Lecture 18

APFLICATION OF PROBABILITY THEORY TO PHYSICAL MEASUREMENTS

Suppose we wish to determine the charge e and mass m of the electron.
The Millikan oil-drop experiment measures e directly. The deflection of an
electron beam in a known electromagnetlic field measures the ratic (e/m).
The deflection of an electron beam toward a metal plate due to attraction
of image charges measures (ez/m).

From the results of any two of these experiments we can calculate values
of e and m. But all the measurements are subject to error, and the wvalues
of e, m obtained from different experiments will not agree. How, then, do
we process the data so as to make use of all the information available and
get the best estimates of e, m? What is the probable error remaining? How
much would the situwation be improved by including still another experiment
of given accuracy? In tiis lecture I want to show that probability thoory

gives simple and elegant answers to these guesticns.

18.1. Reduction of Eguations of Condition.

More specifically, suppose we have the results of these experiments:
{1) measures e with *2% accuracy
{(2) measures (e/m) with *1% accuracy
{3) measures (ez/m) with *5% accuracy
Supposing the values of e, m approximately known in advance, e = e r m = m,,

the measuremants are then linear functions of the corrections. Write the
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unknown true values of e and m as

[t
i

eo{l + xl)

=)
Il

mo(l + xz) {18-1)

then x_,x. are dimensionless corrections, small compared to unity, and our

12

problem is to find the best estimate of X, and X, The results of the three

measurements are three numbers Ml, M2, M3 which we write as

Ml = eo(l + yl)

e

_ O

M, = Er—(l + yz)

o)

2

®o

M3 = {1+ Y3) (18-2)

where the y; are also small dimensionless numbers which are defined by (18=-2)
and are therefore known in terms of the o0ld estimates e s M and the new

2
measurements Ml, Mz, M3. On the other hand, the true wvalues of e, e/m, ¢ /m

are expressible in terms of the X8

e eO{l + xl)

eO(l + xl) e,
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m = mo 1t xg) = (1 + 2%, - X, + ...} {18-3)

2 e 2(1 + x
5]

where higher order terms are considered negligible. Comparing {18-2) and

{18-3) we see that if the measurements were exact we would have

Y17 %
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But taking into account the

errors, the known y; are related to the unknown

x5 by
SRS F S T P |
Yy T % Fp T A Mt 6
Yy T 83y %)t Ay, ¥, F 0y (18-4)
where the coefficients a; 5 form a (3 x 2) matrix:
a1, P 1 0
A = a21 a22 = 1 -1 {(18-5)
4, Ay 2 -1
and the Gi are the unknown fractiocnal errors of the three measurements. For
example, the statement 62 = —-0.01 means that the second measurement gava a

result one per cent too small.

More generally, we have n unknown quantities {xl...xn} to be estimated

from N imperfect observations {yl...yN}, with N 2 n, and the N "equations

of condition,"

n
Y. =

oY, in matrix notation,

where A is an (N x n) matrix.

It seems plausible that the best estimate of cach x.

P07 Ly g %

+ &, i {18-6)

1

l; 2, ‘e N.

y = Ax + & {18-7)

i will be some linear

combination of all the Y. but if N > n we cannot simply sclve edquation

(18-7) for x, since A is not a square matrix and has no inverse.

However,

we can get a system of equations solvable for x if we take n linear combina-
tions of the egquations of condition; i.e., 1f we multiply (18-7) on the left
(n x N) matrix B.

by some Then the product BA exists and is a square (n x n)
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-1
matrix. Choose B so that (Ba) exists. Then the linear combinaticns are
the n rows of

By = BAx + BE§ {18-8)
which has the unigque solution
-1
x = (BA) Biy - &) (18-9)
If the probabilities of varicus fractional errors ﬁi are symmetric:

p(&.)y = p(—éi) so that <éi> = 0, then corresponding to any given matrix B

1

the "best" estimate of X4 by almost any criterion will be the j'th row of
X = (8a) T By (18-10}

But by making different choices of B {(i.e. taking different linear combina-
tions of the eguations of condition) we get different estimates. Which choice
of B is best?

