Iecture 20

INTRODUCTICN TO COMMUNICATION THEORY

At this point we have all the basic machinery of cur theory developed,
and have seen its application in some of the "classical" problems. We said
back in the first talk that what started all this was the attempt to see
gtatistical mechanics and communication theory as examples of the same line
of reasoning. A generalized form of statistical mechanics appeared as soon
as we supplemented Laplace's theory of inductive reasoning by the notion
of entrcpy, and we ought now to be in a position to treat communication theory
in a similar way.

One difference is that in statistical mechanics the prior information
has nothing to do with freguencies (it consists of measured values of quanti-
ties such as pressure); while in communication theory the pricr information
is obtained in a different way, which makes the probability-frequency paradoxes
much more acute. For this reason I thought it best to take up communication
theory only after we had seen some of the general connections between prokba-
bility and frequency, via the Ap distribution and the de Finetti thecrem.

First the difficult matter of giving credit where credit is due. All
major advances in understanding have their precursors, whose full significance
is never recognized at the time. Relativity theory had them in the work of
Mach, Fitzgerald, and lorentz, to mention only the most cbviocus examples.
Communication theory had many precursors, in the worxk of Gibbs, Nygquist,

Hartley, Szilard, von Neumann, and Wiener. But there is no denying that the
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work of Shannon (1948} represents the arrival of the main signal, just as
did Binstein's of 1905. Here for the first time, ideas which had long been,
so to speak, "in the air™ in a wague form, are grasped and put into shaxp
focus.

Shannon's papers were so full of important new concepts and results
that they exercised ncot only a stimulating effect, but also a paralyzing effect.
During the first few years after thelr appearance, it was common to hear the
opinion expressed, rather sadly, that Shannon had anticipated and solwved
all problems of the field, and left nothing else for others to do. Teday,

I think, no one entertains any such ideas, and the field has seen considerably
more development.

The psst-sShannon developments, with few exceptiéns, can be classed into
efforts in two entirely different directions. On the one hand we have the
expansionists, who try to apply Shannon's ideas to cother flelds, as I have
been doing. Others range from the entropy calculator (who works out the
entropy of a television signal, the French language, a chromosome, or almost
anything else you can imagine; and often finds that nobody knows what to do
with the result), to the universalist (who assures us that communication
theory will revolutionize all intellectual activity; but seldom offers a
specific example of anything that has been changed by it).

We should not be critical of these efforts because, as J. R. Pierce has
said, it is wvery hard to tell at present which ones make gense, which are
pure nonsense, and which are the beginning of something that will in time
make sense. My own efforts have received ali three classificaticns from various
gquarters. I have a very strong hope, and a moderately strong belief, that
the ideas introduced by Shannon will eventually be indispensable to the
linguist, the geneticist, the television engineer, the neurologist, etc.

But I share with many others a feeling of disappointment that twenty vears
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of effort along these lines has led to so little in the way of really useful
advances in these fields. We have today an abundance of wvague philosophy,
and of abstract mathematics, but a rather embarrassing shortage of examples
where specific practical problems have been solved by using communication
theory.

The moral of this is, I think, that more than half the battle is in
learning how to ask the right question. People who want to apply communication
theory to new fields must learn that the first, and hardest, step is to state

precisely what is the problem we want solved. Once we succeed in doing this,

real progress comes easily. I will give some examples pertaining to statis-
+ical mechanics and decision theory in these lectures.

In almost diametric opposition to the above efforts, as far as aim is
concerned, stand the mathematicians, who view communication thecry simply
as a branch of pure mathematics. Characteristic of this school is a belief
that, before introducing a continuous probability distribution, you have to
talk about set theory, Borel fields, measure theory, the Lebesgue-Stieltjies
integral, and the Radon-Nikodym theorem. The important thing ig to make the
theorems rigorous by the criteria of rigor currently popular, even if in so
doing we 1limit the scope of the practical theory, and/or make it unintelligible
to the average scientist or engineex. The recently published books on informa-
tion theory by A.Khinchin (1957) and A. Feinstein (1958) can serve as typical
examples of the style prevalent in this literature.

Here again, no valid criticism of these efforts is possible. Of course,
we want our principles to be subjected to the clesest scrutiny one can bring
to bear on them. If important applications exist, the need for this is so
much the greater; fortunately, mathematicians have found the subject interest-
ing encugh to take on a not very easy task. However, the present talks are

not addressed to mathematicians, but to scientists and engineers who are
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interested in applications; and so I am going to dwell on this side of the
story only to the extent of pointing out that the particular theorems which
the mathematicians have chosen to rigorize are not always the ones relevant
to real situations.
Now, in order to explain this rather cryptic remark, let's turn to some of

the specific things in Shannon's papers.

20.1. The Noiselegs Channel.

We deal with the transmission of information from some sender to some
receiver. I will speak of them in anthropomorphic terms, such as "the man
at the receiving end," although either or both might actually be machines,
as in telemetry or remote control systems. Transmisgion takes place via some
channel, which might be a telephone or telegraph circuit, a microwave link,
a freguency band assigned by the FCC, the German language, the postman, the
neighborhoocd gossip, or a chromosome. If, after having received a message,
the receiver can always determine with certainty which message was intended
by the sender, we say that the channel is noiseless.

