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ABSTRACT. In the analysis of magnetic resonance data, a great deal of prior information is available
which is ordinarily not used. For example, considering high resolution NMR spectroscopy, one knows
in general terms what functional form the signal will take (e.g., sum of exponentially decaying
sinusoids) and that, for quadrature measurements, it will be the same in both channels except for
a 90° phase shift. When prior information is incorporated into the analysis of time domain data,
the frequencies, decay rate constants, and amplitudes may be estimated much more precisely than
by direct use of discrete Fourier transforms. Here, Bayesian probability theory is used to estimate
parameters using quadrature models of NMR, data. The calculation results in an interpretation of
the quadrature model fitting that allows one to understand on an intuitive level what frequencies
and decay rates will be estimated and why.

Introduction

Probability theory when interpreted as logic is a quantitative theory of inference, just as mathematics
is a quantitative theory of deduction. Unlike the axioms of mathematics, the desiderata of probability
theory do not assert that something is true; rather they assert that certain features of the theory
are desirable. Stated broadly these desiderata are degrees of belief are represented by real numbers;
probability theory when interpreted as logic must qualitatively correspond to common sense; and
when the rules for manipulating probabilities allow the evidence to be combined in more than
one way, one must reach the same conclusions, i.e., the theory must be self consistent. These
qualitative requirements are enough to uniquely determine the content of the theory [1-4]. The
rules for manipulating probabilities in this theory are just the standard rules of statistics plus Bayes’
theorem. Thus Bayesian probability theory reinterprets the rules for manipulating probabilities. In
this theory a probability represents a state of knowledge, not a state of nature.

Because a probability represents a reasonable degree of belief, a Bayesian can assign probabilities
to hypotheses which have no frequency interpretation. Thus, problems such as: “What is the
probability of a frequency w, independent of the amplitude and phase of the sinusoid, given the
data?” or “Given several possible models of the data, which model is most probable?” make perfect
sense. The first question is a parameter estimation problem and assumes the model to be correct.
The second question is more general; it is a model selection problem and does not assume the model
to be correct.

In previous communications from this laboratory [5,6], select applications of probability theory
to NMR spectroscopy were briefly described; but the theory was not given in detail. In this paper,
the parameter estimation question is addressed using quadrature NMR models. These calculations
lead to a qualitative interpretation of parameter estimation that allows one to understand on an



intuitive level what values of the parameters (resonance frequencies and decay rate constants) will
be estimated, and why.

In a second paper [7], the model selection question will be addressed and probability theory is
used to answer questions of the form “Given a set of possible models {fi,-- -, fs}, which model is
most probable in view of the data and all of one’s prior information?” The Bayesian answer to this
question will be shown to include a quantitative statement of Ockham’s razor. Examples of signal
detection and model selection are given to illustrate the use of the calculation and the limits of its
validity.

In a third paper [8], the calculations will be specialized to data containing sinusoidal signals. A
number of specific and important examples are given. For those who wish to put off the mathematics
in the first and second papers, the third paper is self-contained enough to allow independent reading.
In that paper, the exact relation between the discrete Fourier transform and Bayesian probability
theory will be derived, and it will be shown that under appropriate conditions, no better estimate
of the resonance frequencies may be obtained than from the peak value of a zero-padded discrete
Fourier transform power spectrum. A signal detection example is presented, and it is shown that
Bayesian probability theory can detect signals and estimate frequencies in data where no peak
unambiguously exists in traditional absorption spectra. Finally, the model selection calculation is
applied to real NMR data.

The Posterior Probability of the Resonance Frequencies and
Decay Rate Constants

Magnetic resonance theory typically describes the free induction decay time series as sinusoids
with exponential or Gaussian decay. The initial work employing probability theory [9,10] did not
incorporate all of the prior information about the NMR signals that one actually has. The functional
form of the signal was utilized, but the data were analyzed as if two distinct measurements were
available having the same frequencies and decay rate constants, but completely different amplitudes
and phases. However, in quadrature NMR there is more information than this: the signal in the
second channel is 90° out of phase with the signal in the first channel, but is otherwise identical. In
this paper, the parameter estimation calculation is specialized to quadrature models. The posterior
probability for the frequencies and decay rate constants is derived independent of the amplitudes,
phases, and the variance of the noise. This allows an examination of the frequencies and decay
rate constants without the (initially) “uninteresting” amplitudes, phases, and variance of the noise
interfering with the estimation process.

The problem considered in this paper is: Given a quadrature detected data set, what is the “best”
estimate of the frequencies and decay rate constants that one can make from the data and the prior
information? By “best” one means most probable. Specifically one would like to compute the joint
posterior probability density of the frequencies {w, - -, w,} and decay rate constants {ay, -, an,}
independent of the amplitudes and phases, given a quadrature detected data set D and the prior
information /. The total number of spectral lines n is assumed known in this paper; then in the
second paper [7] the posterior probability of the number, n, of spectral lines, is computed and
examples of its use are given in the third paper [8]. The posterior probability of the frequencies and
decay rate constants is abbreviated P(®|D,I), where the “|D,I)” means the probability density
is conditional on the data D and the prior information I, and ® is defined as the set of nonlinear
parameters ® = {w1, -, wp, @1, -, Qn}.

