Journal of Magnetic Resonance 88, 571-595 (1990)

Bayesian Analysis. III.
Applications to NMR Signal Detection,
Model Selection and Parameter Estimation

G. LARRY BRETTHORST
Washington University,
Department of Chemistry
Campus Bozx 1134

1 Brookings Drive,

St. Louis, Missouri 63130-4899

1

ABSTRACT. The two preceding articles developed the application of Bayesian probability theory
to the problems of parameter estimation, signal detection, and model selection on quadrature NMR,
data in some generality. Here those procedures are used to analyze free induction decay data, when
the models are sinusoidal. The exact relationship between Bayesian probability theory and the
discrete Fourier-transform power spectrum is derived, and it is shown that the discrete Fourier-
transform power spectrum is an optimal frequency estimator for a wide class of problems. Signal
detection and model selection problems are then examined, and examples are given that demonstrate
the ability of Bayesian probability theory to determine the best model of a process even when more
complex models fit the data better.

Introduction

The traditional way to analyze a free induction decay is to treat the data as the real and imaginary
parts of a complex data set, and then perform a discrete Fourier transform on the complex data. The
frequencies and amplitudes are then estimated from the real part of the discrete Fourier transform.
The real part of the discrete Fourier transform is called an absorption spectrum. Before taking the
transform, zeros are often added to the end of the complex data to make a new, longer data set.
Zero-“padding” (or “filling”) the data and then performing a discrete Fourier transform essentially
allows one to evaluate the Schuster periodogram [3] at smaller frequency intervals. Zero-padding
does improve frequency resolution. A typical reason given for this is that, the absorption spectrum
contains only half of the total information in the data and zero-padding to 2N data values allows
one to recover the other half of the information [4]. Additionally, the complex time domain data
are often multiplied by an apodization function, typically a decaying exponential (line broadening);
this filter removes high-frequency oscillations from the absorption spectrum, suppresses side lobes,
and increases the signal-to-noise ratio in the absorption spectrum.

Bayesian analysis of the single stationary sinusoidal frequency model and the multiple well-
separated stationary sinusoidal frequency model will lead to a discrete Fourier-transform power
spectrum as an optimal statistic for the estimation of multiple well-separated stationary frequencies.
This calculation (given shortly) places the discrete Fourier transform in a new light and shows that
under a variety of conditions no better estimate of the frequencies may be obtained than from the
peak values of a zero-padded discrete Fourier-transform power spectrum. Additionally, Bayesian
analysis of the single exponentially decaying sinusoidal model leads to a discrete Fourier-transform
power spectrum of the complex data multiplied by an appropriate exponentially decaying apodizing
function as the proper statistic for estimating the frequency and decay rate when the data contain
a single exponentially decaying sinusoid. Thus, the discrete Fourier-transform power spectrum will

1 All of the computer codes and the data used in these three papers are available from the author.



be shown to be the proper statistic for frequency estimation under a variety of conditions, and the
common practices of zero-padding and exponential apodizing will be interpreted in an entirely new
way.

Multiple Stationary Frequency Estimation

Suppose the data to be analyzed is an FID with a single resonance and the signal was sampled so
fast and one is far enough off-resonance that, to first approximation, the signal may be considered
a stationary (nondecaying) sinusoid. How would one use the procedures developed in the previous
paper [1] to determine the resonance frequency? To answer this question, one first states exactly
what prior information (in the form of a model) is to be incorporated into the calculation. As was
discussed previously [1], for quadrature data there are two data sets, each 90° out of phase. The
real data dg has a model of the form

dr(t;) = fr(t;) +e(t;) (1<i<N), (1)
and
dr(ti) = fr(ts) +e(t;) (1<i<N) (2)

for the imaginary data, where fgr and f; define what is meant by the signal and e(¢;) is a random
noise component at time ¢;. The quadrature model for a single stationary sinusoid may be written
as

2
fr(t) =Y B;jU;(t) = By sin(wt) + By cos(wt), (3)
j=1
for the real channel, and
2
fr(t) =" B;V;(t) = By cos(wt) — By sin(wt) (4)
ji=1

for the imaginary channel, where the parameters B; and Bj are effectively the amplitude and phase
of the sinusoid, and w is a parameter representing the frequency and is to be estimated from the
data. For the purposes of analyzing the data for resonances, only the frequency w is of interest.
The other two parameters, B; and Bj, will be considered as nuisances and the problem will be
formulated independent of them.

To compute the posterior probability of the frequency, one computes the g;; matrix defined as

%k:§2WO0W00+%@0WOJ (5)

For this model, when the data are uniformly sampled, this matrix is particularly simple:

gik = (J(Y ]%) (6)

where dimensionless units have been used. In these units the frequency w takes on values ranging
from —7 < w < 7, and the time increments take on values t; = {0,1,---, N — 1}, where N is the
total number of data values in one channel. The statistic A2, Eq. (31) from Ref. 1, is then given by
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where
N

Cr(w) = Z dr(t;) cos(wt;), (8)

and
Sp(w) = Z dg(t;) sin(wt;) 9)

are the cosine and sine transforms of the real data, and Cr(w) and Sy(w) are the transforms for
the imaginary data. The quantity 22 summarizes all of the information in the data relevant to the
problem of estimating the value of a single stationary frequency, and is called a sufficient statistic.
The sufficient statistic, Eq. (7), is then substituted into posterior probability of the nonlinear @
parameters, Eq. (32) from Ref. 1, if the variance of the noise is unknown, or into Eq. (33) from
Ref. 1 if the variance of the noise is known. For this demonstration, the posterior probability of the
nonlinear ® parameters given the variance of the noise, Eq. (32) from Ref. 1, will be used. The
posterior probability of a single stationary sinusoidal frequency is given by

R\ _ [Cr(w) + S1(w)]* + [Sr(w) — Cr(w)]?
F} - { IN o2 } '

P(wle, D, 1) ocexp{ (10)

The exact relation of the sufficient statistic A2 to a discrete Fourier transform will be discussed
shortly. First these results are generalized to a model which contains multiple well-separated sta-
tionary sinusoids.