It was recognized very early in the game, particularly by Nyguist and
Hartley, that the capability of a channel is not described by any property
of the specific messages it sends, but rather by what it could have sent.
The usefulness of a channel depends on its ability to transmit any one of a
large class of messages, which the sender can choose at will.

In a noiseless channel, the obvicus measure of this ability is simply
the maximum number, W(t), of distinguishable (at the destination) messages
which the channel is capable of transmitting in time t. In all cases of
interest to us, this number eventually goes inte an exponential increase

Ct

for sufficiently large t: W(t) v e ~, so the measure of channel performance

which i1s independent of any particular time interval is the coefficient C
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of this increase. We define the channel capacity as

C lim [%-log Wit)] (20-1)

oo
The units in which C is measured will depend on which base we choose for our
logarithms. Usually one takes the base 2, in which case C is given in "bits
per second," one bit being the amount of information contained in a single
binary {(yes-no) decision, For easy interpretation of numerical values the
bit is by far the best unit to use; but in formal operations it is easier
to use the base e of natural logarithms, and T will do that in this discussion.
Qur channel capacities are therefore measured in natural units, or "nits per
second." To convert, we note that 1 bit = (log.2) = 0.69315 nits, or 1 nit =
1.4427 bits.

The capacity of a noiseless channel is a definite number, characteristic
of the channel, which contains no subjective features. Thus, if a noiseless
channel can transmit n symbols per second, c¢hosen in any order from an alphabet
of a Jetters, we have W(t) = ant, or C = n log a nits/second. Any constraint
on the possible sequences of letters can only lower this number. For example,

if the alphabet is A., A ,...,Aa, and it is required that in a long megsageof

1 2

N = nt symbols the letter Ai must occur with relative frequency fi’ then the

number of possible messages in time t is only

Nl -
wit) = (20-2)
1 |
(Nfl) | (Nfa) !
and from Stirling's approximation, we f£ind, as in Eg. (1¢-17},
C=-n ] £, log £, nits/second. (20~3)

1

This attainsg its maximum value, equal to the previcus C = n log a, in the

case of equal frequencies, f; = a”l. Thus we have the interesting result

that a constraint reguiring all letters to occur with egual frequencies does

not decrease channel capacity at all. It does, of course, decrease the number
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W{t) by an encrmous factor; but the decrease in log W is what counts, and
this grows less rapidly than t, so it makes no difference in the limit.
Suppose now that symbol A, has transmission time ti, but there is no
other constraint on the allowable sequences of letters. What is the channel
capacity? Well, consider first the class of messages in which letter Ai

occurs n, times, i =1, 2, ..., a. The number of such messages is

NI
W{nl...na) = EITTTTH;T (20-4)
where
a
N=Q_, 0 - (20-5)

The total number of different messages that can be transmitted in time t is
then

Ww(t) =} Wi{nj...n) (20-6)

n,
1

where we sum over all choices of (n ...na) compatible with ni > 0 angd

1
a

7 n. t, £ . {(20-7)
i=1 11l

The number K{t) of terms in the sum (20-6) satisfies K(t) < (Bt)? for some

B < w. This is seen most easily by imagining the n; as coordinates in an

a-dimensional space and noting the geometrical interpretation of (20-7).
Exact evaluation of (20-6) would be guite an unpleasant job. But it’s

only the limiting value that we care about right now, and we can get out of

the hard work by the following trick. Note that W(t) cannot be less than

the greatest term W_ = W (n....n ) in (20-6) nor greater than W _K(t):
m max 1 a In
log W, < log w(t) < log W, + a log (Bt) (20-8)
and so we have
.1 , L
C Z lim E‘log W{t) = lim E‘log Wm (20-9)
oo T
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i.e., to find the channel capacity, i1t is sufficient to maximize log W(nl...na)
subject to the constraint (20-7). This rather surprising fact can be under-
stood as fellows. The logarithm of Wt} is given, rather crudely, by

log W(t) = log wmax + log [number of reasonably large terms in {20-6)]

Even though the number of large terms tends to infinity as ta, this is
not rapid enough to make any difference in comparison with the exponential

increase of Woa This same mathematical fact is the reason why, in statis-

<*
tical mechanics, the Darwin-Fowler methed and the method of the most probable
digstribution lead to the same results in the limit of large systems.

We can solve the problem of maximizing log W(nl...na) by the same Lagrange
multiplier argument used in Lecture 10, Section (10.6). The problem is not
quite the same, however, because now N is also to be varied in finding the
maximum.