To make progress on the parameter estimation problem, one must state exactly what prior
information is to be incorporated into the calculation. In the general NMR calculation described
herein, it is assumed that little prior information is available about the numerical values of the
parameters; most of the prior information is rather in the functional form of the model i.e., the
number and types of parameters that affect the data. The model employed assumes the data may



be separated into a systematic part (signal) and a random part (noise). In a quadrature detected
data set there are actually two models: one for the so-called real data (0° phase) and one for the
imaginary data (90° phase). The model for the real data may be written

dr(t;) = fr(ts) + e(ts), (1)

where fr(t;) is the model signal in the real channel and e(t;) represents the random part or noise.
The separation of the data into a signal fr and additive noise e(¢;) is a hypothesis which is assumed
to be true; it will be taken to be part of the general background information I. The assumption
that the noise is additive will not be questioned in this calculation, although using probability
theory different assumptions about how the noise enters the problem are easily tested. Similarly,
the quadrature or imaginary data may be modeled as

dr(ti) = fr(t:) + e(ts). (2)

It is assumed the data are sampled at discrete times ¢;, not necessarily uniform. The noise is
represented symbolically as e(?;) in both channels. So far no assumptions are made about it (e.g.,
correlated vsnot correlated), except that whatever the noise characteristics are in one channel, they
are similar in the other.

The signals fr(t) and fr(t) are written as sums over functions U; and V; such that

Falt) = 32 By (©.1), ®)
and -
i) = 3 BV (0.0, ()

where m is the total number of signal functions in one channel and B; is the amplitude of the jth
signal function. The signal functions U;(®,t) and V;(®,t) may be thought of as sinusoids with
exponential or Gaussian decay, although nothing in the calculation will require this. Thus any
quadrature data set that can be modeled by Eqgs. (1)—(4) may be analyzed using this calculation.
The functional form of the signal is another of those hypotheses that will be taken to be part of the
general background information I. This assumption could also be tested using probability theory,
but in this calculation that will not be done.

The signal functions U;(@,t) and V;(0,t) are functions of a continuous variable ¢ which in
this calculation is time; however, the data have been sampled only at discrete times {¢1, -, tn}.
Additionally, U;(@®,t) and V;(©,t) are assumed to be functions of other continuous parameters
labeled ®@. These parameters are typically frequencies and decay rate constants. However, ® could
also include the global phase of the sinusoids, or any other parameter needed to model the signal.
The total number of nonlinear parameters is designated as r.

The quadrature (prior) information has been incorporated by assuming that the amplitudes B;
are the same in both channels. If phase coherence is included in the model, then the signal function
will be of the form

fr(t) =) BjUj(t) = Y Bjsin(wjt + 0)e™ ", ()

ji=1 j=1
and . .
fr(t) =Y BjVi(t) = Y Bj cos(wjt + 0)e™ ", (6)
j=1 ji=1

where n is the number of frequencies, m is the number of signal functions, and r is the number of non-
linear parameters. For the model just given, m =n, r = 2n+1, and @ = {wy, - -, wy, 1, -+, @y, 0}.



If the phase coherences are not explicitly included, then all of the phases may be written as
amplitudes. In this case the signal functions will occur in pairs,

fr(t) = E B;U;(t) = Z [Bj sin(wjt) + Bjyn cos(w;t)] e~ ", (7)
fi(t) = E B;V;(t) = E [Bj cos(wjt) — Bjin sin(w;t)] e, (8)

where m = 2n, r = 2n, and B; and B4, are effectively the amplitude and phase of the jth
resonance. Of course, it is possible that the amplitudes in one of the two channels could be scaled
by a constant factor, and the two channels could be slightly out of phase. Each of these possibilities
is handled easily by the general formalism.

The goal is to compute the joint posterior probability density for the nonlinear @ parameters
(the frequencies and decay rates) independent of the amplitudes B. According to Bayes’ theorem
[11], the posterior probability of all of the parameters (including the amplitudes) is given by

P(®,B|I)P(D|®,B,I) 0
P(DII) ' )

P(®,B|D,I) =

To compute the joint posterior probability of the parameters P(®, B|D, I), one must evaluate three
terms. The first term P(®,B|I) is the probability of the parameters given only the prior informa-
tion I. This prior probability represents the state of knowledge about the parameters before this
particular data set was taken; for example, a previous measurement would represent highly relevant
prior information. However, in this calculation little prior information about the parameters will be
assumed and broad uninformative prior probabilities will be used. The second term P(D|®,B, ) is
called the direct probability of the data. It is often referred to as a “sampling distribution” when the
model is held fixed and different data sets are examined, and it is often called a “likelihood function”
when the data are held fixed and different parameter values are examined. The third term P(D|I)
is the marginal probability of the data given only the prior information. For this problem this term
is a normalization constant, which may be ignored.