When the data are known to contain r stationary sinusoidal frequencies, the model signal in the
real channel may be written

2r r
fr(t) = Z B; Ui (t) = Z Bj sin(w;t) + B,y cos(w;t), (11)
ji=1 ji=1
and ,
fr(t) =" B;Vj(t) = > Bjcos(wjt) — B,y sin(w;t), (12)
ji=1 ji=1

for the imaginary channel, where phase coherency has not been assumed.
The posterior probability of the frequencies is computed from the g;; matrix. This matrix has
rank 2r and is given by

- _osin{N(wj —wi)/2}
Jik = Ir+jr+k = sin{(w; —wr)/2}

(1<jk<r) (13)

all other elements are zero. If the frequencies are well separated, |N(wj —wg)| > 27 (i.e., during the
acquisition period the differences in frequencies between the jth and kth component evolve through
many cycles), or even separated by a moderate amount, |[N(w; —wy)| > 57 (e.g., a 3 Hz frequency
difference for 10,000 Hz total bandwidth and 16K complex data points), the off-diagonal terms are
small compared to the diagonal and the g;; matrix may be approximated as

gir = Nojp (1<j,k<2r), (14)

where 6;; is a Kronecker delta function.
When the g;; matrix is diagonal, the vectors represented by sines and cosines are orthogonal,
and the problem of estimating the r frequencies separates into r one-frequency problems. The



posterior probability of r well-separated stationary sinusoidal frequencies is just the product of the
probabilities of the individual frequencies,

Plwr, - wplo, D, 1)~ exp Z@
a (15)
= exp i:[CR(wj)+SI(Wj)]22;f—O_[5R(wj)_Cl(wj)]z |

where ﬁ(wj) is just the sufficient statistic for single frequency estimation, Eq. (7), evaluated for
each of the r frequencies.

As noted earlier, in NMR the traditional way to analyze data for frequencies is to take the
quadrature data as a complex data set

d(t;) = dgr(ts) + idi(t;), (16)
and then perform a discrete Fourier transform on the data. The squared magnitude of the discrete

Fourier transform of the complex data, the power spectrum, is given by

2

N
D d(t;)em it

k=1

= [Cr(w) + S1(w)]* + [Sr(w) — Cr(w)]*. (17)

Up to the constant factor 1/2N, the sufficient statistic, Eq. (7), is the squared magnitude of a
discrete Fourier transform of the complex data. Therefore, the discrete Fourier-transform power
spectrum is essentially the logarithm of the posterior probability of a single stationary sinusoidal
frequency, or it may also be interpreted as the logarithm of the posterior probability of r stationary
well-separated sinusoids.

The reason zero-padding gives improved frequency resolution is that it allows one to calculate
the sufficient statistic or Schuster periodogram at smaller frequency intervals. Locating the r largest
maximain a Schuster periodogram is equivalent to locating the maximum of the posterior probability
of r stationary well-separated frequencies. If the frequencies are nearly stationary, or evolve through
many cycles in the FID, then the maximum of the posterior probability, Eq. (15), is nearly the best
estimate of the frequencies one may obtain.

However, there are limitations to the validity of the discrete Fourier-transform power spectrum
as an optimal frequency estimator. Specifically, the assumptions that went into the calculation
must be at least approximately met. The exact conditions of validity are (i) there can be only one
frequency in the data, (ii) the frequency must be stationary and sinusoidal, (iii) the noise must be
white. If these three conditions are not met, the discrete Fourier-transform power spectrum will
still give a valid, but conservative, estimate of the frequency and there will be other statistics which
will give better (i.e., more precise) frequency estimates.

To illustrate the conservative nature of the estimates, suppose the first condition is violated
and there are two stationary sinusoids in the data set. Because the power spectrum represents the
logarithm of the posterior probability, if the frequencies and amplitudes differ from each other by
even a small amount, the highest peak in the discrete Fourier-transform power spectrum is where
all of the posterior probability is concentrated — see Ref. 5 for examples of this. Thus, when the
posterior probability, Eq. (10), is normalized, only the highest peak will be significant; the other
resonance will be considered noise. Probability theory will then estimate the amplitude, phase, and
variance of the noise from a small region around the highest peak. Because the other sinusoid is
considered noise, a larger standard deviation of the noise will result. The precision estimates for
the frequency and the amplitude are proportional to the estimated standard deviation of the noise.



Thus, the accuracy of the estimates will be conservative in the sense that, when one includes the
second sinusoid in the signal, the estimated standard deviation of the noise will be smaller; and
consequently the precision of the estimates will improve.

Now suppose the second condition is violated and the frequency is nonstationary (decaying with
time); when the frequency is estimated, probability theory takes the scalar-product between the data
and the model, and the estimated frequency is the one which makes these vectors as close to parallel
as is possible. This occurs when the estimated frequency is equal to the frequency in the data to
within the noise; but the data decay, while the model does not. Again, there will be significant parts
of the signal placed into the noise. This will again result in a large estimated standard deviation of
the noise, and consequently the accuracy estimates will be worse. Including any type of decay that
is reasonable for the signal in question will improve the resolution of the frequency and amplitude,
because it will reduce the estimated standard deviation of the noise [5].

Now suppose the signal is periodic and stationary, but not sinusoidal. When the signal is
not sinusoidal, the best fit will still occur when the estimated frequency matches the fundamental
frequency in the data. But, there will be a significant misfit between the data and the model. This
misfit will result in an increased standard deviation estimate and the accuracy estimates for the
frequency will again be worse.

It is more difficult to see how knowledge that the noise is not white can be exploited to improve
the parameter estimates. Nonwhite noise contains correlations. Correlations can be described
by a new parameter p, the correlation coefficient. One performs a new probability calculation
which incorporates these correlations. In this new probability calculation the accuracy of parameter
estimates are all proportional to ov/1 — p2. If the noise is uncorrelated, p = 0; the accuracy
estimates reduce to those derived in Ref. 1, and the noise is white; any other value of the correlation
coefficient acts to reduce the effective standard deviation of the noise and improve the accuracy
estimates [6].