In the above I have merely restated, in modern terms, the old problem
of "reduction of equations of condition" studied by 18'th century astronomers
and described in Laplace's "Essai Philosophique." A popular criterion for
solution was the principle of least squares; find that matrix B for which
the sum of the squares of the errors in ;l ig a minimum; or perhaps use a

J

weighted sum. This problem can be solved directly.

18.2. Reformulation as a Decision Problem,

But we really solved this problem in Lecture 13, for we have already
shown in full generality that the best estimate of any parameter (or any
quantity, if you are squeamish about calling every unknown quantity a "para-
meter), by the criterion of any loss function, is found by applying Baves'
theorem to find the probability that the parameter lies in various intervals,
then making that estimate which minimizes the expected loss taken over the
posterior probabilities.

Now in the original formulation of the problem, as given above, it was
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only a plausible conjecture that the best estimate of Xj is a linear com=-
bination of the y; as in BEquation (18-10). The material in Lecture 13 shows

us a much better way of formulating the problem, in which we don't have to
depend on conjecture. Instead of trying to take linear combinations without
knowing which combinations to take, we should apply Bayes' theorem directly

to the equations of condition. Then, if the best estimates are indeed of

the form {18-10), Bayes' theorem should not only tell us that fact, it will
automatically give us also the best choice of the matrix B.

Let's deo this calculation for the case the probabilities assigned

to the errors 6; of the various measurements are independent and gaussian.
We expect this to be the most realistic case, since in most physical measure-
ments the total error is the sum of contributions from many small imperfections,
and the central limit theorem, to be discussed later, would then lead us
to the gaussian form. To anticipate a little, this is subject to one important
gqualification; that in general the gaussian approximation will be good only

for those values of total error § which can arise in many different ways by
combination of the individual elementary errors. For unusually wide deviations
the gaussian approximation can be very bad--just how bad we will see later
when we study the Cauchy distribution.

The probability that the errors {61...6N] lie in the intervals ddl...dGN

respectively, is

N

_ _ 21 2 -
p(él...ﬁN) dél...dGN = (const.) exp[ » Ei=l wiéi ]dal"'dﬁﬁ {18-11)

where the "weight" Wi is the reciprocal variance of the error of the i'th
measurement. For example, the crude statement that the first measurement has
+2 per cent accuracy, now becomes the more precise statement that the first

measurement has weight

- - = 2500 18-12
¥ <512> (.02)2 ¢ )
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From {18-6) and (18-11) we have immediately the probability density for

obtaining measured values {yl...yN} given the true values {xl...xn}:

1N n 2}
{Yl"'Ylel"'xn) = Clexp{; 5 Zi=l wi[yi - Ej=l uijxj] (18-13)

where Cl is independent of the Vs According to Bayes' theorem, if we assign
uniform prior probabilities to the xj, then the posterior probability density

for the xj, given the actual measurements Vi is of the form

N

(x x | ) =¢C {— 1 ) w, [y. - En X ]%} {18-14)
1 ¥n Y Yyt T ST 2 L ViV T L=l %555

where C, is independent of the x,. Now

2 3

Lien Y3t 7 ja1 245%y)

N n n
= W - 2 a,. %X, + ]
Zi=l [Yl Yy Ej=l 1373 Zj,k=l 13171k 37k
n n N 2
= -2 L.x, + V. 18-15
L e K3 s T 2 Lyop By Loy "% ( )
where
I 18-16
Kjk = L. Widi4ay (18-16)
= 7 (18-17)
Ly = Ly YiY3%44

or, defining a diagonal "weight" matrix Wij = wi éij’ we have a matrix K and

a vector L:

b

K= Wa (18-18)

I

L = Wy (18-19)

where A is the transposed matrix. We want to write {(18-14) in the form

1 =N —

x = C.expl- = K., (X. - x.)(x - x)] (18-20)

(ep e xp 1Yoy 3 2 Ly k=1 T3k 3' Yk Tk

whereupon the ;5 will be the mean value estimates desired. Comparing (18-15)
and (18-20) we see that