To remove the amplitudes from the problem, it is assumed that when the data were taken each of
the amplitudes B; could take on only one value; i.e., each B; is a constant through the run of data.
However, it is not known which value was actually realized in the experiment. The probability that
a parameter had value a;j, where a; is one member of a set of mutually exclusive values, {a1,---,an},
is the sum of the probabilities of the individual values. When the parameters are continuous, the
sums are replaced by integrals. Thus, the posterior probability of the frequencies and decay rates
independent of the amplitudes, is given by

P(®|D,I) /dBP(@,B|I)P(D|®,B,I). (10)

It is this quantity that is computed for the general model, Eqs. (4) and (9).

To proceed one must assign either the prior probability P(®,B|I) or the direct probability of
the data P(D|©,B,I). The direct probability will be assigned first. The direct probability is the
probability that this particular data set should have been obtained given that the signal is exactly
known; but from the model Eqgs. (1) and (2), this is just the probability of the noise. To assign the
direct probability one must assign a prior probability to the noise. It is a prior probability because
it depends only on what was known about the noise before this particular data set is analyzed.

In most experiments not much is actually known about the noise; but one thing is certain,
when the data were taken, the noise carried a finite total power. This information is enough to
assign a maximum entropy prior probability distribution. An extended discussion of the principle



of maximum entropy is beyond the scope of this paper, but briefly, it is a theorem that maximum
entropy probability distributions contain only the information I used in assigning them [refl,4,12—
14]. If an arbitrary procedure is used to assign a prior probability, regardless of the theoretical
support that procedure may have, one can always find the information I that yields the same
probability density from a maximum entropy calculation. If the information 7 is not the same as
the stated assumptions used in the arbitrary procedure, then Shannon’s theorem [14] guarantees that
the arbitrary procedure assigned a probability distribution that either contains hidden assumptions
or does not contain all of the information implicit in the stated prior information. In either case, one
will reason inconsistently in the sense that one could reach conclusions that are not warranted on the
basis of the stated assumptions, or one may not reach a conclusion that was warranted. Therefore,
whenever possible, maximum entropy will be used in this calculation to assign prior probability
distributions.

The known information about the noise is that the noise carried a finite but unknown total
power. The maximum entropy calculation is straightforward and results in the assignment of a
Gaussian. Thus, the probability that one should obtain a set of noise values e = {e(t1),---e(tn)} is

Ple|o,I) = (2m0%)~ ¥ exp {— 3 eg;g } , (11)

i=1

where the variance o2 is the average value of the noise power and has been assumed known for now.

Use of Gaussian noise prior probability is not the same thing as assuming Gaussian white noise.
Indeed, as has been stressed before, probabilities in Bayesian probability theory represent states of
knowledge, not facts of nature. The only fact of nature used in assigning the noise prior probability
was that the noise has a finite total power. The Gaussian is simply the most conservative noise prior
that is consistent with this fact. Indeed when using the Gaussian, probability theory will split the
data into two categories: a noise category and a signal category. When the parameters are estimated,
everything that cannot be placed into the signal will be placed into the noise. The accuracy of the
parameter estimates depends on the estimated noise variance, and because everything not considered
signal is noise, the accuracy estimates will be as wide as is consistent with the model and the data.
If information were available that the noise were simple digitizing errors, Poisson in nature, or that
correlations exist, that information could be used in a new maximum entropy calculation to obtain
a noise prior probability that has lower entropy for a given total noise power. Because it has lower
entropy, that new noise prior probability will be more informative than the Gaussian.

Having assigned a noise prior probability, one may proceed to calculate the direct probability of
the data. Taking the difference between the data and the signal in the model equation Eq. (1), one
obtains e(t;) as a function of dg(?;). Substituting for e(Z;) in the noise prior probability Eq. (11),
the probability that one should obtain this particular noise sample in the real data is

P(dn(ts), - dultn)| 0. 1) = (270%) ¥ exp {— Y [t - fR(“)]2} S

202

For the imaginary channel a similar result holds:

N

P(di(t),-- - di ()|, 0 1) = (270%) % exp {— 3 M} | (13)

, 202

=1
where it is assumed that the average noise power in the two channels is the same, but the actual
samples of noise in the two channels are independent. The probability that one should obtain the

two data sets is just the product of the probability that one should obtain each of the data sets
separately,

P(D|f. fr,0,1) = (2707)~N exp {_ Z [dr(ti) — fr(:)]? + [di(t:) — fI(tz’)]Z} | )

202




where D represents all of the data.

