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Automatic phasing of MR images. Part I: Linearly varying phase

G. Larry Bretthorst *

Biomedical Magnetic Resonance Laboratory, Department of Radiology, Washington University, Campus Box 8227, 525 Scott Avenue,

Suite 2313, St. Louis, MO 63110, USA

Received 7 September 2007; revised 17 December 2007
Available online 27 December 2007
Abstract

In spin-echo and well shimmed gradient-echo images, the phase of the complex image often varies linearly in both the readout and
phase-encode directions. Thus, in principle, it is possible to display an image in absorption mode. However, manually determining the
two first-order and one zero-order phase parameters needed to display an absorption-mode image is a formidable task. In this paper, the
Bayesian calculations needed to automatically determine these parameters are presented, and the calculations are illustrated using spin-
echo images.
� 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Absorption-mode images, the real part of an appropri-
ately phased discrete Fourier transform, have significant
advantages over absolute-value images, including:
increased signal-to-noise ratio, elimination of the correla-
tions between the signal and the noise, elimination of the
constant offset, preservation of the sign of the magnetiza-
tion and preservation of the k-space noise properties. In
addition, absorption-mode images are sharper than the
corresponding absolute-value images. For images in which
the phase varies linearly in both the phase-encode and
readout domains, three parameters are needed to produce
an absorption-mode image: two first-order and one zero-
order phase parameters. In this paper, Bayesian probability
theory [1–6] is used to estimate these three phase
parameters.

The literature is modest with respect to the problem of
generating absorption-mode images. There are many
papers that address phasing one-dimensional NMR spectra
[7–14] and several papers that address phasing multi-
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dimensional NMR spectra [15,16]. However, only four
papers were found that directly address the problem of gen-
erating absorption-mode images, [17–20]. Of the four
papers, two [17,18] used a zero-order and a single first-
order phase parameter to generate the absorption-mode
image. The techniques described in these papers are not
adequate to phase MR images in which the phase is a linear
function in both the readout and phase-encode directions.
Liu et al. [19] recognized this problem and updated their
algorithm to include all of the necessary phase parameters.
However, they estimated the first-order phase parameters
from the derivative of the image phase, which requires
simultaneous estimation of derivatives and solving the
phase unwrapping problem. The most recent paper [20] is
concerned with echo-planer spectroscopic imaging for
which the zero- and first-order phase parameters were
determined using a nonlinear optimization procedure. In
the image domain, this estimation problem is isomorphic
to estimating a spatial frequency having unknown constant
phase and a positionally dependent amplitude. Searching
for this spatial frequency is similar to searching for the glo-
bal maximum of a power spectrum. Unless good initial
estimates of the first-order phase parameters are available,
nonlinear optimization procedures may become stuck in
local minima and yield nonoptimal phasing parameters.
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G. Larry Bretthorst / Journal of Magnetic Resonance 191 (2008) 184–192 185
2. Advantages of absorption-mode images

Fig. 1 shows an ex vivo spin-echo image of mouse brain
acquired on a Varian NMR Systems 4.7-T scanner. The
matrix size is 128 · 128 with a field of view of 2 cm by
2 cm. The voxel volume is 0.15 mm3 with TE = 55 ms
and TR = 3100 ms. The left-hand panels relate to absorp-
tion-mode images, while the right-hand panels relate to
absolute-value mode images. Fig. 1c is an absorption-mode
image of these data; while Fig. 1f is the same image dis-
played in absolute-value mode. The top two panels, (a)
and (d), are traces through the noise in the respective
images. While the center two panels, (b) and (e), are traces
through the mouse brain. The location of the four traces
are indicated by the solid lines, one white and one black,
on each image. The axes in these traces are drawn through
zero intensity.

In panel (a), a noise trace in the absorption-mode image,
the noise oscillates around zero and is uncorrelated. The
Fig. 1. Ex vivo images of mouse brain in formalin. The left-hand side of this fig
absolute-value images. (c and f) Absorption and absolute-value mode images, r
while the middle two traces, (b) and (e) are through the brain. The arrows in (b
mode images when compared to absolute-value images.
noise is uncorrelated because the discrete Fourier trans-
form is a linear operator, and if the noise is uncorrelated
in k-space, it remains uncorrelated in the image domain,
provided a nonzero padded discrete Fourier transform
was used to generate the image. However, in the abso-
lute-value mode image, the noise fluctuates around a posi-
tive offset. This is illustrated in panels (d) and (e) where the
axis marks the location of zero intensity. The size of this

offset is roughly
ffiffiffiffiffiffiffiffi
p=2

p
r, the mean of the Rayleigh distribu-

tion, where r is the standard deviation of the noise in the
absorption-mode image. Additionally, in regions where
there is signal, these fluctuations are correlated with the sig-
nal intensity. To illustrate this, if SR and SI represent the
real and imaginary image signal components in a given
voxel, and if nR and nI represent the image noise, then
the absolute value of this image voxel is given byffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðSR þ nRÞ2 þ ðSI þ nIÞ2

q
, and terms of the form

2SRnR and 2SInI are always present.
ure relates to absorption-mode images, while the right-hand side, relates to
espectively. The upper two traces, (a) and (d) are traces through the noise,
) and (e) highlight the subtle difference in the sharpness of the absorption-