If one has specific knowledge about how the data depart from the model (here model means
both the model for the signal and the model for the noise), that information can be used in another
probability calculation to obtain more precise parameter estimates. The discrete Fourier-transform
power spectrum thus represents a conservative estimate of the frequency. But the discrete Fourier-
transform power spectrum is approximately an optimal frequency estimator under a wider set of
conditions than those just given. Specifically, the discrete Fourier-transform power spectrum is
approximately an optimal frequency estimator for multiple well-separated stationary frequencies
when (i) there are r stationary sinusoids present, (ii) the frequencies are well separated, and (iii) the
noise is white. All of the previous comments are applicable with three additions. First, from the
viewpoint of probability theory, the discrete Fourier transform answers a question about frequency
estimation, not a question about signal detection, and not a question about model selection. If
the number of frequencies r is not known from prior information, nothing in the discrete Fourier
transform can tell one its value. Second, when the frequencies are not well separated, the discrete
Fourier transform is not even approzimately an optimal frequency estimator and can give misleading
or even incorrect results — incorrect in the sense that better models will give better results. Third,
when the frequencies are not stationary, the discrete Fourier transform is never an optimal frequency
estimator, and there are always other statistics which give better estimates of the frequencies and
decay rate constants.

This should not be interpreted as recommending against the use of the discrete Fourier transform.
When the frequency has exponential decay, use of a discrete Fourier-transform power spectrum
will produce nearly optimal frequency estimates, when the data are multiplied by an appropriate
exponentially decaying apodizing function [5]. Thus, under many conditions encountered in NMR,
one simply cannot obtain better estimates of the frequencies than from a zero-padded discrete
Fourier-transform power spectrum of the complex data. Indeed, it is the place to start on all
frequency estimation problems; but it represents the answer to a specific question. When the data
contain nonstationary frequencies, when spectral lines overlap in the discrete Fourier transform,



when nonsinusoidal periodicities are present, or when the number of resonances is not known from
prior information, then the discrete Fourier transform is answering an inappropriate question and
other statistics will give better results.

Note, however, that it is the discrete Fourier-transform power spectrum that is the proper statistic
for estimating the values of stationary frequencies, not the absorption spectrum. The power spectrum
is, up to a scale factor, essentially the logarithm of the posterior probability of a single stationary
sinusoidal frequency, or it may be interpreted as the logarithm of the posterior probability of multiple
well-separated stationary sinusoidal frequencies. The absorption spectrum starts by throwing away
half of the information in the data, and then effectively proceeds to take the square root of the
logarithm of the posterior probability. This has the effect of so compressing the scale that unless
the evidence for a frequency is overwhelming, one simply cannot see it: this will be demonstrated
shortly. Additionally, when the imaginary part of the discrete Fourier transform is discarded, the
phase information is essentially discarded. The common problems associated with phase twists and
anti-phased peaks are the result of discarding this phase information. These problems do not occur
in the power spectrum, because the power spectrum essentially estimates the phase and amplitude
at each value of the frequency and then eliminates them from consideration.

Note also, that it is a question about frequency estimation that is being addressed by the discrete
Fourier-transform power spectrum, not a question about amplitude estimation. Thus when one uses
the amplitudes given by Eq. (39) in the previous paper [1], it is the amplitude of a stationary
sinusoid that is estimated; not the amplitude of an exponentially decaying sinusoid. If the problem
is amplitude estimation, then Bayes’ theorem tells one how to do this; simply compute the posterior
probability of the amplitudes independent of the frequencies, decay rate constants, and variance
of the noise. Such a statistic would look very different from the discrete Fourier-transform power
spectrum, or the absorption spectrum.

If the goal of an NMR experiment is to estimate the frequencies very accurately, then probability
theory indicates how this should be done: the data must be sampled very rapidly (to obtain data
before the signal has decayed into the noise), the peak signal-to-RMS-noise ratio should be very
high, and a complete model of the data must be used in the analysis. Only then will the frequencies
be estimated as accurately as is possible — see Ref. 5. The frequencies are estimated to an accuracy
that depends directly on the estimated standard deviation of the noise, inversely on the amplitude of
the sinusoid, and inversely on the square root of the number of data values. But probability theory
tempers the /N effect and indicates that it is only the number of data values in the region where
the signal has not decayed to zero that is important [5]. The accuracy of the estimated parameters
is proportional to the estimated standard deviation of the noise; the smaller the estimated standard
deviation of the noise, the better the estimates of the parameters. The best estimates will be
obtained when all systematic effects in the data have been included in the model, even when the
effect is a nuisance effect (such as an instrumental artifact). There is no magic in Bayesian analysis:
if one wants good parameter estimates, then one must think carefully about the model and use all
the information available in the analysis of the data.

Many of the problems typically encountered with the use of the discrete Fourier-transform ab-
sorption spectrum are now easily explained. For example, suppose one has an FID that contains
a single exponentially decaying sinusoid. However, the data are sampled well past the point where
the sinusoid has decayed into the noise. When using a discrete Fourier transform, one must be
very careful to ensure that data at the end (where no signal exists) are discarded; otherwise, no
peak exists. These data are typically discarded by multiplying by a decaying exponential apodizing
function. From the point of view of probability theory, the discrete Fourier transform answers a
question about stationary frequency estimation, and all data values are equally relevant. Thus when
data values near the end of the FID are included in the discrete Fourier transform, the evidence
for stationary frequencies goes down, as it must; there are no stationary frequencies in the data.
Bayesian analysis using models which incorporate decay do not have this problem, because data
values are weighted. For exponential decay, data values are weighted exponentially and values at



late times are essentially assigned zero weight. By multiplying the data by an exponential apodiz-
ing function and computing the power spectrum, one is essentially computing the logarithm of the
posterior probability of a single exponentially decaying sinusoid. Probability theory interprets this
procedure not as filtering; rather, one is estimating the value of a frequency and decay rate constant.
Because, the numerical value of this statistic is much greater than the unapodized power spectrum,
the frequency and decay rate constant have been determined much more precisely. Additionally, in
the apodized power spectrum it is essentially the peak height that determines the amplitude; not
the area.