This is the direct probability of the data and is to be substituted back into Bayes’ theorem,
Eq. (9). However, first the exponent will be rearranged into a form more easily used. Substituting
the model signal Eqgs. (3) and (4) into the direct probability or likelihood, Eq. (14), the direct
probability of the data given the parameters is written as

P(D|®,B,0,I) = (270%)~N exp{—%}, (15)

where

Q=dp-dp+dr-d -2 Bildg-Uj +d; - V;1+ Y > BiBi[U; - Up + Vi - Vi, (16)

ji=1 j=1k=1

and (-) means the sum over the discrete times t;, for example,

dr -V =Y di(t:)V; (). (17)

The models fr and fr in P(D|fr, f1,0,I) have been replaced by ® and B to indicate that one
particular form of the model is now being considered and the model equations (the exponentially
decaying sinusoids) are to be considered as part of the general background information 7.

The direct probability of the data Eq. (15) may now be substituted back into Bayes’ theorem
to obtain the joint probability of the parameters. Before doing that, note that Bayes’ theorem
indicates that the joint posterior probability of the parameters given the data is essentially ( i.e., |
but for normalization) the product of the direct probability and the prior probability. Assignment
of the direct probability of the data is complete, and the prior probability of the parameters will be
formulated next.

To assign the prior probability of the parameters, exactly what is known about the parameters
must be stated. In this problem, it is assumed that there is little, effectively no, prior information
about the parameters. Because so little information about the parameters is assumed, knowledge of
one parameter would not help in estimating the others. With this assumption, the prior will factor
and may be written as

P(®,B|I) = P(®|I) P(B|I). (18)

This is clearly not true in general. For example, if one has a previous measurement of a sinusoid,
knowledge of the frequencies would imply a great deal about the amplitudes. So if cogent prior
information is available it should be incorporated into the prior P(®,B|I). Having none, it will be
assumed that the data determine the parameters much more precisely than the prior information.
Therefore the prior information is vague and uninformative. If the prior does not vary appreciably
over the range of parameter values indicated by the data, the conclusions are nearly independent
of what the prior does outside that range. So, the exact functional form of the prior is relatively
unimportant, as long as it does not express a strong opinion about the parameters.

To assign the prior probability for the amplitudes, one must state exactly what is known. In
this problem what is known is that the signal, like the noise, carried a finite but unknown total
power. But this information is enough to use maximum entropy to assign a prior probability to the
amplitudes. This prior is again a Gaussian for exactly the same reason that the noise prior was a
Gaussian. It has been assumed that the data determine the parameters much better than the prior,
so the variance on the prior for the amplitudes is assumed to be very large. Therefore, over the
region where the direct probability of the data is peaked, this prior will look like a uniform prior.
In the limit, as the variance of the Gaussian goes to infinity, the Gaussian goes into a uniform prior
and expresses no opinion about the parameters. This assumption will be made, and the Gaussian
will be replaced by its limiting form.



This unbounded uniform prior is called an improper prior probability and strictly speaking is not
a probability distribution at all; rather it is the limit of a sequence of proper priors, in the limit of
infinite uncertainty in the parameters. Care must be exercised when using improper priors, because
they effectively introduce an infinity into the calculation. In parameter estimation calculations this
presents no problem, because the infinity always cancels when the distribution is normalized. This
is not true in model selection calculations, and improper priors cannot be used [8§].

The assignment of the prior for the frequencies and decay rate constants is simpler, because
these parameters may be bounded. In dimensionless units the frequencies must take on values
—7 < w; < 4, and surely in dimensionless units the decay rate constants may be bounded by
0 < a; < N. If nothing else is known about them except the bounds, then maximum entropy will
assign uniform priors probability density functions to these parameters.

With this choice of the prior, the joint posterior probability of the amplitudes, and nonlinear ®
parameters given the variance of the noise, is just the original likelihood function

P(B,0®|o,D,I) x (27T0'2)_N exp{—%}, (19)

where the standard deviation of the noise o has been added to the posterior probability of the
parameters to indicate that it is known. If ¢ is not known, then using the product and sum rules,
it may also be removed from the problem.

This is the joint posterior probability for all of the parameters including the amplitudes. To
remove the amplitudes, the sum rule from probability theory is applied: integrate the joint posterior
probability density with respect to the unwanted parameters

o0

P(®|o,D, ) oc/_ (2mo?)~N exp{ QQZ}dB (20)

o0

These integrals are multivariant Gaussian integrals and any multivariant integral of this form may
be done analytically. To do the integral a change of variables is introduced,

m
Bk = Z 4 e]k with Ak = \/EZ Bjek]', (21)
ji=1

dedBl...dBm:A;%~~-A;%dA1...dAm; (22)

and a change of function is introduced:

E Ui 6’”, with  fr(t) ZA R;(t), (23)