Fig. 2. The same trace shown in Fig. 1b before the effects of the linear and
constant phase were removed. In a typical MR image the echos are
centered in the acquisition time. In the image domain, this time delay
corresponds to a spatial frequency which oscillate roughly every other
point in the image.
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The use of absorption-mode images has other beneficial
effects. For example, Fig. 1 shows one image from an inver-
sion recovery sequence. If one phases the fully recovered
data set and then applies those same phases to the other
images in this sequence, the images will recover from neg-
ative to positive values; thus maintaining the correct sign of
the magnetization.

Examination of the area around the arrows in panels (b)
and (e) reveals that the absorption-mode image is sharper
than the absolute-value image. This sharpening is not as
pronounced as the sharpening of MR spectroscopic
absorption lines because the k-space data do not relax
appreciably due to T 2 over the time needed to acquire
them.

Fig. 1 panels (a) and (d) provides a comparison of the
noise present in absorption-mode verses absolute-value
mode images. Note that the peak-to-peak variation of the
noise in the absolute-value mode image is smaller than
the peak-to-peak variation of the noise in the absorption-
mode image, 0.19 and 0.30, respectively. This accounts
for the somewhat smoother appearance of absolute-value
images. However, the noise in the absolute-value mode
image is not the peak-to-peak variation, rather it is the root
mean-square of all of the signal in the noise regions, includ-

ing the offset. This value, 0.43, is larger than the peak-to-
peak variation in the absorption-mode image by a factor
of almost exactly a

ffiffiffi
2
p

. This
ffiffiffi
2
p

comes about because, on
average, both the real and imaginary parts of the image
contribute 0:32 to the noise power. The noise in the absorp-
tion-mode image has zero offset, while the noise in the
absolute-value mode data has a substantial offset (0.37).
This offset is noise dependent and may have undesirable
effects on image analysis. For example, the estimated decay
rate constant for T 2 relaxation data using absolute-value
images gives relaxation rates that are too small because
parameter estimation procedures fit all of the data including

the constant offset, thus causing the exponential to decay
too slowly. Similar affects are present in the parameter esti-
mates using diffusion tensor data.

3. The model

In Bayesian probability theory, the first step in any cal-
culation is to relate the parameters of interest to the avail-
able data. To produce an absorption-mode image, there are
three parameters that must be determined, one zero-order
phase, h, and two first-order phase parameters, sx and sy .
In k-space these first-order phase parameters are the cen-
ters of the echos in the readout and phase-encode direc-
tions, and they will be referred to as time delays. These
time delays are on the order of one half the acquisition
time, i.e., the peak of the echo is near the center of the
acquisition window. Consequently, these delays cause the
phase in the complex image to vary by approximately
180� every other voxel in the image, Fig. 2. The trace
shown in Fig. 2 is the same one shown in Fig. 1b, before
the phase parameters were applied. This oscillation can
be mitigated somewhat by using a time shift before the dis-
crete Fourier transform is performed. Some spectrometer
manufacturers do this, others do not; regardless, the
parameter estimation problem remains unchanged by shift-
ing the origin of time.

In the image domain, the data look like a sinusoid hav-
ing an unknown spatial frequency, a positionally depen-
dent amplitude and a constant phase. If this image
domain model is used, the corresponding complex k-space
model is an orthogonal Fourier series:

dji ¼
XNx

k¼1

Bjk expfixkðtxi þ sxÞ þ ihjg þ nji ð1Þ

where the ith complex data value of the jth phase-encode is
designated as dji, the kth Fourier expansion coefficient of
the jth phase-encode is designated as Bjk and the constant
phase for this phase-encode is hj. In dimensionless units,
the spatial frequencies, xk, run from zero to 2p in steps of
2p=Nx, and the times, txi, are data point numbers, 0, 1, 2,
etc. Finally, nji represents the ith complex noise value in
the jth phase-encode. Separating Eq. (1) into its real and
imaginary parts, one has

dRji ¼
XNx

k¼1

BjkMRjki þ nRji ð2Þ

for the real data dRji, and

dIji ¼
XNx

k¼1

BjkM Ijki þ nIji ð3Þ

for the imaginary data dIji, where nRji and nIji represent the
real and imaginary noise components. The two model func-
tions, MRjki and M Ijki, are given by