Baseline artifacts are now easily understood also. Suppose the FID contains two resonances:
one very large resonance that decays into the noise in the first 20 or 30 data values and one small
resonance that decays into the noise in approximately 1000 data values. In order to see the rapidly
decaying component in the data, the amplitude of the rapidly decaying component must be several
orders of magnitude larger than the slowly decaying component. Since acquisition does not begin
at time ¢ = 0, this is especially true when the rapidly decaying component decays away in only the
first 2 or 3 data values. The intuitive picture given in the previous paper [1], indicates that the
frequency estimated by the discrete Fourier transform will be the one for which the mean-square
difference between the data and the model is a minimum. This minimum occurs when the single
stationary sinusoidal model most resembles the rapidly decaying component in early times and the
slowly decaying component in late times. Note, however, that it is not the oscillations that are
being fitted but the envelope of the decay. The mean-square difference between the data and the
model is minimized, because in the residuals the resonances are now nearly stationary. The peak,
or feature, in the discrete Fourier transform is broad, because a wide range of frequencies give
nearly the same mean-square difference. There is often no peak at the location of either the rapidly
decaying component or the slowly decaying component; they simply get lost because decay is the
dominate feature in these data, not oscillations. Indeed, there could be excellent evidence for both
components in the data, and use of models which include decay can readily extract them — see Ref. 7
and Ref. 8 for examples of how to use Bayesian techniques to analyze such data.

The intuitive picture given in the previous paper [1] should also alert one to possible problems
concerning the procedures typically used to correct these “baseline” artifacts. These baseline features
are often modeled by a polynomial in the frequency domain. The coefficients for this polynomial
are determined from the absorption spectrum, and the estimated polynomial is then subtracted
from the absorption spectrum. But probability theory clearly indicates that the data are projected
onto the model by taking scalar products. Here there are two models: (i) the sines and cosines,
and (ii) the time-domain baseline model. If the time domain baseline model is not orthogonal to
the sines and cosines (by orthogonal it is meant that the scalar product of the sine or cosine onto
the polynomial must be zero), then when the baseline is subtracted from the absorption spectrum,
some of the signal of interest will also be subtracted. This will change the estimated values of the
frequencies, amplitudes, and decay rate constants. The amount of change will be directly related to
how far from orthogonal the two models are.

Signal Detection

Nothing in the preceding discussion can determine when a signal has been detected or what model
signal best characterizes the data, because the discrete Fourier transform is answering a question
about frequency estimation. It implicitly assumes the functional form of the model, and it assumes
one knows the number of resonances. Procedures were developed in the preceding paper [2] for
dealing with signal detection and model selection problems. In this section, the signal detection
procedures are applied to sinusoidal FID NMR data.

Suppose one has an FID that looks like that in Fig. 1. The data shown are the real channel of a
LH FID using ethyl ether (diluted in CgDg) as the sample. The data contain N = 512 time samples



Figure 1: Simulated FID Data
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Fig. 1. The real channel of a 'H NMR FID of ethyl ether, with N = 512 time samples per channel. The
data span approximately 300 ms. Gaussian white noise was added to the data to make an extremely noisy
data set. The peak signal-to-RMS-noise ratio in these time domain data is approximately 0.6.

per channel, span approximately 300 ms, and were taken using a Varian 500VXR spectrometer.
Because the sample did not contain a reference compound, the ppm scale shown was set by defining
the center frequency of the quartet [ethyl ether 'H NMR, spectrum consists of a triplet (-CHjz) and
a quartet (-CHsz-)] to be 3.4 ppm relative to TMS. To illustrate signal detection, Gaussian white
noise was added to the data, resulting in an extremely noisy data set. To the eye, it is very difficult
to tell whether a signal is present. The discrete Fourier transform absorption spectrum, Fig. 2, is
not much help. In the previous section, it was demonstrated that a power spectrum is the proper
statistic to use when estimating the value of a single stationary frequency. Because of the way these
data were sampled, the signal is very nearly stationary. Thus, the discrete Fourier-transform power
spectrum is very nearly the proper statistic to use when estimating the value of a frequency. A power
spectrum of these data, Fig. 3, does indeed give better evidence for the presence of a frequency. But
the problem is signal detection, not parameter estimation, and, as has been emphasized before,
nothing in the discrete Fourier transform can tell one whether the peak near 1.25 ppm is a real
frequency or an artifact of the noise.

The procedures derived in Ref. 2 are applied here to determine if the peak near 1.25 ppm
represents significant evidence in favor of a frequency, or if it is an artifact of the noise. To use those
procedures one must state what is meant by the signal. Here two candidate models f; and fo are
considered. Model f; will be a quadrature model of a constant,

_{B1U1 {fR:Bl (1<i<N)
h= =

18
B1V; f[:Bl (N<Z§2N)’ ( )

and represents no signal. Model f, will be a quadrature model of a stationary sinusoid plus a
constant,

3 .
fo= =1 BiUj { fr = B1 + Bysin(wt;) + Bs cos(wt;) (1<i<N) (19)
2= 2?21 B;V; “ | fr =Bi+ Bycos(wt;_n)— Bzsin(wt;_ny) (N <i<2N)’



Figure 2: Absorption Spectrum
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Fig. 2. The 'H NMR absorption spectrum of the data shown in Fig. 1. In the region of the spectrum
shown, the center frequency of the -CHj triplet is the dominant effect [ethyl ether 'H NMR spectrum has a
triplet (-CHs) and a quartet (-CHz-)]. One cannot tell from the absorption spectrum if any frequencies are
present.

Figure 3: Power Spectrum
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Fig. 3. Bayesian analysis indicates that a power spectrum is the appropriate statistic to use when estimating
the value of a single stationary sinusoid. This is a power spectrum of the data shown in Fig. 1. This power
spectrum does indeed give better evidence for the frequencies. But the question is signal detection, not
parameter estimation, and nothing in the discrete Fourier transform can tell one if that peak near 1.25 ppm
is noise or if it is an indication of a real frequency.



and represents the signal. This example will be worked in considerable analytic detail; then several
numerical examples using the data in Fig 1 will be given. Decay will be included in model fs
in the numerical examples. In the calculation, the global likelihood of data, Eq. (23) of Ref. 2,
will be used. Thus, the prior uncertainty in the amplitudes 62, and the variance of the noise o2
will both be assumed known; then in the numerical examples, both of these parameters will be
eliminated by using the global likelihood of the data, Eq. (27) from Ref 2. The global likelihood of
the data independent of these parameters is not used in the analytic calculations simply because of
its increased complexity.