=Y ﬁ with  f7(t) EA Ii( (24)

where ¢;; is the kth component of the jth eigenvector of the interaction matrix

ot _ZU )+ Vi(t)Valta), (25)

and A; is its jth eigenvalue. Then using the property

N

>R () Ri(te) + Li(8:) I () = 85, (26)

i=1



called orthonormality, the posterior probability of the nonlinear @ parameters Eq. (20) becomes

1 1 (o] !
P(@|O’,D,I)O(O'_2N)\1_5"'/\;1§/ dA1~~~dAmeXp{—2Q—2}, (27)
— 00 a
where
m m
Q' =dp -dg+dy-d; -2 Ajhj + > Al (28)
j=1 ji=1
and
hj =dg - R; +d; - Ij, (29)

and some irrelevant numerical constants have been dropped. After completing the square and
performing the m integrals one obtains the posterior probability of the nonlinear ® parameters,

1 _1 d d d d _ ﬁ
P(®|U’D?I)0(0'm_2NA12"')\mzexp{— R R+2]2 I m }’
g

(30)

where

h?

1 =,
~ SR (31)
i=1
is the mean-square projection of the data onto the model.
If the variance of the noise o2 is known (as assumed so far), then the problem is completed. The
posterior probability of the frequencies and decay rate constants, conditional on the data and the
assumed knowledge of o, is
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1 1 hZ
P(®|o,D, 1) x A7 7 - A exp{m } (32)

But if ¢ is not known, then it too becomes a nuisance parameter to be removed by integration.
Now ¢ is a scale parameter and is restricted to positive values. The completely uninformative prior
probability of a scale parameter is the Jeffreys’ prior 1/ [15]. A maximum entropy derivation of this
prior is beyond the scope of this paper, but one may be found in [16]. Like the unbounded uniform
prior, the Jeffreys’ prior is also an improper prior, and as was mentioned earlier, improper priors
are not strictly speaking probability density functions at all; rather they are the limiting values of
a sequence of proper priors and convey no information about the numerical value of a parameter.
Their use in parameter estimation problems is helpful, because they make the mathematics easier;
however, they cannot be used in model selection problems.

Multiplying the posterior probability of the nonlinear parameters Eq. (30) by a Jeffreys’ prior for
the standard deviation, one obtains the joint probability of the nonlinear parameters and the stan-
dard deviation. Integrating the joint posterior probability with respect to the standard deviation,
o, one obtains the posterior probability of the frequencies and decay rate constants independent of
the amplitudes and variance of the noise:

m—2N

FIG) 2
mh?

~dg-dg+dr-d;

P(®|D,I) x AT? - An2 |1 (33)

The quantity h? plays the role of a sufficient statistic and summarizes all of the information in the
data for inferences about the nonlinear ® parameters. The posterior probability of the frequencies
and decay rates is given by Eq. (32) if the variance of the noise is known, and by Eq. (33) if the
variance of the noise is unknown. These equations are exact results and do not depend on uniform
sampling, the data need not be a time series, and the models need not be sinusoidal. Any quadrature
data set that can be modeled by Egs. (1) and (2) having a signal of the form of Eqgs. (3) and (4)
can be used in these equations.



Expectations

In order to recover the model signal, Egs. (3) and (4), an estimate of the amplitudes B is required.
To estimate the accuracy of these parameters, the posterior covariances are needed, and an estimate
of the variance o2 would be extremely useful in deciding the adequacy of the model. In general, the
integrals over the nonlinear ® parameters cannot be performed exactly. Thus, a way to estimate
the accuracy of these parameters must be devised. This presents only a minor problem, because
the logarithm of the posterior probability is proportional to N, the number of data values. When
the number of data values is large, the posterior probability will be so sharply peaked that good
approximate results will be readily available.
The expected orthonormal amplitudes (A4;) are given by

0 A2 _9h. A
| e {-H S s,
E(Ajl@,O’,D,I):(A]'> ===

e A% — 2h; A; (34)
/_Ooexp{ -1 - 952 }dAj

and the expected value of the amplitudes B are

E(Br|®,0,D,1) = (By) = i hicjk (35)

j=1 \/A_J

These are the explicit Bayesian estimates for the amplitudes B;. They are still functions of ( i.e.,
, they are conditional on) the nonlinear ® parameters, and to remove this dependence one should
in principle multiply these estimates by the posterior probability of the frequencies and decay rate
constants and integrate over all remaining parameters. But if the data actually determine the
frequencies and decay rates well, evaluating the amplitude estimates, Eq. (35), at the maximum of
the posterior probability, Eq. (33), is nearly the same as computing these expectation values.
The posterior covariances of the orthonormal amplitudes A are easily computed. These are given
by
(ArA1) — (A) (A1) = 0?81, (36)

where 6 is the Kronecker delta function. The posterior covariances for the amplitudes B are given

by

(BiBr) — (Bi)(B) = 0* Y Ll (37)

ji=1 J

From the posterior covariances the (mean) + (standard deviation) estimate of the amplitudes B can
be made. Defining &7 as