MRjki � cosðhjÞ cosðxk½txi þ sx�Þ � sinðhjÞ sinðxk½txi þ sx�Þ
ð4Þ
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and

M Ijki � cosðhjÞ sinðxk½txi þ sx�Þ þ sinðhjÞ cosðxk½txi þ sx�Þ:
ð5Þ

To obtain the posterior probability for sy , the role of
x and y are simply exchanged in the posterior probability
for sx. Consequently, we do not give the model relating
sy to the k-space data.
4. The Bayesian calculations

The purpose of this paper is to obtain a set of point esti-
mates for the three parameters, sx; sy and h, and to use
these point estimates to generate absorption-mode images.
Bayesian probability theory is used to derive the posterior
probability for these three parameters. The posterior prob-
ability for the time delays, sx and sy , are derived in this
paper. The point estimates for these delays are obtained
by locating the maximum of their posterior probabilities.
In the case of the constant phase, h, an exact expression
for the maximum of its posterior probability is given. How-
ever, the derivation of this posterior probability and its
point estimate are given in a companion paper [22].

In Bayesian probability theory, everything known about
sx is summarized in a probability density function. This
posterior probability density function is designated as
P ðsx j DIÞ, which is read as the posterior probability for
sx given all of the data D and the prior information I.
The prior information I is all of the information used to
make this a well-posed problem, including the specification
of the model and the information used in assigning the var-
ious probabilities. The posterior probability for sx is com-
puted by application of Bayes’ theorem [1]:

P ðsx j DIÞ ¼ P ðsx j IÞP ðD j sxIÞ
P ðD j IÞ ; ð6Þ

where Pðsx j IÞ is the prior probability for sx and represents
what is known about sx before collecting the data,
P ðD j sxIÞ is the direct probability for the data given sx

and represents what was learned from the data, and
P ðD j IÞ is the direct probability for the data given only
the prior information. In parameter estimation problems,
P ðD j IÞ is a normalization constant and can be dropped
provided the posterior probability is normalized at the
end of the calculation. Dropping PðD j IÞ one obtains

P ðsx j DIÞ / P ðsx j IÞP ðD j sxIÞ: ð7Þ

The direct probability for the data given sx, PðD j sxIÞ, is
a marginal probability from which one or more hypotheses
have been removed by application of the sum and product
rules. In this particular case, the Fourier expansion coeffi-
cients, the phases and the standard deviation of the noise
prior probabilities have all been removed by marginaliza-
tion. Reintroducing these quantities and applying the
sum rule, one obtains
P ðsx j DIÞ / Pðsx j IÞ
Z

dBdHdrP ðBHrD j sxIÞ; ð8Þ

where B, H and r represent all of the Fourier expansion
coefficients, phases and noise standard deviations in the
model, Eq. (1). The right-hand side of this equation is fac-
tored using the product rule:

P ðsx j DIÞ / Pðsx j IÞ
Z

dBdHdrP ðB j IÞPðH j IÞ

� P ðr j IÞP ðD j BHrsxIÞ; ð9Þ

where probabilities of the form Pð� j IÞ are prior probabil-
ities for the respective parameters, and P ðD j BHrsxIÞ is the
direct probability for the data given the parameters.

In estimating the value of sx, the data may be thought of
as N y different data sets, each bearing on the value of sx.
Since each phase-encode is an independent measurement,
the direct probability for all the data, PðD j BHrsxIÞ, is
the product of the direct probabilities computed from each
line in k-space separately. Similarly, the prior probabilities
for the Fourier expansion coefficients are the products of
the prior probabilities for the Fourier expansion coeffi-
cients in each line of k-space. Factoring the posterior prob-
ability for sx, one obtains

P ðsx j DIÞ / Pðsx j IÞ
YNy

j¼1

Z
dBj1 . . . dBjNx

dhjdrj

� ½Pðhj j IÞP ðrj j IÞ � P ðBj1 . . . BjNx
j IÞ

� P ðDj j Bj1 . . . BjNx
hjrjIÞ�; ð10Þ

where logical independence of the parameters is assumed.
Additionally, some spectrometer manufacturers use filters
that are not flat over the entire image. Consequently, the
noise standard deviation, rj, is positionally dependent.
The joint prior probability for the Fourier expansion coef-
ficients in the jth phase-encode, P ðBj1 . . . BjNx

j IÞ, has not
been factored because a correlated prior for these expan-
sion coefficients will be assigned.