Using the Stirling approximation, which is walid for large ng, we have

as before

a
log W(nl.-.na] = N log W - Zi=l 0y log ng (20-10}

The variational problem with A a Lagrangian multiplier, is

§[log W + A } n;t;] = 0 (20-11)

but since &N = Z 6ni, we have

§ log W= 6N log N - 6N - Z (Sni log ni - 5ni}

i
oy
= - Z én, log(—%) (20-12)
L N
Therefore (20-11l) reduces to
Ea 1 (235 + Aty én, =0
i-1 199y it oty T
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with the solution

—Ati
n; =Ne (20-13)
To fix the wvalue of A we require
—hti
N=})n, =N)e (20-14)
with this choice of n,, we find
1 1 n') 1
= - = A o2 -
s log W = - 2] n log(N ) n, Oit,) (20-15)

In the limit, €~ § ngt, » 1, and we find
o1
C = lim E-log Wity = X . (20-16)
toee
So, cur final result can be stated very simply:

To calculate the capacity of a noiseless channel in which symbol

ai has transmission time ti and which has no other constraints on the

possible messages, define a partition function

=\t
i

Z(x) =} e (20-17)
i

Then the channel capacity C is the real root of

Z2{x) = 1. (20-18)
You see already a very strong resemblance to the reascning and the
formalism of statistical mechanics, in spite of the fact that we have not

yvet said anything about probasility. From (20-14} we see that Win ...na)

1

is maximized when the relative frequency of symbol A; is given by the canoni-

rcal distribution
In, .
£ = Ei-= e tT=eo * {20-19)

Should we conclude from this that the channel is being "used most efficiently"
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when we have encoded our messages so that (20-192) holds? No, that wouldn't
be quite the right way of putting it. Because, of course, in time t the chan-
nel will actually transmit one message and only one; and this remains true
regardless of what relative frequencies we use. Equation {(20-19) tells us
only that the coverwhelming majority of all possible messages that the channel
could have transmitted in time t are ones where the relative frequencies

are canconical.

On the other hand we have a generalization of the remark following {20-3};
if we impose an additiconal constraint reguiring that the relative frequencies
are given by (20-19), which might be regarded as defining a new channhel, the
channel capacity would not be decreased. But any constraint requiring that
all possible messages have letter frequencieg different from (20-19) will
decrease channel capacity.

There are many other ways of interpreting these eguations. For example,
in our above arguments we supposed that the total time of transmission is
fixed and we wanted to maximize the number W of possible messages among which
the sender can choose. In a praciical communications system, the situation
is usually the other way around; we know in advance the extent of choice
whéch we demand in the wessages which might be sent over the channel, so
that W is fixed. We then ask for the condition that the total transmission
time of the message be minimized subject to a fixed W.

Tt is well known that variational problems can be transformed into several
different forms, the same mathematical result giving the solution to many
different problems., A circle has maximm area for a given perimeter; and
alse it has minimum perimeter for a given area. In statistical mechanics,
the canonical distribution can be characterized as the one with maximum entropy
for a given expectation of energy; or equally well as the one with minimum

expectation of energy for a given entropy. ESimilarly, the channel capacity
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found from (20-18) gives the maximum attainable W for a given transmission
time, while its reciprocal is equal to the minimum attainable transmission
time for a fixed W.

As another extension of the meaning of these equations, note that we
don't have to interpret the quantity ti as a time; it can stand equally well
for the "cost," as measured by any criterion, of transmitting the i'th symbol.
For example, it might be that the total length of time the channel is in
operation is of no importance, bhecause the apparatus has to sit there in
readiness whether it is being used or not. The real economic criterion might
be the total amount cf choice W of different messages which the apparatus
is capable of transmitting before breaking down, for a given installation
cost, The lifetime of the apparatus might be limited by the total number
of times a certain relay has to copen and close. In this case, we could define
t; as the number of times this relay must operate in the course of transmitting
the i'th symbol. The channel capacity given by Eguation {20-18) would then
be measured, not in nits per second, but in "nits per relay operation," and
its reciprocal is equal to the minimum attainable number of relay operations
per nit of transmitted information.

A more complicated type of noigeless channel, also considered by Shannon,
is one where the channel has a memory; it may be in any one of a gset of "states,"
{Sl...Sk} and the possible future symbols, or their transmission times,
depend on the present state. For example, suppose that 1f the Channel is in
state 54, it can transmit symbol An’ which lsaves the channel in state Sj'
the corresponding transmission time being tinj' Surprisingly, the calculation
of channel capacity in this case is guite easy.

Let Wi(tj be the total number of different messages the channel can

transmit in time t, starting from state Sy Breaking down Wi(t) into several

terms according to the first symbol transmitted, we have
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Wo(t) =) W (t-t, ) (20-20)
i in i inj

where the sum 1s over all possible seqguences S, > A - 8,. This is a linear
i n
difference eguation with constant coefficients, so its assymptotlc sclution

must be an exponential function:

W.(t) = B, exp(Ct) {20-21)
i i

and from the definition (20-1) it is clear that, for finite k, the coefficient

C is the channel capacity. Substituting (20-21) into {(20-20}, we obtain

B, = Zk Z..(C) B (20-22)
i j=1 173 3
whera
2,5 () = rfl exp (-At, ) (20-23)
is the "partition matrix.”™ If the seqguence Si -+ An-+ Sj is impossible, we

set tinj = o, By this device we can understand the sum in (20-23) as extending
over all svmbols in the alphabet.

Equation (20-22) says that the matrix Zi' has an eigenvalue equal to

unity. Thus, the channel capacity is the greatest real root of D(A) = 0,
where
Ay = Ay - . -
D{X) det[Zij( ) Gij] (20~24)
In the case of a single state, k = 1, this reduces to the previous rule,

Equation (20-18).