2
e
o= (B~ (B =) (38)
ji=1 J
one may estimate B to a precision of
(Bi)est = (Br) & & (39)

at one standard deviation. If one compares these amplitude estimates to those obtained from
maximum likelihood, one will find they are the same; and the accuracy estimates are nearly the
same as the standard error calculation typically given for maximum likelihood and least squares.
This is not surprising; this calculation started with the same direct probability as least squares and
maximum likelihood and did not include any additional prior information. Therefore, the direct



probability must determine the parameters, and it has. However, there are significant differences
for the nonlinear parameters and in the interpretation of these results. Additionally, this calculation
can be extended to the model selection problem [ref7,8] which neither least squares nor maximum
likelihood can approach.

An estimate of the variance of the noise is helpful in judging the adequacy of the model. This is
given by

E(c%|@®,D,I) = (0?) =

(40)

dR~dR+d1~d1—mﬁ
2N —m —2

As indicated earlier, everything probability theory cannot fit to the data is placed into the noise.
The Gaussian noise prior is the least informative prior probability density that is consistent with
the finite average noise power assumption.

Unlike the amplitudes B and the variance of the noise ¢, one cannot calculate the expectation
values of the nonlinear @ parameters analytically; that is, the integrals represented by

2

(©;) = /d@ ®; P(®|D, I) (41)

cannot be done exactly. Nonetheless an estimate of these parameters and their probable accuracy
must be obtained.

These estimates may be obtained by first noting that the joint posterior density is Eq. (30) when
o is known and Eq. (33) when it is not. But they are not very different provided we have enough
data for good estimates. Writing the maximum attainable ) hJ2 as

ji=1

max

and writing the difference from the maximum as ¢?, one has
m
2 2
Yhl=z—q (43)
ji=1

and Eq. (33) becomes

m=2N 2N — m)g?
[dR.dR—}—dI.dI_x—}—qz] ) %exp{_Q(dRFdR-i-dI)'qu—x)}’ (44)

where the slowly varying Jacobian has been dropped. But this is nearly the same as

) m—2N q2
[dR-dR—{—dI-dI—;E—}—q] 2 %exp{—m}, (45)

where (02 is Eq. (39) and is evaluated for the values ® = {06, --,0,} that maximize the posterior
probability. Up to an irrelevant normalization constant, the posterior probability of the nonlinear

® parameters around the location of the maximum posterior probability is given approximately by

P(®|(0?), D, 1) ~ exp{%}, (46)

where the slightly inconsistent notation P(®|(c?), D, I) has been adopted to remind one that (o?)
has been used, not o%. Of course if o2 is actually known then (o) should be replaced by ¢ in what
follows.

10



Expanding h2 in a Taylor series around © one obtains

T bk
P(®|(c?), D, I) x exp{— Z ﬁAJ»Ak}, (47)
jk=1
where o
m  0%h?
=5 5600n
J Elé (48)
A]' = éj - @]’,

from which the (mean) + (standard deviation) approximations for the ® parameters can be made.

These estimates are obtained by computing the posterior covariances of the nonlinear ® param-
eters. These Gaussian integrals are evaluated by first changing to orthogonal variables and then
performing the n integrals. The new variables are obtained from the eigenvalues and eigenvectors
of bjr. Let u; denote the kth component of the jth eigenvector of b;; and let v; be the eigenvalue.
The orthogonal variables are given by

r SkUk
k=1

Making this change of variables, one has

P D1 ol o7 Fenp - ZQ } (50)

From the local approximation of the posterior probability Eq. (50), the expected values of (s;) and
(s?) can be computed. Of course (s;) is zero and the expectation value (s;jsy) is given by

J
” e Zr st
/ dsy---dsyvy * - -vp ?8j5 €Xpy — m

(sjsk) = _oooo : : Tl:lsz ’ -
= (0°)6k;

where 6;; is a Kronecker delta function. The posterior covariances of the nonlinear ® parameters
are given by

(0;08) — (©;)(Or) = (o7 3 Lk, (52)

v
=1 !

Defining 77 as

r

Z L’“ (53)

the (mean) + (standard deviation) estimate of the nonlinear ® parameters is

??‘l\)
|||

(ej)est = éj +7; (54)

at one standard deviation.
For an arbitrary model, the matrix b;; cannot be calculated analytically; however, it can be
evaluated numerically. The accuracy estimates of the nonlinear ® parameters and the amplitudes
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B depend explicitly on the estimated noise variance. But the estimated variance is the mean-square
difference between the model and the data. If the misfit is large, the variance is estimated to be
large and the accuracy is estimated to be poor. Thus, when one states that the parameter estimates
are conservative it is implied that, because everything probability theory cannot fit to the model is
assigned to the noise, all of the parameter estimates are as wide as is consistent with the model and
the data.