The procedures derived in preceding paper [2] did not explicitly assume quadrature models. But
in the earlier paper [1] it was demonstrated that quadrature models (when the variance of the noise
is the same in both channels) are special cases of nonquadrature models. A quadrature model may
be written in nonquadrature form by taking the data D, with data item d;, to be

_ dg(ti) (1<i<N)
di = { dr(ti—n) (N <i<2N)’ (20)

The total number of data values is 2N, where N is the number of data values per channel. The
signal functions G; are given by

[ Ui (1<i<N)
Gj(ti) = { Vi(tien) (N <i<2N) (21)

The posterior probability of model f; is computed from Eq. (3) derived in Ref. 2 using the global
likelihood of the data, Eq. (23) from Ref. 2. The global likelihood of the data, Eq. (23) from Ref. 2,

is computed from the g;; matrix. For model f; this matrix is just a single number

Gik = g11 = ZGl(ti)Gl(ti) =Y Ur(ta)Us(t:) + Va(ti)Vi(t;) = 2N. (22)

i=1

The sufficient statistic A2, Eq. (21) from [2], for model f; is given by

h? = 2N (d)?, (23)
where
- o1 &
d= o5 ; [dr(t:) + di(t:)] (24)

is the average value of both the real and imaginary channels. If one has no prior knowledge about
which model is in the data, and assigns each model a prior probability of 1/2, the posterior proba-
bility for model f; becomes

—-N_1-2Ng-1 Fr 2
P(filo, 0,1 = B2 1 eXp{_NdaizN@}’ =

where the variance o2 and 62 are assumed known, and a term in the exponential, (3)2/262, is assumed
small compared to the retained terms. This assumption was the basis for all of the calculations done
in the preceding paper [2]. This term was not dropped in Ref. 2, because it is not negligible when
6 is removed as a nuisance parameter.

An exact solution for the posterior probability of model f; can be determined, because the
eigenvalues and eigenvectors of the g;; matrix may be computed analytically. Here, an approximate
solution is given to simplify some of the analytic details. The solution derived is valid provided
|wN|> 27, i.e., there is no evidence of a low frequency. Basically, in avoiding the region in which

10



model f; reduces to fi, one avoids taking careful limits when w — 0. While this is an interesting
limit, it is concerned more with probability theory than with spectrum analysis.

To compute the posterior probability of model f,, one again computes the g;; matrix. If the
amount of data is large, N > 1, then Ef\;l cos(wt;) & Zf\;l sin(wt;) < N. The g;; matrix is nearly
diagonal and may be approximated as

2N 0 0
0 0 N

The sufficient statistic A2, Eq. (21) from [2], for model fo is then given by

— 1 — 1 1
hZx = 2N (d)? + — 2+ —(SkR—0C1)?*}. 2
3{ (d)° + T (Cr+51)" + +-(Sr CI)} (27)
The posterior probability of model f; is then given by
o3—2Ng=3 QN[W—(E)z]—(CR—I-S[V—(53—01)2
P(f2|w,0',6,D,I)_WeXp{— 2NU‘2 s (28)

where a small term in the exponential was again ignored, and P(f2|I) = 1/2 was used.
A posterior odds ratio was used to exhibit the results in the preceding paper [2] and that approach
will be used here also. The odds ratio used is

i - PUslw,0,6,D,1) _o? f(Cr+S1)" + (Sk—C1)*
=~ "P(fil0,6,D,1) 82 " INo?2 ’

(29)

and is the odds in favor of the sinusoidal model f5. The result depends on two factors: the first
factor, 02 /62, is like a ratio of student ¢ distributions expressing the prior odds in favor of the simpler
model. If this ratio is very small, one has strong evidence in favor of the simpler model. This is the
regime were these equations are valid — this is a conservative signal detection calculation, where the
prior odds are strongly in favor of the simpler model. The second factor is the posterior probability
of a stationary harmonic frequency, Eq. (10), and represents how well the sinusoid fits the data.
For this odds ratio to express evidence in favor of model fs, the discrete Fourier-transform power
spectrum must have a peak, which is large compared to the variance of the noise.

The posterior odds ratio, Eq. (29), expresses a bet. If the odds ratio is greater than 1, it is a bet
in favor of the model containing the sinusoid. If the odds are less than 1, it is a bet in favor of the
constant model — no signal of interest. If the odds are exactly 1, neither model is to be preferred.
By experimenting with some numbers, a better understanding of the detection process, and how
sensitive these formulae are to the prior information, can be obtained. Suppose one has data, which
contain a sinusoidal signal of the form

d; :{ B cos(@t;) + e(t;) (1<i<N)

Bsin(@t;i_y) +e(t;) (N <i<2N)’ (30)

where B is the true amplitude of the sinusoid, w is the true frequency, and e(¢;) represents noise. If
the peak signal-to-RMS-noise is large, the power spectrum will have a peak near w & w and at the
peak the odds ratio will be given approximately by

o2 N B2
K= 6—2exp{ 107 } (31)

If 62 were known, one could determine the peak signal-to-RMS-noise ratio needed to give even
odds. When these equations were derived, the assumption was made that the prior probability

11



was essentially uniform over the region where the likelihood of the data is sharply peaked. So the
calculation should not depend strongly on the value of §2. Almost any value of 62 > o2, should
work equally well. Suppose 62 = 1000?; then terms involving 1/6% are small, and the assumptions
that went into the calculation are met. This assumption will be made for now, and later §2 will be
made a million times larger to see what effect this has on the conclusions. Using the assumption
62 = 10002, and assuming there are N = 512 data values per channel, as in Fig. 1, and assuming
the noise variance is one, then the even money bet is given by

; 1 51282
A_l_mexp{ 2 }, (32)
which gives
- log(102?)
B 8~ 0.19. (33)

The even money bet occurs when the average noise fluctuations are five times larger than signal
amplitude.