The problems solved above are, of course, only especlalily simple ones.
By inventing channels with more complicated types cof constraints on the
allowable sequences (i.e. with a long memory), vou can generate mathematical
problems as involved as you please. But it would still be just the mathematics--—
as long as the channel is noiseless, there would be no difficulties of principle.
In sach case you simply have to count up the possibilities and apply the

definition (20-1). For some weird channels, you might find that the limit
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therein does not exist, in which case we can't speak of a channel capacity,

but have to characterize the channel simply by giving the function W(t).

20.2. The Information Source.

When we take the next step and consider the information scurce feeding
our channel, fundamentally new problems arise. There are mathematical pro-
blems aplenty, but there are also more basic conceptual problems, which have
to be considered before we can state which mathematical problems are the
significant ones.

It was Professor Norbert Wiener who first suggested the enormously
fruitful idea of representing an information source in probability terms.

He applied this to some problems of filter design, which T will take up briefly
in a later lecture. This work was an essential step in developing a way of
thinking which led tc modern communication theory.

it is perhaps difficult nowadays for us to realize what a big step this
was. Previously, communication engineers had congidered an information source
simply as a man with a message to send; for their purposes an information
source could be characterized simply by describing that message. But Wiener
suggested instead that an information source be characterized by giving the
probabilities that it will emit variocus messages. Already we can see some
ceonceptual gifficulties faced by a frequency theory of probability--the man
at the sending end presumably knows perfectly well which message he is going
to send. What, then, could we possibly mean by speaking of the probability
that he will send something? There is nothing analogeous to "chance" operating
here.

By the probability of a message, do we mean the freguency with which he
sends that particular message? The guestion is absurd--a sane man sends a

given message at most once, and most messages never. Do we mean the frequency
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with which the message M occurs in some imaginary "ensemble" of communication
acts? Well, it's all right to state it this way if you want to, but it doesn't
answer the question. It merely leads us to re-state the gquestion as: what

do we mean by the ensemble? How is it to be set up? Calling it by a different
name doesn't help us.

Right at this point we have to state clearly what is the specific problem

we want solved. B probability distribution is a means of describing a state

of knowledge. But whose state of knowledge do we want to talk about? Evi-
dently, not the man at the sending end. Is it the man at the receiving eng?
Well, that might be relevant te the problem I have in mind. But basically,
since I am talking to scientists and engineers, I want to consider communication
thecry, not as describing the "general philosophy" of communication between
sender and receiver, but as something of practical value to an engineer whose
job is to design the technical eguipment in the communication system. In

other words, the state of knowledge we want to describe is that of the commini-

cation engineer when he designs the equipment.

This consideration is something yvou will not find in the previous liter-
ature based on the viewpoint which sees no digtinction between probability

and frequency; on this view, the notion of a probability for a person with

a certain state of knowledge simply doesn't exist. WNevertheless, from any

viewpoint, the problem of choosing some probability distribution to represent
the information source does exist. It cannot be evaded, and the whole content
of the theory depends on how we do this.

I have already emphasized several times that in probability theory we
never solve an actual problem of practice. We solve only some abstract
mathematical model of the real problem. Setting up this model requires not
only mathematical ability, but also practical judgment. If our model does

not correspond well to the actual situation, our theorems, however rigorous,
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may be more misleading than helpful.

This is so with a vengeance in communication theory because, as I will
show in this lecture, not only the quantitative details, but even the quali-
tative nature of the theorems that can be proved, depend on which prchability
model we use to represent an information source.

The purpese of this probability model is to describe the communication

engineer's pricr knowledge about the messages to be sent. In principle, this

prior knowledge could be of any sort; but in "traditional" communication

theory the only kind of prior knowledge considered consists of frequencies

of letters, or combinations of letters, which have been cbhserved in past
samples of similaxr messages. A typical practical problem is to design eguip-
ment which will transmit English text at a given rate, while using the smallest
possible channel capacity. The engineer will then, according to the usual
viewpcint, need accurate data giving the correct frequencies of English text.
Let's think about that a little more.

Suppose we try to characterize the English language, for purposes of
communication theory, by specifying the relative frequencies of variocus letters,
or compinations of letters. Now we all know that there is a great deal of
truth in statements such as "the latter E occurs more freguently than the
letter Z." Long before the days of communication theory, many people made
cbvious common-sense use of this knowledge. One of the earliest examples
is the design of the Morse telegraphic code, in which the most frequently
used letters are represented by the shortest codes--the exact prototype of
what Shannon formalized and made precise a century later.

The design of our standard typewriter kevboard makes considerable use
of knowledge of letter frequencies. This knowledge was used in a much more
direct and drastic way by Ottmar Mergenthaler, whose immeortal phrase

ETAOIN SHRDLU
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was a common sight in the newspapers not so many years ago. But already we
are getting into trouble, because there does not seem to be complete agreement
even as to the relative order of the twelve most common letters in English,
let alone the numerical values of their relavive frequencies. For example,
according to Pratt (1942} the above phrase should read

ETANOR ISHDLF
while Tribus {1961) gives it as

ETOANTI RSHDLC
As we go into the less fregquently used letters, the situation becomes still
more chaotic.