Il —
} K. x =L, (18-21)
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or,

=0 M s (18-22)
k j=1 kj 7

and this is the solution for best estimates of the ;# by the mean-square

error criterion. From (18-18) and (18-19), we can write the result as
x-aunlaiwy (18-23)
and, comparing with (18-10), we see that in the gaussian case with uniform
prior probabilities, the best estimates are indeed of the form (18-10}, and
the best choice of the matrix B is
B=2aW , (18-24)
a result given by Laplace (1819).

et us apply this solution to our determination of ¢ and m. Here the

measurements of e, {(e/m), (ez/m} were of 2%, 1%, 5% accuracy respectively,

and so
1
W, = ——"—y = 10,000
2 (.01
.
w3 =—73 = 400 {18-25)
(.05)

and we found Wy = 2500 before., Thus we have

. 1 1 2 W W 2w
B=4AW= O w2 0 = 1 2 3 (18-26)
0 -1 -1 0 -w, W
2 3
0 0 W
3
. (wl+w2+4w3) —(w2+2w3)
K=AWA-= (18-27)
—(w2+2w3} (w2+w3}
(W, +w.) (W +2w._)
-1 ~ -1 2 3 2 3
K~ = (AWa) ~ = % (18-28)
(w2+2w3) (w1+w2+4w3}

18-7



where

A = det{k) = wow, WoW + WaWy (18-29)

Thus the final result is

W (W +w.} -W. W W, W
~ 172 73 2 3 23
A= f (18-30)

wl{w2+2w3) —wz(wl+2w3) w_ (w_—w_)

Awa t

and the best estimates of X1r %, are

wl(w2+w3)yl + w2w3{y3—y2}

Wyky + Wowy + wawW)
= W lry ) b wawgly-2y,y) 4 wawy (2y,-y,)
x2 - WW_ +wWww ot ww (18-32)
12 23 31
Inserting the numerical wvalues of wl, W w3, we have
X, = lﬁ + — (y.- 18-33
1715 ¥yt yg Wyvy) (18-33)
X = = -y ) + = -2 + o= (2y = 18-34
2 =% {yl Y, 1 (y3 y2) 30 ( Y, y3) ( )

which exhibits the best estimates as weighted averages of the estimates

taken from all possible pairs of experiments. Thus, ¥y is the estimate of

Xy oktained in the first experiment, which measures e directly. The second

. . 2 -1
and third experiments combined give an estimate of e given by (e /m) (e/m) ~.

Since
2
So_
o (HY3)
o
. = e (L+tyy=y,)
w (YY)
o]

1 given by experiments 2 and 3. Eguation (18-33)

says that these two independent estimates of % should be combined with weights

{y3—y2) is the estimate of x

13/15, 2/15. Likewise, Equation (18-34) gives ;é as a welghted average of

three different {although not independent) estimates of X,
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But how accurate are these estimates ;,? From (18-20) we find the

well-known formula for the second central moments of {xl...x |yl...yN):
n

_ - - _ _ _ -1 _
4axjaxk> = <(xj xj}(xk xk)> = <xjxk> <xj><xk> {K )jk (18-35)

Thus from the inverse matrix

kY awayt (18-36)

already found in our calculation of ;5, we can also read off the probable
errors, or more conveniently, the standard deviations. From (18-27) we can

state the results in the form (mean) * (standard deviation) as

x. =x. t Jix'hy (18-37)

] 3 i]
_ w2 + W3 l/2
X1 =X 2 10y Fww + ww {18-38)
12 23 31
w, o+ w, ¥ 4w 12
o+ 12 3 (18-39)
X, = X, t —
+ +
2 2 wlw2 w2w3 w3w1
with numerical values
x. = x. * 0.0186
1 1
Xy = X, E 0.0216 (18 40)

so that from the three measurements we obtain e with *1.86 per cent accuracy.
m with £2.16 per cent accuracy.