The posterior odds ratio depends on the exponential of the square of the amplitude: the posterior
odds must rise very rapidly as a function of amplitude. To demonstrate this, suppose B =10.3 and
the other parameters are unchanged, then the odds in favor of model fs becomes

1 12 % 0.37
K= (m)exp{#} ~ 1000. (34)

The change in the amplitude from 0.19 to 0.3 has raised the odds to 1000 to 1 in favor of the
sinusoidal model.

But these results depended on knowing the parameter 6%, and an arbitrary value was assigned.
Suppose 62 = 10302, how would this affect the calculation? Assuming all other parameters retained
their values, the even money bet now occurs when

. [log0) _ :
B T 0.38. (35)
By increasing 62 from 10002 to 10302, the peak signal-to-RMS-noise ratio for the even money bet
has increased form 0.19 to 0.38. Even though the results depend on knowing 62, they depend only
weakly on this information, as one would expect. There are hardly any circumstances where an
experimenter could not guess the values of these parameters to within an order of magnitude, let
alone the six orders of magnitude variation examined here. Regardless, the second form of the global
likelihood, Eq. (27) from Ref. 2, does not require knowledge of these parameters at all.

This discussion began by examining the FID shown in Fig. 1. In the traditional absorption
spectrum, Fig. 2, one could not be very sure that a signal is present, nor could one readily convince
a skeptic that detection has been accomplished. The power spectrum, Fig. 3, gives better evidence
for the signal, but as was emphasized earlier the problem is detection, not parameter estimation. The
discussion just completed demonstrates that small signals are detectable under idealized conditions,
but what about in real data? Suppose the techniques are applied to the data shown in Fig. 1. For
this demonstration the second form of the global likelihood, Eq. (27) from Ref. 2, will be used.
When this equation is used the posterior odds ratio has no adjustable parameters. The posterior
odds in favor of model f; are displayed in Fig. 4. Because K tends to be rapidly varying, even for
the data shown in Fig. 1, 10log;((K) has been plotted. This quantity is called the evidence and has
units of decibels. For these data, at the maximum, it is a bet of better than 107 to 1 in favor of the
model containing the frequency. Thus, probability theory not only finds evidence for a frequency, it
finds good evidence for the frequency.
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Figure 4: Signal Detection — Without Decay
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Fig. 4. The calculation in the preceding paper [2] can be used to test for the presence of a signal. Here 10
log,(K) is plotted for the data shown in Fig. 1. This quantity is called the “evidence” and has units of
decibels, see text for details. If the evidence is 30 dB, then it is a bet of 10% to 1 in favor of the sinusoidal
model. If the evidence is -30 dB, it is a bet of 1072 to 1 in favor of the constant model, and if the evidence
is 0 dB, neither model is preferred. In these data it is a bet, at the maximum where the evidence is greater
than 70, of better than 107 to 1 in favor of the frequency model.

But this is an FID, and all such NMR signals decay. The model just applied assumed that the
sinusoid was stationary. For these data, this is a reasonable assumption; but not for FID data in
general. There is nothing in the formalism that prevents one from including decay in the model.
Suppose model f> is modified to include decay:

b= { fr = B1 + [Basin(wt;) + Bs cos(wt;)]e™ > (1<i<N) (36)

fr = B1 + [Ba cos(wt;_n) — Bssin(wt;_n)]e” *1i-N (N <i<2N)’

and model f; remains unchanged. The posterior odds is now a function of the frequency w and the
decay rate constant «. This odds ratio is displayed as a contour plot in Fig. 5. The units are again
decibels. Along the line o = 0, this plot reduces to the previous odds ratio. If including decay has
improved detection, then near the maximum odds as a function of frequency, the odds ratio should
increase as one moves away from a = 0. Indeed this does occur and the posterior odds increase from
approximately 70 to 100 dB. At the maximum, it is a bet of approximately 10'° to 1 in favor of the
model containing the frequency. Thus, including decay in this model was about half as important
as including the frequency; but these data are nearly stationary. In typical FIDs including decay is
about as important as including the frequency, and when a rapidly decaying component is present,
including decay is more important than including the frequency.

Now that one knows, or at least is reasonably sure, that the peak near 1.25 ppm is an indication
of a real frequency, the procedures derived in the earlier paper [1] may be used to estimate the
values of the frequency and decay rate. Model fa, Eq. (36), was used to estimate the frequency,
decay rate, amplitude and phase. From this model one finds

(w)est = 1.255+0.0015 ppm,

(@)egt =4.1E1s7h (37)
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Figure 5: Signal Detection — With Decay
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Fig. 5. Two-dimensional contour plot of the chemical shift (ppm) vs decay rate constant (s_l). Contours are
lines of constant “evidence,” i.e., 10 log,,(K') expressed in dB. The evidence in Fig. 4 does not include decay.
When decay is included in the model, the evidence becomes a function of two parameters: the frequency and
decay rate constant. A contour plot of the evidence, for the NMR FID data shown in Fig. 1, as a function
of these parameters shows that there is a well-defined maxima. At the maximum, it is better than 10*° to
1 in favor of the frequency plus decay model over the constant model. Thus, including decay is about half
as important as including the frequency.
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and the amplitude B and phase © were estimated to be

(B)est = 8000 £ 3000 (arb. units),

(©)est = 5.2+ 0.3 rad. (38)

The accuracy estimates are at two standard deviations. The peak signal-to-RMS-noise ratio of
these data was estimated to be 0.68. Thus, in data where one cannot be sure of detection using the
absorption spectrum, probability theory can tell one that the sinusoid is present, and then estimate
the frequency to a precision which is 2.2 times better than the Rayleigh criterion [9]. This is not
magic: probability theory simply makes use of all of the data and prior information. The precision
estimates scale with the estimated standard deviation, and scale inversely with v/N. Even though
the estimated standard deviation of the noise is large, there are 1024 data values, and the signal
is nearly stationary; thus all 1024 values are relevant, and a precise estimate of the frequency is
possible. Note that even though the frequency is estimated to 1 part in 850, the decay rate is
estimated only to 1 part in 4, and the amplitude is not even estimated to 1 part in 3. Frequencies
are relatively easy to estimate; while decay rate constants, amplitudes, and phases are relatively
difficult to estimate.