Of course, we readily see the reason for these differences. People who
have cbtained different walues for the relative frequencies of letters in
English have consulted different samples of English text. It is obvious
enough that the last volume of an encyclopaedia might have a hidgher relative
frequency for the letter Z than the first volume. There is no reason to
expect that letter frequencies would be the same in, say, a textbook on
organic chemistry, a treatise on the history of Egypt, and a modern Aﬁerican
novel. The writing of educated people would reveal systematic differences
in word frequencies from the writings of people who had never gone beyend
grade school. Even within a much narrower field, we would expect to find
significant differences in letter and word frequencies in the writings of James
Michener and Ernest Hemingway. The letter frequencies in the transcript of
the tape recording of this lecture will probably be noticeably different
from those I would produce if I sat down and wrote out the lecture verbatim.

The fact that statistical properties of é language vary with the author
and circumstances of writing is so clear that it has become a useful research
tool. A recent doctoral thesis in classics submitted to Columbia University

by James T. McDonough (1961) contains a computer-run statistical analysis of
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Homer's Iliad. Classicists have long debated whether all parts of the Iliad
were written by the same man, and indeed whether Homer is an actual higtorical
person. The analysis showed stylistic patterns consistent throughout the work.
For example, 40.4 per cent of the 15,693 lines end on a word with one short
syllable followed by two long ones, and a word of this structure never once
appears in the middle of a line. Such consistency in a thing which is not a
characteristic property of the Greek language, seems very strong evidence

that the Iliad was written by a single person in a relatively short period

of time, and it was not, as had been supposed by many nineteenth century
classicists, the result of an evoluticnary process over several centuries.

Of course, the evolutionary theory is not demolished by thisz evidence
alone. If the Iliad was sung, we must suppose that the music had the very
monotonous rhythmic pattern of primitive music, which persisted to a large
exFent ags late aw Bach and Haydn. Characteristic word patterns may have been
forced on the composers, by the nature of the music. Archaecologists tell
us that the siege of Troy, described in the Iliad, is not a myth but an
historical fact, occcurring about 1200 B, C., some four <enturies before Homer.
The decipherment of Mincan Linear B s¢ript by Michael Ventris in 1952 esta-
blished that Greek existed already as a spoken language in the Aegean area
several centuries before the siege of Troy: but the introduction of the
Phoenician alphabet, which made possible a written Greek language in the
modern sense, occurred only about the time of Homer. You see that the question
igs rery complex and far from settled; but I find it fascinating that a statis-
tical analysis of word and syllable frequencies, representing evidence which
has been there in the Iliad for some twenty-eight centuries for anyone who
had the wit to extract it, is now recognized as having a definite bearing
on the problem. Undoubtedly, this is only the beginning of this type of

analysis.
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Well, to get back tc communication theory, the point I am making is
simply this: it is utterly wrong to say that there exists one and only one
"true" set of letter or word frequencies for English text, If we use a
mathematical model which presupposes the existence of such uniguely defined
frequencies, we might easily end up proving things which, while perfectly
valid as mathematical theorems, are worse than useless to an engineer who
is faced with the job of actually designing a communication system to transmit
English text efficiently.

But suppose cur engineer does have extensive frequency data, and no
other prior knowledge. How is he to make use of thig in describing the in-
formation source? Many of the standard results of communication theory can,
from the viewpoint I am advocating, be seen as simple examples of maximum-
entropy inference; i.e. as examples of the same kind of reasoning as in
statistical mechanics. To understand this was my original goal, discussed

in Lecture 1.

20.3. Optimum Encoding: Letter Freguencies Known.

Suppose our alphabet consists of a different symbols Al, Az,..., A,
a

and we denote a general symbol by Ai, Aj, etc. Any message of N symbols

then has the form A, A, ...A, . We dencte this message by M, which is a
1 N
shorthand expression for the set of indices: M = {il i2 i iN}. The number

of conceivable messages is aN. By ZM I mean a sum over all of them. Alse,
define

N, M) = {(nunber of times the letter Aj appears in the message M)

. (M) = {(number of times the digranrﬁfﬁjappears in M),
and so on.

who has a set of numbers (£

Consider first an engineer E -.fa) giving

1’ 1

the relative frequencies of the letters Ai, as observed in past samples of
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messages, but has no other prior knowledge. What communication system represents
rational design on the basis of this much information, and what channel capacity
deoes Eq require in order to transmit messages at a given rate of n symbols

per second? To ansyer this, we need the probabilities p(M) which El assigns

to the wvarious concelvable messages. Now Mr. El has no deductive proof that

the letter frequencies in future messages will be equal to the fi observed

in the past. ©On the other hand, his state of knowledge affords no grounds

for supposing that the frequency of Ai will be greater than fi rather than

less, or vice versa. So he is going to suppose that frequencies in the future
will be more or less the same as in the past, but he is not going to be too
dogmatic about it. He can do this by requiring of the distribution p (M)

only that it yield expected frequencies equal to the past cnes. In cother words,

<N, > = gl N, (M) p(M) = NE, i=1, 2,..., a (20-25)

Of course, p(M} is not uniquely determined by these cconstraints, and so E)
must at this point make a free choice of some distribution.