Numerical values must now be assigned to represent
each of the probabilities. The prior probability for the time
delay, P ðsx j IÞ, will be assigned using a uniform prior
probability:

P ðsx j IÞ ¼
2

Nx
if N x=4 6 sx 6 3N x=4

0 otherwise

�
; ð11Þ

where the prior ranges express the fact that outside of the
valid range the likelihood is aliased as a function of sx.

The prior probability for the standard deviation,
P ðrj j IÞ, is assigned a Jeffreys’ prior [2]

P ðrj j IÞ /
1

rj
: ð12Þ

The prior probability for the phase, P ðhj j IÞ, is assigned
using a uniform prior probability:

P ðhj j IÞ ¼
1

2p if 0 6 hj 6 2p

0 otherwise

�
: ð13Þ
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The prior probability for the Fourier expansion coeffi-
cients, P ðBj1 . . . BjNx

j IÞ, is assigned as a generalized Gauss-
ian. This generalized Gaussian will be written as:

P ðBj1 . . . BjNx
j bIÞ / r�Nx

j exp � b2

2r2
j

XNx

k¼1

XNx

l¼1

BjlUklBjk

( )
;

ð14Þ

where several constant factors that cancel when the poster-
ior probability density function is normalized have been
dropped. The matrix, Ukl, specifies how the Fourier expan-
sion coefficients are related to each other. In the program
that implements this calculation, the matrix Ukl is tridiago-
nal, having ½�1; 2;�1� as its three nonzero diagonals. This
tridiagonal matrix expresses the belief that adjacent voxels
should be approximately equal. The parameter b expresses
how strongly this is believed. In the calculations that fol-
low, it is the Gaussian form of this prior that is important,
not the individual components of this matrix.

If the direct probability for the jth phase-encode,
P ðDj j Bj1 . . . BjNx

hjrjIÞ, is assigned using a Gaussian noise
prior probability for the real and imaginary noise compo-
nents, the joint posterior probability for sx, Eq. (10), can
then be written as:

P ðsx j DIÞ /
YNy

j¼1

Z
dhjdrjdBj1 . . . dBjNx

� r�3Nx�1
j exp �

Qj

2r2
j

( )
; ð15Þ

where several constants that cancel when this distribution
is normalized have been dropped. The quantity Qj is given
by

Qj �
XNx

k¼1

XNx

l¼1

b2BjlUklBjk

þ
XNx

i¼1

dRji �
XNx

k¼1

BjkMRjki

 !2

þ
XNx

i¼1

dIji þ
XNx

k¼1

BjkM Ijki

 !2

: ð16Þ

The first line in this equation results from the prior
probability for the Fourier expansion coefficients; the sec-
ond and third lines are essentially v2 evaluated for the real
and imaginary parts of the jth phase-encode.

Substituting the definitions of MRjki and M Ijki, Eqs. (4)
and (5), respectively into Eq. (16), one obtains

Qj � 2Nxd
2
xj � 2

XNx

‘¼1

Bj‘T j‘ þ
XNx

l¼1

XNx

k¼1

BjlVklBjk ð17Þ

where T j‘ is given by

T j‘ � F Rj‘ cos hj þ F Ij‘ sin hj; ð18Þ
and can be computed from the real and imaginary parts of
the discrete Fourier transform of the jth phase-encode. The
interaction matrix, Vkl, is given by

Vkl � N xdkl þ b2Ukl; ð19Þ

where dkl is a Kronecker delta function. The mean-square
data value of the jth phase-encode, d2

xj, is defined as

d2
xj �

1

2Nx

XNx

i¼1

ðd2
Rxji þ d2

IxjiÞ: ð20Þ

Finally, F Rj‘ and F Ij‘, the projection of the real and
imaginary parts of the model onto the data, are given by

F Rj‘ �
XNx

i¼1

½dRji cosðx‘½txi þ sx�Þ � dIji sinðx‘½txi þ sx�Þ� ð21Þ

and

F Ij‘ �
XNx

i¼1

½dRji sinðx‘½txi þ sx�Þ þ dIji cosðx‘½txi þ sx�Þ�; ð22Þ

respectively. The functions F Rj‘ and F Ij‘ are essentially the
real and imaginary parts of a time shifted discrete Fourier
transform. To compress the notation, the time delays were
not separated from the other parts of the Fourier trans-
form. However, application of various trigonometric iden-
tities reduces these quantities to linear combinations of the
real and imaginary parts of the discrete Fourier transform
of the k-space data. If Nx is a power of 2, the fast discrete
Fourier transform may be used to compute F Rj‘ and F Ij‘;
otherwise, the slow transform must be used.