Model Selection

The preceding discussion allows one to determine how strongly a model containing given nonlinear
parameters is supported relative to an alternative linear model. This is important, because it allows
one to tell at a glance whether there is evidence for the signal of interest. But after the signal
has been detected the problem changes from detection to either parameter estimation, or model
selection. In this section the model selection procedures derived in the preceding paper [2] will
be applied to FID data: first, to determine the number of resonances in the data and, second, to
determine the “best” model for the data.

The data used in the analysis will again be a 'H FID using an ethyl ether sample, but at a
higher peak signal-to-RMS-noise level. The original FID contained 6848 real data values and 6848
imaginary data values, and spanned a total time of approximately 4.0 s. Using a discrete Fourier
transform as the analysis tool, and the Rayleigh criteria for resolution (1/27", where T' = 4.0 s), the
frequencies may be resolved to 0.125 Hz, if one uses all of the data. In the analysis using probability
theory, only 512 real and 512 imaginary data values will be used. The resolution using probability
theory will be contrasted to the resolution using the discrete Fourier transform. The real part of
these data are shown in Fig. 6A. Because only a small part of the total FID is used, the absorption
spectrum, Fig. 6B and Fig. 6C, show significant truncation artifacts. Just outside of the regions
shown there are three other resonances due to residual water, the deuterated benzene solvent, and
a spectrometer glitch. In the following calculations, these three frequencies will be accounted for
with a model containing three independent exponentially decaying sinusoids, but the discussion will
center on the seven lines shown. The peak signal-to-RMS-noise ratio of the time domain data is
approximately 7.

To determine the number of spectral lines in the data, one computes the posterior probability of
the number of spectral lines, r, given the data and the prior information. Applying Bayes’ theorem,
the posterior probability of the number of spectral lines, r, is given by

P(r|D)P(Dr, I)

P(r|D, 1) = T

(39)
where P(r|I) is the prior probability of the number of spectral lines, r. For this problem no prior
information will be assumed about the number of lines in the data, and the prior will be taken to be

a normalized uniform prior: P(r|I) = 1/s, where s is an upper bound on the number of frequencies.
The global likelihood of the data, P(D|r, I), represents how well the data fit the model and, in the
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Figure 6: Ethyl Ether Data
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Fig. 6. The real channel of the time-domain ethyl ether data are shown in (A). There are N = 512 data
values per channel. There are two regions of interest in the absorption spectrum: the region of the quartet
(B) and the region of the triplet (C). Just outside of the two regions shown there are three other small
resonances that are accounted for and ignored in the analysis — see text for details.
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notation of the preceding paper [2], is P(D|f;,I). The probability of the data, given only the prior
information P(D|I), is a normalization constant. With these substitutions the posterior probability
of the number of spectral lines, r, may be written as

P(D|f7'; I)
_

> _P(DIf;, 1)

ji=1

P(r|D,I)= P(f:|D,I) = (40)

This calculation is just an application of global likelihood of the data, Eq. (42) from Ref. 2.
In this calculation, the model signal will be taken to be the sum of exponentially decaying
sinusoids of the form

f o [ TR = B st + By cos(uts oot G<isy) )
2= fr = Ej;l[BJ COS((.dtZ'_N) — Bj-l-" Sin((.dti_N)]e_ajt’_N (N <1< QN) ’
where 7 is the unknown number of spectral lines in the data, {Bj,---, Ba.} are effectively the
unknown amplitudes and phases of the sinusoids, and {wy, -, w,, a1, -+, a,} are the unknown

frequencies and decay rate constants. A great deal of information is known about the frequencies,
decay rate constants, amplitudes, and phases of these sinusoids; all of this information will be
incorporated into the models before this demonstration is finished. In the determination of the
number of sinusoids, only the functional form of the resonances will be used. Phase coherences are
not used, because some of the nuisance resonances are not in phase.

To compute the posterior probability of the number of spectral lines, r, one simply computes
the global likelihood of the data, Eq. (19) from Ref. 2, using the model signal, Eq. (41), as the set
of models S. Care must be taken when applying the global likelihood of the data, Eq. (19) from
Ref. 2, because those equations were derived without the quadrature assumption. Here the number
of model functions is 2r, the number of nonlinear parameters is also 2r, and the total number of
data values is two times the number of data samples per channel, or 1024. Thus, for this problem
the global likelihood of the data, Eq. (42) from Ref. 2, becomes

PID(r)T(512 — 27)[rh2] " [rO?]~"

Uy V2p

__712r—512
P(D|r, 1) ~ ]

512d2 — rh? 42
[ ,

S)

where the definitions of these quantities may be found in Ref. 2. For r sinusoids with exponential
decay there are r! different peaks in the posterior probability distribution. The factor of r! accounts
for the contributions of these peaks to the integrals over the nonlinear ®@ parameters.

To compute the approximate posterior probability density for the model, one must locate the
maximum of the posterior probability of the nonlinear ® parameters. This optimization step requires
good initial estimates of the frequencies. The orthogonality property of sines and cosines may be
used to aid in determining the initial estimates, and in finding small resonances in an FID. The
following procedure was used to determine the number of resonances in the data and has been
found to be very effective in general:

1. Using the signal detection procedures described earlier, compute the evidence in favor of
a model containing a constant plus a stationary sinusoid, Eq. (19), compared to a constant
model, Eq. (18). This odds ratio may be computed from the posterior probability of the model,
Eq. (23) in Ref. 2, if the variances are known, or from Eq. (27) from Ref. 2, if the variances
are unknown. The posterior probability of the model given the variances Eq. (23) in Ref. 2 is
the preferred form, because it is more sensitive to small resonances. The second form of the
posterior probability, Eq. (27) in Ref. 2, is more difficult to use; because it must estimate the
noise level given the single frequency model, and a single frequency model will not fit multiple
decaying sinusoidal data well. Small resonances will initially be placed into the noise, although
they will be detected later. This odds ratio is essentially a discrete Fourier-transform power
spectrum, with the scale adjusted to an evidence scale.
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2. If there are n; resonances with more than 100 dB evidence, construct a decaying sinusoidal
model, with 7 = n; resonances. Resonances with more than 100 dB evidence have odds ratios
of better than 10 billion to 1 in favor of the sinusoidal model, and are real effects in the data.
If no resonance is above 100 dB, but some resonances have positive evidence, incorporate
these “questionable” resonances into the model one at a time. If no resonances have positive
evidence, then all resonances have probably been located and the procedure is terminated.
The initial estimate of the decay rate constant is almost irrelevant. Pick an estimate that is
reasonable: for example, for exponential decay use 3/T, where T is the total sampling time.