Let me emphasize again that it makes no sense to say that there exists
any "physical" or "objectiwve" distribution p(M) for this problem. This becomes
especially clear if we suppose that only a single messagé is ever going to
be sent over the communication system; thus there is no conceivable procedure
by which p{M) could be measured as a freguency. But this would in no way
affect the problem of engineering design which we are considering.

In choosing a distribution p{M), it would be perfectly possible for El

to assume some message structure involving more than single letters. For

example, he might suppose that the digram A_A, is more likely than A

1% 3Py

But from the standpoint of El this could not be justified, for as far as he
knows, a design based on any such assumption is as likely to hurt as to help.

From El's standpoint, rational conservative design consists just in carefully
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avoiding any such assumptions. This means, in short, that E1 should choose

the distribution p{M) by maximum entropy consistent with (20-25).
All the formalism of the maximum-entropy inference developed in Lecture
10 now becomes available to El. His distribution p({M) will hawve the form

log pi{M) + A_. + )\lNl(M) + AZNZ(M) + ...+ J\aNa(M} =0 (20-26)

0

and in order to evaluate the Lagrangian multipliers Ai' he will use the

partition function

N
Zgeeer) = 5 exp[-A N (M) - ... - AN M =z (20=27)

where

2= a + ... te . (20~28)
From {20-25}) and the general relation

]

N> o= - EX; log Z(Al...h (20-29}

we find

A\, = - log(zf,) , 1 (20-30)

1

[IFa8
-
| M
J§1]

and, sukstituting back into (20-26), we find the distribution which describes

El's state of knowledge is just the multinomial distribution:

pM) = £ £ R - (20-26a)

which is a special case of an exchangeable sequence; the probability of any
particular message depends cnly on how many times the letters Al, AZ, -

appear, not on their order. The number of different messages possible for

specified Ny is just the multincmial coefficient
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The entropy per symbol of the distribution (20-26a) is

H -

S 1 log 2 a
= - = M i M = =2 . 4+
1 NZP() og p (M) E ALE

N ij=1 11
M

[

a
- Ei=l £, log £ (20-31)

Having found the assignment p(M}, he can encode into binary digits in the
most efficient way by a method found independently by R. M. Fano and C, E.
Shannon (19248, Sec. 9). Arrange the messages in order of decreasing probabi-
lity, and by a cut separate them into two classes so the total probability

of all messages to the left of the cut is as nearly as possible equal to

the probability of messages to the right. If a given message falls in the
left class, the first binary digit in its code is 0; if in the right, 1.

By a similar division of these classes into subclasses with as nearly as
possible a total probability of 1/4, we determine the second binary digit,
atc. I leave it for you to prove that (1) the expected number of binary
digits required to transmit the message is numerically equal to Hl' when
expressed in bits, and (2) in order to transmit at a rate of n of the original
message symhbols per second, El requires a channel capacity C > nHl, a result
first given by Shannon.

The preceding mathematical steps are so well-known that they might be
called trivial. Howewver, the rationale which we have given them differs
essentially frem that of conventional treatments, and in that difference
lies the main point of this section. Conventionally, one would use the
frequency definition of probability, and say that El'a probability assignment
p(M) is the one resulting from the assumption that there are no intersymbol
influences. Such a manner of speaking carries a connetation that the assump-
tion might or might not be correct, and that its correctness must be demon-

strated if the resulting design is to be justified; i.e. that the resulting
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encoding rules might not be satisfactory if there are in fact intersymbol
influences.

On the other hand, I contend that the probability assignment (20-26}
is not an assumption at all, but the exact opposite. Eg. (20-26} represents,
in a certain naive sense which I want to come back to later, the complete
absence of any assumption on the part of El, beyond specificaticn of expected
single-letter frequencies, and it is uniquely determined by this property.
The design based on (20-26) is the safest one possible on his state of know-
ledge. By that I mean the following. If, in fact, strong intersymbel in-
fluences do exist unknown to El’ his encoding system will still be able to
handle the messages perfectly well. If he had been given this additional
information about intersymbol influences, he could have used 1t to arrive
at an encoding system which would be still more efficlent (i.e. would require

a smaller channel capacity), as long as messages with only the specified

type of correlation were transmitted. But if the type of intersymbol influence

in the messages were suddenly to change, this new encoding system would likely

become worse than the original one.

20.4. Better Encoding From Knowledge of Digram Frequencies.

Here is a rather long mathematical derivation which has, however, useful
applications outside the particular problem at hand. Consider a second
engineer, E2. He has a set of nubers fij’ l<i<a, 1=z 3j=< a, which repre-
sent the expected relative frequencies of the digrams AiAj. E, will assign

2

message probabilities p(M) so as to agree with his state of knowledge,
N > = 1\24 Nyg M) PO = (N-1) £ (20-32)

and in order tc avoid any further assumptions which are as likely to hurt
as to help as far as he knows, he will determine the distribution p(M) which

has maximum entropy subject to this constraint. The problem is solved if he

20-21



can evaluate the partition function

Z{x, K ) = z exp[— Z

1] M

a :
. l..N‘.(M)] . (20-33)
i,3=1 i3 ij

This can be done by solving the conbinatorial problem of the number of dif-

ferent messages with given Nij' or by observing that (20-33) can be written

in the form of a matrix product:

a le)
z = . 20-34
zirj=l (Q 11 ( )

where the matrix Q@ is defined by
= e 1 (20-35)

