

. .
= 7-2
Pyln) = ) o (n) B (17-29)
vwhere
1oy

B, = P gip) dp ' (17-30)

n 0
is the n'th moment of g(p). Thus, specifying BO' Bl' 82,..., BN is equivalent
to specifying all the ® _(n) for n =0, 1,2,..., N. Conversely, for given N,

N
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gpecifying PN(n}, 0 < n< N, is equivalent to specifyving {60...8N}. In fact,

BN iz the probability that X1 T Xy = ... = Xy = 1, regardless of what happens
in later trials, and its relation to PN(n] can be established directly without

reference to any function gip).

So, the problem reduces to this: if the numbers 80, Bl' 82, .. are

specified, under what conditions does a function g(p) » 0 exist such that

{17-30) holds? This is just the well-known Hausdorff moment problem, whose

solution can be found many places; for example in the book of Widder (1941;
Chap. 3). Translated into our notation, the main theorem is this: A neces-

gsary and sufficient condition that a function g{p) = 0 exists satisfying

(17-30) [and therefore also (17-27)] is that there exist a number B such that

w (N) P (n) < B, N=0,1,2, .... (17-31)
n=0 in N
But, from the interpretation of PN(n) ag probabilities, we see that the
eguality sign always holds in {17-31) with B = 1, and the proof is completed.
Here is another way of looking at it, which might be made into a proof
with a little more work, and perhaps discloses more clearly the intuitive
reason for the de Finetti theorem, as well as showing immediately just how
much we have sald about g{p) when we specify the PN(n). Imagine g(p) expanded
in the form

oo

glp) = ) o ad (® (17-32)

where ¢ (p) are the complete orthonormal set of polynomials in 0 < p < 1,
n s Z

essentially the Legendre functions:

_ Yenl @° 1oy 1"
byl =~y g PU-PY]
= (-)" vVantl P (2p-1) . (17-33)

¢n(p) is a polynomial of degree n, and satisfies
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1
dp = § 17-
j;¢m<p) 0 (p) dp = 8 (17-34)
If we substitute (17-34) into (17-27), only a finite number of terms will
survive, because ¢; (p) is orthogonal to all polynomials of degree N < k.

Then, it is easily seen that for given N, specifyving the values of P _(n),

N
0 ¢ n< N, is equivalent to specifying the first (N+1) expansion coefficients
{ao, al, a2, PR aN}. Thus, as N -+ «, a function gl(p), defined by (17-32)},
becomes uniguely determined to the same extent that a fourier series uniguely
determines its generating function; i.e., "almost everywhere.”" The main
trouble with this argument is that the condition g(p) 2z 0 is not sc easily
established from (17-32).

The de Finetti theorem is very important to us because it shows that
the connections between probability and freguency which we have found in this
lecture hold for a fairly wide class of probability functions p(xl...xN),
namely the class of all exchangeable sequences. These results, of course,
generalize immediately to the case where there are more than two possible
ocutcomes at each trial.

Possibly even more important, however, is the light which the de Finetti
theorem sheds con one of the oldest controversies in probability theory--
Laplace's first derivation of the rule of succession. The idea of an Ap—
distribution is not, needless to say, my own invention. The way I have intro-
duced it here is only my attempt to translate into modern language what I
think Laplace was trying to say in that famous passage, "When the probability
of a simple event is unknown, we may suppose all possible values of this
probakility between 0 and 1 as equally likely." This statement, which I
interpret as saying that with no prior evidence, (AP|X) = ponst., has been
rejected as utter nonsense by virtually everyone who has written on proba-

bility theory in this century. 2and, of course, on any fregquency definition
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of probability, Laplace's stattwment could have no justification at all. But
on any theory it is conceptually difficult, since it seems to involve the
idea of a "probability of a probability,"” and the use of an Ap-distribution
in calculations has been largely avoided since the time of Laplace.

The de Finetti theorem puts some much more s0lid ground under these

methods. Independently of all conceptual problems, it is a mathematical

theorem that whenever you talk about a situation where the probability of

a certain sequence of results depends only on the number of successes, not
on the particular trials at which they occur, all your probability distri-
butions can be generated from a single function g{p), in just the way we
have done here. The use of this generating functicon is, moreover, a very
powerful technigque mathematically, as you will quickly discover if you try
to repeat some of the above derivations [for example, Equation (16-22))
without using an Ap-distribution. So, it doesn't matter what you or I might
think about the Ap—distribution conceptually; its validity as a mathematical

tool for dealing with exchangeable sequences is a proven fact, standing

beyond the reach of mere philosophical objections.
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