The functional form of Qj, Eq. (17), is quadratic in the
Bjk, so the integrals over the Bjk in Eq. (15) are Gaussian
quadrature integrals, where the limits of integration range
from minus to plus infinity. Such integrals are easily evalu-
ated and the results, but not the details, of evaluating these
integrals are given:

Pðsx j DIÞ /
YNy

j¼1

Z
dhjdrjr

�2Nx�1
j

� exp �
2Nxd

2
xj � Nxh

2ðhj; sxÞ
2r2

j

( )
; ð23Þ

where

h2ðhj; sxÞ �
1

N x

XNx

‘¼1

B̂j‘T j‘: ð24Þ

The B̂j‘ are given by the solution to

XNx

‘¼1

Vk‘B̂j‘ ¼ F Rjk cos hj þ F Ijk sin hj; ð25Þ

which, for convenience, is written as

B̂j‘ � âj‘ cos hj þ b̂j‘ sin hj; ð26Þ
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where âj‘ and b̂j‘ are given by the inverse of the Vk‘ matrix
dotted into the column vectors represented by
F Rjk and F Ijk, respectively.

To evaluate the integral over the phase, Eqs. (18) and
(26) are substituted into Eq. (24) to obtain

h2ðhj; sxÞ ¼
XNx

‘¼1

½F Rj‘âj‘ cos2ðhjÞ þ F Ij‘âj‘ cosðhjÞ sinðhjÞ

þ F Rj‘b̂j‘ cosðhjÞ sinðhjÞ þ F Ij‘b̂j‘ sin2ðhjÞ�: ð27Þ

Using various trigonometric identities, this equation may
be transformed into

h2ðhj; sxÞ ¼ Uj þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W 2

j þ X 2
j

q
cosð2hj þ wjÞ ð28Þ

with

U j �
1

2

XNx

‘¼1

½âj‘F Rj‘ þ b̂j‘F Ij‘�; ð29Þ

W j �
1

2

XNx

‘¼1

½âj‘F Rj‘ � b̂j‘F Ij‘�; ð30Þ

X j �
1

2

XNx

‘¼1

½âj‘F Ij‘ þ b̂j‘F Rj‘� ð31Þ

and

wj ¼ tan�1 X j

W j

� �
: ð32Þ

If Eq. (28) is substituted into Eq. (23), the integrand is of
the form expfcosðhjÞg, the integral representation of the I0

Bessel function. Evaluating this integral, one obtains

P ðsx j DIÞ

/
YNy

j¼1

Z
drjr

�2Nx�1
j � exp �

2N xd
2
xj � U j

2r2
j

( )

� I0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W 2

j þ X 2
j

q
2r2

j

0
@

1
A: ð33Þ

In this form, the integral over the standard deviation of
the noise prior probability, rj, is not easily represented in
closed form. Fortunately, near the location of the maxi-
mum, there is an approximation that is good to many dec-
imal places. For large argument, the I0 Bessel function is
nearly exponential:

I0ðzÞ �
expfzgffiffiffiffiffiffiffi

2pz
p ; ð34Þ

so Eq. (33) is very nearly equal to

P ðsx j DIÞ �
YNy

j¼1

Z
drjr

�2Nx�1
j exp � Vj

2r2
j

( )
; ð35Þ

with

Vj � 2N xd
2
xj � U j �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W 2

j þ X 2
j

q
; ð36Þ
where a term that is nearly constant over the high probabil-
ity region has been dropped. In this form, the integral over
the standard deviation is a gamma integral. Evaluating this
integral, one obtains:

P ðsx j DIÞ /
YNy

j¼1

½Vj��Nx ; ð37Þ

where a number of constant factors have been dropped.
This probability density function is of the form of Student’s
t-distribution and this t-distribution is used to estimate sx.

As noted above, to compute the posterior probability
for sy , P ðsy j DIÞ, one needs only exchange the roles of
x and y in the above equations.