Discussion

Consider the data vector d; = {dr(?1), -, dr(tn),dr(t1), -, dr(tn)} which is to be approximated
by the orthonormal functions H;(t;)

_[Rit:), 1<i<N 55)
7= I]'(ti_N), N <1 <2N
then
d; = f(t;)+ error (56)

Z;n:l A; Hj(t;) + error (1<i<2N).
What choice of {41, -+, A} is “best”? If the criterion of “best” is the mean-square error, then

2

2N m
0 <D |di— ) AjH;(t:)
i=1 ji=1

m

=dg-dp+dy-dr+Y (A} — 24;h;) (57)
ji=1
=dgr-dr+d;-ds _mﬁ+Z(Aj — hy)?,

ji=1

where the sufficient statistic Eq. (29) and the orthonormality Eq. (26) were used. Evidently, the
“best” choice of the coefficients is

Aj=h; (1<j<m) (58)
and with this choice the minimum possible mean-square error is given by the Bessel inequality
dr -dp +dy - dr —mh? >0 (59)

with equality if, and only if, the approximation is perfect.

The Bessel inequality gives the following intuitive picture of the meaning of the modeling process
Egs. (20) thru (33). The quadrature data comprise a vector in a 2N-dimensional linear vector space
San. The signal functions U; and V; define a 2N dimensional vector G;(%;):

(4. — Uj(ti): I1<:<N
G](tl) — {V](tl—N)a N <3 S QN (60)

where

d(tz) = iBjGj(ti) + 6(ti) (1 <1< QN) (61)

The orthonormal model functions H; are related to G; by the transformation

= G]'ek]'
62

Hy
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and the amplitudes A; are related to B; by the change of variables
_ N Aigge e
Bk = — Ak = )\k Z Bjekj, (63)
] i=1

where ¢;; and A; are the eigenvectors and eigenvalues of the matrix g;; which may be written as

gik = ZG](tz)Gk(tz) (64)

This is just the parameter estimation problem for a nonquadrature data set with 2N data values
[1,2]. Apparently parameter estimation using quadrature data, when the variance of the noise is the
same in the two channels, is just a special case of nonquadrature parameter estimation.

The orthogonal model equation

d; = fjAjHj(tz-) +e(ts)  (1<i<2N) (65)

expresses the assumption that these data can be separated into a “systematic part” f(¢;) and
a “random part” e(t;). Estimating the parameters of interest ® that are hidden in the model
functions H;(t) amounts essentially to finding the values of @ that permit f(¢) to make the closest
possible fit to the data by the mean-square criterion. Put differently, probability theory recognizes
that the most likely values of ® are those that allow a maximum amount of the mean-square data
to be accounted for by the systematic term; from the Bessel inequality Eq. (59) those are the values
that mazimize h2.

However, there are 2N data points and only m model functions to fit to them. Therefore, to
assign a particular model is equivalent to supposing that the systematic component of the data lies
only in an m-dimensional subspace S, of Syy. What kind of data should one then expect?

Consider the problem backward for a moment. Suppose one knows (never mind how one could
know this) that the model is correct, and one also knows the true values of all the model parameters
(A,0O,0) — call this the Utopian state of knowledge U — but one does not know what data will
be found. Then, the probability density that would be assigned to any particular data set D =
{dy, -+, dan} is just the sampling distribution

PDIV) = (ne?)y ™ exp { - 51 Dl - S0 - (66)

From this the expectations and covariances of the data can be found:

B@0)= () = f)  (1<i<2N)
(didj) — (di)(d;) = (27r0'2)_N/d2Nx Z;xj exp {—%' rf} (67)

= 0%bij;
therefore one would “expect” to see a mean-square data value d2 of about
12N
E(d2|U) = (d?) === (d}
(@I0) = () = 55> ()

- %Z((W +o?) (68)

1 2N
2 2
= — E t;).
7 +2Nz:1f( )
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But from the orthonormality Eq. (26) of the H;(¢;), one can write

> () Z EAAkH D Hy(t:)

1

o (69)
So that the expected mean-square data value Eq. (68) becomes
(@) = —— A2 4 ¢ (70)

2N

where A? is the mean-square amplitude: A2 = E] 1 Az/m Now, what value of A2 does one expect
the data to generate? This expectation is given by

D) = () = > ()
= 30D (e ) 10) ()

j=1¢ k 1
= —EZ( (di) + o283) Hj (t:) Hj (1.
j=1li k=1
But
2N 2N m
D di)H(t) =D > AH(t:)H;(t:)
i=1 i=11=1
(72)
= Aiby
=1
and the expected value of the sufficient statistic Eq. (71) reduces to
(h2) = A? 4+ o2 (73)

So, given the Utopian state of knowledge, one expects the left-hand side of the Bessel inequality
Eq. (59) to be approximately o o
2N(d?) — mh? ~ (2N — m)o*. (74)

This agrees very nicely with one’s intuitive judgment that as the number of model functions increases,
one should be able to fit the data better and better. Indeed, when m = 2N, the functions H;(t;)
become a complete orthonormal set on San, and the data can always be fitted exactly, as Eq. (74)
suggests.