The result can be simplified formally if we suppose that the message

A, ...A, 1is always terminated by repetition of the first symbol A, , so that
1

mil TN 1
it becomes A, ...A, A, . The digram & A is added to the message and an
i i 74 i, 1
1 N 71 N 1
extra factor exp(—lij) appears in (20-~33). The modified partition function
then becomes a trace:
2t = 1r(gh) = §° N (20-36)
k=1

where the q, are the roots of |Qij - b = (¢, This simplification would

]
be termed "use of periodic boundary conditions"” by the physicist. Clearly,

the modification leads to no difference in the limit of long messages; as

M > o,
lim l-lo Z = lim E-lo Z2' = lo {20-37)
N g N g El qmax

where iz the greatest eigenvalue of Q.
nax

The probability of a particular message is now a special case of (10-28):

1
= = - A -
p(M) = = expl- ] {Ns4 0] (20-238)
which yields the entropy as a special case of (10-34):
8=~/ p( log p()
M
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= log Z + ) AN (20-39)
iy 13043

In view of (20-32) and (20-37), Mr. E2's entropy per symbol reduces, in the

limit W —+ =, to

LS
= — = A -—
H2 N log Tnax * Z. ijfij (20-40)
1]
or, since z fij = 1, we can write (20-40) as
ij
= f +
Hy =) i3 09 Do T 25!
1]
dq
iy 13 i3

Thus, to calculate the entropy we do not need Tnax 25 2 function of the kij
(which would be impractical for a » 3), but we need find only the ratio
g /0.. as a function of the f,..
max " ij 13
To do this, we first introduce the characteristic polynomial of the

matrix Q:

D{g} = det(Qij - qﬁij) (20-42)

and note, for later purposes, some well-known properties of determinants

{(Bocher, 1907, pp. 31-33). The first is
a

Dig:é = M { - gd )
A T TR
= Z My Qs My (20-43a)

and similarly,

D(g)6,, = 2 M0 - Mg (20-43b)
in which Mij is the cofactor of (@, - gf, ) in the determinant D{g); i.e.

i ij
e

(-)l ] Mi. is the determinant of the matrix formed by striking out the i'th
row and j'th column of the matrix (0 - ql). If g is any eigenvalue of Q,
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the expressions (20-43) wvanish for all choices of 1 and k.

The second identity applies only when g is an eigenvalue of ¢. In this
case, all minors of the matrix M are known to vanish. 1In particular, the
second order minors are

M o , if D{g)} = O. (20-44a)

M M M =
ik j1 il jk

This implies that the ratios (M,, /M. ) and (M /M ) are independent of k:
1k’ ik ki’ kj
i.e. that M must have the form

1]

M, , = a.b, r if D(g) = O . {20-44b)
1] 1]

Substitution into (20-43a) and (20-43b) then shows that the quantities bj

form a right eigenvector of @, while a; is a left eigenvector:

b b, if D 0 -
g ij ;= Py if D(q) (20-43c)

l
o

) 2,9, =98, . if D(Q (20-434)
i

Suppose now that any eigenvalue g of Q0 is expressed as an explicit

function g(i A a) of the Lagrangian multipliers Aij' Then, varying

[ P
117 12 a
a particular Akl while keeping the other lij fixed, g will vary so as to

keep D(q) identically zerc. By the rule for differentiating the detexrminant

(20-42), this gives

il Tkl 0 e
k1 x1 q 9%
- - _ g - -4
Mlekl 3 Tr (M) 0 (20-45)
k1
where
a
Tr (M) = Zizl i1 (20-46)

ig the trace, or diagonal sum, of the matrix M.
Using this relation, the condition {(20-32}) fixing the Lagrangian mualti-

pliers Aij in terms of the prescribed digram frequencies fij' becomes
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M

. log g = 23111 (20-47)
i3 8}\13 max q_maxTr (M)

The single-letter frequencies are proportional to the diagonal elements of M:

M.
il
Za

£, = £, =
=1 1ij Tr (M)

. (20-48)
i

where we have used the fact that (20-43a) wvanishes for g = Dax’ i=kXk.

Thus, from {20-47) and (20-48), the ratio needed in computing the entropy

per symbol is

0.. f..M.. £ b,
1] _ 1] 11 _ 1] _l (20_49)
Inax T Mig  FL Py

where we have used (20-44b), Substituting this into (20-41), we find that
the terms involving bi and bj cancel out, and E2's entropy per symbol is
just

i3 £5

t .
H = - Z fij log (*il)

= - -+ \ —_
gj fij log fij E £, log £, (20-50)

This i1g never greater than El‘s Hl' for from (20-31), (20-50},

£, £,
- H = B
H2 Hl 2. fij log

ij ij

fi £,

<) £, —=—2L-1] =0
Y. 1] f,.
1] 1]

where we used the fact that log x € x - 1 with equality if and only if x = 1.
Therefore,