Finally, one needs to compute the posterior probability
for the constant phase, P ðh j DIÞ. This is a marginal poster-
ior probability in which the Fourier expansion coefficients,
standard deviation of the noise prior probability and the
two delay times have been removed using the sum and
product rules of probability theory. However, as illustrated
in the next section, the delay times are so well determined
that marginalizing over them does little more than con-
strain them to their maximum posterior probability esti-
mates. Additionally, any program that implements this
calculation will use a point estimate of the phase, not the
posterior density. Fortunately, a point estimate is available
that, given the delay times, returns the peak of the posterior
probability for h. The calculation of this posterior proba-
bility is essentially identical to the calculation just
described, and we do not repeat those details here. Those
interested in phase estimation can refer to [22]. The value
of the phase that maximizes this posterior probability
and its width are given by:

ðhÞest ¼ hmax �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8r2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W 2 þ X 2

p
s

ð38Þ

hmax ¼ �
1

2
tan�1 X

W

� �
; ð39Þ

where X and W are given by

X ¼ 2
XNy

j¼1

XNx

‘¼1

F Rj‘F Ij‘; ð40Þ

and

W ¼
XNy

j¼1

XNx

‘¼1

½F 2
Rj‘ � F 2

Ij‘�; ð41Þ

and F Rj‘ and F Ij‘ are the real and imaginary parts of the
two-dimensional discrete Fourier transform of the complex
k-space data after removing the effects of both linearly
varying phases.

5. Discussion

Fig. 3 is the natural logarithm of the posterior probabil-
ity for the delay times computed using the k-space data



-6000

-4000

-2000

0

 2000

 4000

 6000

 8000

 30  40  50  60  70  80  90  100
-5000

0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 30  40  50  60  70  80  90  100

a b

Fig. 3. The natural logarithm of the posterior probability for the delay times along both the readout direction (a), and in the phase-encode direction (b).
These delay times are typically very well determined by the k-space data. In (b), the natural logarithm of P ðsy j DIÞ goes through roughly 45,000 e-foldings.
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shown in Fig. 1. The program that implements this calcu-
lation first computes the discrete Fourier transform in the
readout direction and then uses this transform to compute
the natural logarithm of the posterior probability for sx

(Fig. 3a). In dimensionless units, sx varies from
Nx=4 6 sx 6 3Nx=4. The image shown in Fig. 1 contains
Nx ¼ 128 complex data values, so sx ranges from
32 6 sx 6 96. Outside of this range, the posterior probabil-
ity for sx is aliased, and no additional information is avail-
able. Note that the logarithm, starts out low and increases
from roughly -4000 to +8000. The reason the calculations
are performed using the natural logarithm is simply that
most computers cannot express this large of a dynamic
range any other way. Fig. 3b is the natural logarithm of
the posterior probability for sy . In the phase-encode direc-
tion, the logarithm of the posterior probability changes by
about 45,000 e-foldings.

The values of both delays have been determined very
precisely. To illustrate this, the fully normalized posterior
probabilities for sx and sy are displayed in Fig. 4. In
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Fig. 4. (a and b) The fully normalized posterior probability for sx and sx, respe
to illustrate that the standard deviation of the distribution shown in (a) is
distribution shown in (b) (0.001 time units). Regardless, both echo centers are
very accurately canceled in the resulting absorption-mode image. For examp
accumulated error in the phase of only 0.016 rad across the image.
Fig. 3 the full nonaliased range, 32 6 s 6 96, for the delay
times was plotted, while the plots shown in Fig. 4 span
roughly 1/4300 and 1/9200 of the full nonaliased range.
These distributions are plotted on the same vertical scale
so that the difference in their widths, roughly a factor of
2.5, is more obvious. The mean and standard deviation
estimate of sx and sy are given by

ðsxÞest ¼ 66:0215� 0:0025 ð42Þ

and

ðsyÞest ¼ 63:9843� 0:001 ð43Þ

respectively. In k-space, these uncertainties are in data
point numbers. In the image domain, an uncertainty of
0.0025 data points, causes an accumulated phase uncer-
tainty of only 0.016 radians (less than one degree) across
the image. Consequently, the oscillations caused by the lin-
early varying phase are completely removed. The reason
these delays are so precisely determined is a combination
of signal-to-noise ratio and the number of data values.
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ctively. These posterior probabilities are plotted on the same vertical scale
2.5 times larger (0.0025 time units) than the standard deviation of the
very precisely determined and, consequently, the linearly varying phase is
le, the uncertainty in echo center in the readout direction (a), causes an
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A typically image has 128� 128 ¼ 16; 384 data values. The
uncertainty in the parameter estimates scales inversely with
signal-to-noise ratio and inversely with the square root of
the number of data values.

Similarly, the constant phase is also very well deter-
mined. For the data shown in Fig. 1c, the estimated value
of the constant phase is

ðhÞest ¼ 24:346	 � 0:002	 ð44Þ

which means the error in constant phase is about one part
in 12,000. The reason for this precision is again a combina-
tion of signal-to-noise ratio and total number of data val-
ues. In Eq. (38), the factor in the denominator of the
square root (another square root) is essentially the total-
squared signal intensity in the real and imaginary parts
of the complex image. Consequently, that factor scales with
both the number of complex data values and the average
signal intensity. As a result, the uncertainty in the esti-
mated phase varies inversely with the average signal-to-
noise ratio and inversely with the square root of the total
number of complex data values.