If o is known, these results give a simple diagnostic test for judging the adequacy of the model.
Having taken the data, calculate (dr - dg + dy - dr — mﬁ) If the result is reasonably close to
(2N — m)o?, then the validity of the model is “confirmed” (in the sense that the data give no
evidence against the model). On the other hand, if (dg -dr + dy - df — mﬁ) turns out to be much
larger than (2N — m)o?, the model is not fitting the data as well as it should: it is “underfitting”
the data. This would be evidence that the model is inadequate to represent the data in the sense
that more model functions or different model functions might be required or the supposed value of
o? is too low. The next order of business would be to investigate these possibilities.
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It is also possible, although unusual, that (dg -dr +dr - dr — mﬁ) is far less than (2N — m)o?;
then the model is “overfitting” the data. This would be evidence either that the supposed value of
o is too large (the data are actually better than we expected) or that the model is more complex
than it needs to be. By adding more model functions the apparent fit can always be improved, but
if the model functions represent more detail than is really in the systematic effects, part of this fit
is misleading: one is fitting the noise.

A test to confirm this would be to systematically remove each parameter from the model and
then, using Bayesian probability theory, calculate the probability of these models. The posterior
probability of the models could then be compared to determine which parameters are spurious. The
procedures for calculating the probability of the models have not yet been discussed and are the
subject of the next paper [7]. There it is demonstrated that Bayesian probability theory contains
a quantitative statement of Ockham’s razor: When two models fit the data equally well, prefer the
simpler model.

Consider now the case that ¢ is completely unknown, where probability theory led to the student
t distribution, Eq. (33). Integrating over a nuisance parameter is very much like estimating the
parameter from the data, and then using that estimate in our equations. If the parameter is actually
well determined by the data, the two procedures are essentially equivalent. The expectation value
of the variance (o?) is given by

<0-2> B dpL'dR—}—d['d]—Z;n:thZ
a 2N —m —2 '

Constraining o to this value, the posterior probability of the ® parameters is approximately

2(c?)

just the approximation derived earlier. In effect, probability theory apportions the first m degrees
of freedom to the signal, the next two to the variance, and the remaining (2N — m — 2) should be
noise degrees of freedom. Thus, as already stressed above, everything probability theory cannot fit
to the signal will be placed in the noise, automatically.

More interesting is the opposite extreme when the student ¢ distribution, Eq. (33), approaches
a singular value. Consider the following scenario. One has obtained some data which are recorded
automatically to six figures. But one has no prior knowledge of the accuracy of those data; in
fact, o may be such that all of the data are essentially noise. The data are plotted to determine a
model function that best fits them. Suppose, for simplicity, that the model function is a stationary
sinusoid. On plotting d; against ¢, the data are seen to fall exactly on the sinusoid (i.e., to within
the six figures given). What conclusions does one draw from this?

Intuitively, one would think that the data must be far “better” than had been thought; one feels
sure that ¢ must be less than one part in a thousand, and that one is therefore able to estimate
the frequency to an accuracy considerably better than a part in a thousand, if the number of data
values 2N is large. It may, however, be hard to see at first glance how probability theory can justify
this intuitive conclusion that one draws so easily.

But that is just what the parameter estimates Eqs. (39) and (54) tell one; Bayesian analysis
leads one to it automatically and for any model functions. Even though one had no reason to expect
it, if it turns out that the data can be fit almost exactly to a model function, then from the Bessel
inequality, Eq. (59), it follows almost certainly that o? must be extremely small and, if the other
parameters are independent, they can all be estimated almost exactly.

P(®|(6?), D, 1) ~ exp{m—hz} , (76)
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Summary and Conclusions

In high resolution NMR a great deal of prior information is available. This information can be used to
great advantage when analyzing NMR data. Here the Bayesian data analysis calculation, originally
done in [9], has been expanded to include the quadrature nature of NMR data. The calculation
gives a simple intuitive picture of quadrature model fitting. The data may be thought of as a 2N
dimensional vector, and the model may be thought of as an m dimensional vector. The frequencies
and decay rate constants estimated are those which allow the model to make the closest approach
to the data by the mean-square criterion. Although a simple picture of the model fitting process
emerges from the calculation, what is to be gained by using probability theory has not yet been
demonstrated. In later articles [7,8] the calculation is extended to the problem of determining the
optimal model, and the use of these techniques on FID data using sinusoidal models is demonstrated.
Examples of parameter estimation, signal detection, and model selection are given.
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