H_ < H (20-51)

with equality if and only if £ , = £ f,, in which case EZ'S extra information
1] 17

was conly what El would have inferred. To see this, note that in the message
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M= {1 ...iN}, the number of times the digram A A occurs is
]

N M - 6 1_’.{. (S ;l } 5 ll'l )(S( !l

and so, if we ask El to estimate the freguency of digram AiAj, by the criterion

of minimizing the expected square of the error, he will make the estimate

<N, > 1
<f, > = —Fd = ——J pM) N (M) = £ f (20~53)
ij N-1 N-1 11 1]
using for p(M) the distribution (20-26a) of El. In fact, the distributions

p{M) found by El and E2 are identical if fij = fifj, for then we have from
{(20-47)y, {20-48), and (20-44h),

o
= lj = -
e Lax Vi, f - {20-54)

ij
Using (20-37}, (20-52}, and (20-54), we find that E2‘s distribution (20-38)

reduces to (20-26a). This is a rather nontrivial example of what we noted

in Lecture 10, Eg. (10-76).

20.5. PRelation to a Stochastic Model.

The quantities introduced abowve acgquire a deeper meéning in terms of
the following problem. Suppose that part of the message has been received,
what can Mr. E2 then say about the remainder of the message? This is answered
by recalling cur Rule L1:
(3B[%) = (A]BX) (B|X)

or, the conditional probability of A, given B, is

(AB | X)

(2| BX)

a relation which in conventional theory, which does not use X, is taken as
the definition of a conditional probability (i.e., w2 ratio of two "absolute”

probabilities}. In our case, let X stand for the general statement of the
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problem leading to the solution (20-38), and let

B = "The first (m-1) symbols are {i 3.

172" tmel
A

"The remainder of the message is {im...iN}.“

Then (AB|X) is the same as p(M) in (20-38). Using (20-52), this reduces to

@B]X) = (1 ...i 0% =219g, ,Q . ...0. . (20-56)
1 N 1112 1213 lN_llN
and in
a a
BlIX) = . i_...1 (X 20=57
®]) Zi=1 Ei=1(11 Nl) ( )

m N

the sum generates a power of the matrix Q, just as in the partition function

(20-34). Writing, for brevity, :'Lm_1 =i, im = 3, iN = k, and
R = l'Q (20=58)
L M TS U
we have
(B]x) = R Za o ™, - R Za © ) (20-59)
= Ripy @ ik - Rigx=1%59 ik
and so
Q‘ ‘Ql ] ""Ql Y
+J lmlm+1 lN-llN
(alBxX) = Z — (20-60)
k=1 @ ) ix

since all the Q's contained in R cancel out, we see that the probabilities
for the remainder {im“‘iN} of the message depend only on the immediately
preceding symbol Ai’ and not on any other details of B. This property defines

a Markov Chain. Theye is a huge literature dealing with them: it is perhaps

the most thoroughly worked out branch of probability theory. The basic tool,
from which essentially all else follows, is the matrix Pij of "elementary
transistion probabilities.” This is the probability pj5 = (A;[A;X) that the
next symbol will be Aj’ given that the last one was A; . Summing (20-60)

over i . | we find

mtl N
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Q.. - T,
P = alax) = 3 (20-61)
ij jha L QT
4 %1373
where
- ya N-m -
To= ey @ g (20-62)

The fact that Tj depends on N and m is an interesting feature., Usually, one
considers from the start a chain indefinitely prolonged, and so it is only
the limit of (20-61) for N + = that is ever considered. This example shows
that prior knowledge of how long the chain is going te be can affect the
transition probabilities; however, the limiting case is clearly of greatest
interest.

To find this limit we need a little more matrix theory. The equation
D{g) = det(Qij - qSij) = 0 has a roots (qlq2.--qa), net necessarily all dif-
ferent, or real. Label them so that Iql| z |q2] > . 3ﬂ[éa[t__ThELe‘eXiSts

0 ) - l . " - "
a nonsingular matrix A such that 2 9 A takes the canonical "superdiagonal

form:
Cl 0 o ...
o~ jo oy 0.l |
AQA =0Q= (20-63)
) ¢] C3 -
R Cm

o
HI-Q

=

(o]
fia]

c, = 0 0 . 1... or, C, = q. (20-64)
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The result of raising Q to the n'th power is

"=ag"a (20-65)
and as n » «, the elements of 5“ arising from the greatest eigenvalue qmax = ql
become arbitrarily large compared to all others. If q; is nondegenerate,
so that it appears only in the first row and column of 5} we have

T

lim—4—=a._ % . @&} (20-66)
TR T %91 Lx=1 %
N—= g
1
T, A,
lim —d = 31 (20-67)
Horoo ; Qi3T4  a3Bi)
and the limiting transition probabilities are
- Q,. A, Q.. M |
pi(_) - 2] Ajl _ i3 Ml:l (20-68)
J 9 %41 9 My
where we have used the fact that the elements Ajl (3 =1, 2, ..., &) form

an eigenvector of @ with eigenvalue qq = qmax' so that, referring to (20-44b},

{(20-44c) , Ajl = ij where K 1s some constant. Using (20-47), (20-48), we

have finally,

£, _
1 (20-69)
ij fi

which is just what would be taken, on the freguenecy theory, as the definition

of the transition probability.
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