The program that implements this calculation computes
the logarithm of the posterior probability for sx on a coarse
grid, varying sx over its valid range in steps of 0.5. The
value of sx that has the maximum posterior probability
on this grid is saved. Using this maximum value, the loga-
rithm of the posterior probability is then evaluated at
(max + 1/2) and (max � 1/2). These three values of sx,
and the three posterior probabilities, are used to bracket
the maximum of the posterior probability. A one-dimen-
sional search routine, similar to those described in [21], is
used to find the value of sx that maximizes the posterior
probability. Using the value of sx that maximized the pos-
terior probability, the effect of the linear first-order phase is
removed in the readout direction. The calculation is then
repeated in the phase-encode direction, and these time
delays are used to remove the effects of the linearly varying
phase. Finally, the zero-order phase that has maximum
posterior probability is computed, and its effect is then
removed. The three parameter estimates given in Eqs.
(42)–(44) are the values used to generate the absorption-
mode image shown in Fig. 1c.

Because positivity was not imposed on the Fourier
expansion coefficients, there is an ambiguity in the calcu-
lation of the zero-order phase, Eq. (39). If the calculated
value of the zero-order phase is ĥ, the phase that gives
positive intensities in the real channel can be either ĥ or
ĥþ 180	. Before removing the zero-order phase, the pro-
gram does a calculation to determine which of these two
phases is appropriate. This Bayesian calculation, not
given, essentially repeats the calculation for the posterior
probability for the zero-order phase given in [22] with
an uncorrelated prior for the Fourier expansion coeffi-
cients that constrains these coefficients to be positive. This
posterior probability is then evaluated for ĥ and ĥþ 180	.
Because the amplitudes are required to be positive, the
phase that rotates the intensity to the real channel has
very high probability, while the phase that rotates the
intensity to the imaginary channel has very low probabil-
ity. Consequently, the phase with the highest posterior
probability is used to remove the effects of the zero-order
phase.

Finally, if the size of the desired image is different from
the actual complex size of the k-space data, the final image
is generated using a zero-padded discrete Fourier trans-
form, and the image is phased using the three computed
parameters.

6. Summary and conclusions

The advantages of absorption-mode vs. absolute-value
mode images have been illustrated, and a Bayesian-based
calculation has been described for generating absorption-
mode images. These Bayesian calculations allow one to
produce absorption-mode images using data in which
the the phase of the image varies linearly as a function
of position, as it does in most spin-echo images. In this
lab, absorption-mode images are routinely produced on
data sets containing thousands of images (DTI data sets
with 48 directions and 60 to 70 slices are common). The
calculations described in this paper have never failed to
remove the effects of both the linearly varying and con-
stant phases.

In cases for which the data have field inhomogeneity
artifacts, as is common in gradient-echo images, the calcu-
lations presented here are used to remove the effects of both
the linearly varying and constant phase and then the calcu-
lations described in [22] are used to remove the effects of
the nonlinear varying phases to produce absorption-mode
images. Additionally, the program that implements the cal-
culation described in [22] produces an unwrapped map of
the image phase. Because these are the phases that deviate
from the expected linearly varying phase, the resulting
unwrapped phase maps are essentially images of the mag-
netic field inhomogeneity.

The calculations presented in this paper are for 2D slice-
selection data. Extending the calculations to 3D data
requires one additional discrete Fourier transform and
the estimation of a third delay time.

These calculations utilize the fact that the Fourier
expansion is an orthogonal expansion, so they cannot be
used on images in which the acquisition is not uniformly
sampled in both domains. The calculations could be
extended to nonuniformly sampled data, but said calcula-
tions would probably be computationally prohibitive due
to the matrix inversion used in Eq. (26).

When the number of complex data in a given k-space
data set are an integer power of 2, the fast discrete Fourier
transform can be used to compute the projection of the
data onto the model in that domain. Consequently, gener-
ating an absorption-mode image on a Sun Ultra 60 work-
station requires less than a second. The calculations are
roughly a factor of 2 slower when the number of complex
data are not an integer power of 2.



192 G. Larry Bretthorst / Journal of Magnetic Resonance 191 (2008) 184–192
Acknowledgments

I thank Joseph J.H. Ackerman, Jeffrey J. Neil, Joel R.
Garbow, Dmitriy Yablonskiy, Alex Sukstansky and Josh
Shimony for encouragement, support, and helpful com-
ments. I thank William C. Hutton for his assistance with
the literature search. This work was supported by the Small
Animal Imaging Resources Program (SAIRP) of the Na-
tional Cancer Institute, Grant R24CA83060, and by
Grants NS35912, NS41519, NS41519 and HL70037.