How much did the rather poor measurement of (ez/m), with only *5 per cent
accuracy, help us? To answer this, note that in the absence of this experiment
we would have arrived at conclusions given by (18-27), (18-31) and (18-32)
in the limit W, > 0. The results {also easily verified directly from the

statement of the problem) are

X = v.-y (18~41)
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W W
- 2
Kl = - ‘1\? 2 (18-42)
1720 w (w_+w )
2 1

or, the (mean) * {(standard deviation) values are

1
xl = yl + w yl + 0.020
1
wl+w2“l/2
X, = ¥17Y, + wlwg = Y7V, + 0.024 (18-43}

As might have been anticipated by common sense, a low-accuracy measurement
can add very little to the results of accurate measurements, and if the
(ez/m) measurement had been much worse than *5 per cent it would hardly Le
worth-while to include it in our calculations. But suppose that an improved
technigue gives us an (ez/m) measurement ¢f *2 per cent accuracy. How much
would this help? The answer is given by our previous formulas with w, = w

1 3

= 2500, W, = 10,000. We find now that the mean-value estimates giwve much

higher weight to the egtimates using the (eg/m)J measurement:

X

.556 + 0.444(y_-
1 0.55 Y, 0 (y3 Yz)

X

0.444 - + (0.444 -2 0.112{2v_- 13-44
5 (yl yz) (y3 y2J + { Y, 7Y ) (183 )

3

which is to be compared with (18-33), (18-34). The standard deviations are
given by

x = x_ + 0.0149
X =x * 0.020 (18-45)

The accuracy of e is improved roughly twice as much as that of m, since the

improved measurement involves ez, but only the first power of m.

13.3. Discussion: & Paradox.

We can learn many more things from studying this problem. For example,
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I want to peint out something which you will find asteonishing at first. If
you study Equation (18-32), which gives the best estimate of m from the
three measurements, you will gee that Y3r the result of the (e2/m) measursnent,

enters into the fermula in a different way than ¥y and Yo, It appears once

with a pesitive coefficient, and once with a negative one. If Wl Wy these
coefficients are equal and (18-32) collapses to
Z, =¥, T ¥, {18-46)

Now, realize the full implications of thisz: it says that the only reason

2 . . . .
we make use of the (e /m) measurement in estimating m is that the (&) measure-

ment and the (e/m) measurement have different accuracy. No¢ matter how accu-

rately we know (ez/m}, if the (&) and (e/m) measurements happen to have the
same accuracy, however peor, then we should ignore the good measurement and
base our estimate of m only on the (=) and (e/m) measurements!

I think that your common sense will instantly revolt against this con-
clusion, and vou will say that there must be an error in Equation(18-32).

So, let's take a minute off while you check the derivation.

This is a perfect example of the kind of result which probability theory
gives us almost without effort, but which our unaided common sense might
not notice in years of thinking about the problem. I won't deprive vou of
the pleasure of resclving this "paradox" for yourself, and explaining to
your friends how it can happen that consistent inductive reasoning may demand
that you throw away your best measurement.

You recall that, back at the end of Lecture 9, I complained about the
fact that orthodox statisticians sometimes throw away relevant data in order
to fit a problem tc their model of "independent random errors.” Am I now
guilty of advocating the same thing? No doubt, it looks wvery much that way!
Yet I plead innocence—-the numerical value of (e2/m) is in fact irrelevant

to inference about m, 1f we already have measurements of e and e/m of equal
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accuracy. Try drawing diagrams—-or just try and figure out how you would
use (e2/m) in this situation=--and I think you'll see why this is so.

As another example, it is important that we understand the way our
conclusions depend on our choice of loss functions and probability distri-
butions for the errors Si. If we use instead of the Gaussian distribution
(18-1)) one with wider tails, such as the Cauchy distribution p(é) ~ {1 + %w62}d1,
the posterior distribution (xlx2]y1y2y3) may have more than one peak in the
(xl,xzj—plane. Then a quadratic loss function, or more generally any concave
loss function (i.e. doubling the error more than doubles the loss) will lead
you to make estimates of xl and x2 which lie between the peaks, and are known
to be very unlikely. With a convex loss function a different "paradox"
appears, in that the basic sguation (13-16) for constructing the best estimator
may have more than one solution, with nothing to tell us which one to use.

The appearance of these situations is the robot's way of telling us
this: our state of knowledge about X and xz is too complicated to be described
adequately simply by.giving estimates and probable errors. The only honest
way of describing what we know is to give the actual distribution (xlx2|yly2y3).

This is one of the limitations of decision theory which we have to understand

in order to use it properly.
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