References

[1] T. Bayes, Philos. Trans. R. Soc. Lond. 53 (1763) 370;
reprinted in Rev. T. Bayes, Biometrika 45 (1958) 293, Facsimiles of Two
Papers by Bayes, with commentary by W. Edwards Deming Hafner,
New York, 1963.

[2] Sir H. Jeffreys, Theory of Probability, Oxford University Press,
London, 1939, Later editions, 1948, 1961.

[3] R.T. Cox, Probability, frequency, and reasonable expectation, Am. J.
Phys. 14 (1946) 1–13.

[4] R.T. Cox, The Algebra of Probable Inference, Johns Hopkins
University Press, Baltimore MD, 1961.

[5] E.T. Jaynes, Probability theory—the logic of science, in: G.L.
Bretthorst (Ed.), Cambridge University Press, Cambridge, UK, 2003.

[6] G.L. Bretthorst, Bayesian spectrum analysis and parameter estima-
tion, in: J. Berger, S. Fienberg, J. Gani, K. Krickenberg, B. Singer
(Eds.), Lecture Notes in Statistics, vol. 48, Springer-Verlag, New-
York, 1988.

[7] R.R. Ernst, Numerical Hilbert transform and automatic phase
correction in magnetic resonance spectroscopy, J. Magn. Reson. 1
(1969) 7–26.

[8] C.N. Chen, L.S. Kan, An iterative phase correction program for
nuclear magnetic resonance (NMR) spectra, Comput. Methods
Programs Biomed. 26 (1988) 81–84.
[9] L.F. Gladden, S.R. Elliott, A numerical phasing technique for
application to one-dimensional NMR spectra, J. Magn. Reson. 68 (3)
(1986) 383–388.

[10] D.E. Brown, T.W. Campbell, R.N. Moore, Automated phase
correction of FT NMR spectra by baseline optimization, J. Magn.
Reson. 85 (1989) 15–23.

[11] A. Heuer, A new algorithm for automatic phase correction by
symmetrizing lines, J. Magn. Reson. 91 (1991) 241–253.

[12] D.E. Brown, Fully automated baseline correction of 1D and 2D
NMR spectra using Bernstein polynomials, J. Magn. Reson. 114
(1995) 268–270.

[13] L. Chen, Z. Weng, L.Y. Goh, M. Garland, An efficient algorithm for
automatic phase correction of NMR spectra based on entropy
minimization, J. Magn. Reson. 158 (2002) 164–168.

[14] G. Stocha, Z. Olejniczak, Missing first points and phase artifact
mutually entangled in FT NMR data—noniterative solution, J.
Magn. Reson. 173 (2005) 140–152.

[15] R.E. Hoffman, F. Delaglio, G.C. Levy, Phase correction of two-
dimensional NMR spectra using DISPA, J. Magn. Reson. 98 (1992)
231–237.

[16] R. Freeman, S.P. Kempsell, M.H. Levitt, Phase adjustment of two-
dimensional NMR spectra, J. Magn. Reson. 34 (1979) 675–678.

[17] C.B. Anh, Z.H. Cho, A new phase correction method in NMR
imaging based on autocorrelation and histogram analysis, IEEE
Trans. Med. Imaging MI-6 (1987) 32–36.

[18] H.W. Park, M.H. Cho, Z.H. Cho, Real-value representation in
inversionrecovery NMR imaging by use of a phase-correction
method, J. Magn. Reson. Med. 3 (1) (1986) 15–23.

[19] J. Liu, J.L. Koenig, An automatic phase correction method in nuclear
magnetic resonance imaging, J. Magn. Reson. 86 (1990) 593–604.

[20] S. Sarkar, K. Heberlein, G.J. Metzger, X. Zhang, X. Hu, Applications
of high-resolution echoplanar spectroscopic imaging for structural
imaging, J. Magn. Reson. Imag. 10 (1999) 1–7.

[21] W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vettering, Numer-
ical Recipes: The Art of Scientific Computing, second ed., Cambridge
University Press, Cambridge, 1992.

[22] G.L. Bretthorst, Automatic phasing of MR images. Part II: Voxel-
wise phase estimation, J. Magn. Reson. 191 (2008) 193–201.


	Automatic phasing of MR images. Part I: Linearly varying phase
	Introduction
	Advantages of absorption-mode images
	The model
	The Bayesian calculations
	Discussion
	Summary and conclusions
	Acknowledgments
	References