3. Using a global-optimization routine, locate the maximum of the posterior probability of
the nonlinear ® parameters. The algorithm used in this simulation is a modification of
the Levenberg-Marquardt method. The principle difference between it and the Levenberg-
Marquardt method is that the posterior probability is maximized; y? is not minimized. The
values of the parameters that maximize the posterior probability are not equal to the values
that minimize y? in general, although for a single FID, using uninformative prior probabilities,
they are. Thus, minimum Y2 represents an approximation to maximum posterior probability
that is not always valid. As with the discrete Fourier transform, unless one understands the
limits under which the approximation is valid, one can misuse what is otherwise a valuable
tool.

4. After locating the maximum of the posterior probability of the nonlinear ® parameters, com-
pute the posterior probability of this model. If the posterior probability of the model increases,
keep this model; otherwise reject the added component and test the remaining questionable
resonances.

5. Take the difference between the data and the model and repeat this procedure using the
residuals as the data in step (1). The first pass through this procedure will typically find all
of the large resonances in the FID. Repeated passes will find small resonances, and resonances
that are too close for a discrete Fourier transform to resolve. If on the second pass through
the procedure one finds ny new resonances, one adds these resonances to the model, creating
a model with » = nj + ny resonances. Steps (3) through (5) are repeated until no additional
resonances can be found in the residuals.

This procedure is not foolproof. It relies on the orthogonal property of sines and cosines to leave
well separated resonances in the residuals. When resonances are very close, or resonances with very
small signal-to-noise ratio are present, sometimes no evidence for these resonances will show up in
the residuals, and the procedure will fail. Implementing this procedure as an automated program
is straightforward, and modifying the procedure to account for very rapidly decaying nuisance
resonances is also straightforward. Additionally, the computation of the sine and cosine transforms
may be done using procedures that run in N log(N) time, so the calculations may be done relatively
quickly. But care must be taken in using any general routine such as this one. This routine represents
the answer to a specific question, and sometimes that question may not be appropriate.

This procedure was used to determine the number of resonances in the ethyl ether data shown
in Fig. 6A, with two changes. These changes were implemented in order to obtain the information
presented in Fig. 7; there was nothing in the ethyl ether data that required these changes. The
following changes were made. The automated program was forced to update the model one resonance
at a time so the probability of each spectral line could be obtained and the three nuisance resonances
were always included in the model. At each step in the procedure, the most probable frequency
in the residuals was used as the initial estimate of the next frequency in the optimization step.
The procedure was repeated until no additional effect could be found in the residuals. A plot of
log,[P(r|D, I)] is shown in Fig. TA. The posterior probability rises 923 orders of magnitude and
reaches a peak at the seven-frequency model.
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To run the eight-frequency model, an initial estimate of the eighth frequency has to be obtained.
As described above, these estimates are obtained by taking the difference between the data and
the model (here, the model is 7+ 3 = 10 exponentially decaying sinusoidal frequency model), and
computing the odds in favor of a resonance in the residuals. This odds ratio for the residuals using
a model with 7+ 3 = 10 exponentially decaying sinusoidal frequencies is show in Fig. 7C. For all
values of the frequency, the odds ratio is always in favor of the constant model; thus there was no
evidence in the residuals for an additional resonance, and the procedure terminated. The probability
of the number of spectral lines was then normalized over the seven models shown. This normalized
posterior probability of the number of spectral lines is shown in Fig. 7B.

Note, that an eight frequency model was never actually tested by the automated procedure; so
it is not known if the posterior probability of an eight resonance model will go up or not. All that
is actually known is that there was no remaining evidence in the residuals for additional sinusoids.
To do this problem correctly one must postulate the 8 plus 3 nuisance resonance model, and then
compute the posterior probability by performing the integrals over the 11 frequencies and 11 decay
rates. This is obviously very difficult, and because the odds ratio in Fig. 7C strongly indicates
no additional effects are in the data, the assumptions that went into the Gaussian approximation
are becoming questionable. In the preceding paper [2], when this happened, the integrals over the
nonlinear decay rate constants were done numerically. Here, when the number of resonances in
the model exceeds the number in the data, the same problem occurs; but it is not nearly as bad.
The orthogonality property of sines and cosines is responsible for this. In determining the number
of sinusoids in the data, the extra sinusoid simply expands the noise, and because most of the
posterior probability is concentrated around the highest noise peak, the Gaussian approximation
works to order of magnitude. The penalty against the more complex model is typically four orders
of magnitude in these data, so if the approximate calculation is to order of magnitude, it hardly
matters if the model is ruled out at 30,000 to 1 or 10,000 to 1 against. Either way the model will
be rejected.

In addition to the concerns about the Gaussian approximation breaking down, one should also be
concerned about the decaying exponential sinusoidal model. This model is at best an approximation.
There could be other small effects in the data. There is some theoretical reason to expect that the
decay will go into a power law for very late times and that radiative damping could change the
local magnetic field in a time dependent way that could introduce a small chirp. Additionally small
changes in the magnetic field could introduce other effects. If one looks too closely, one may find
“frequencies” that correspond to expanding these effects on the decaying exponential sinusoidal
model. That is not to say that one should not look, but if the only question one asks is, “How may
decaying exponential sinusoids does it takes to expand the signal down to the noise?” probability
theory will answer this question, and if the data do not contain exponentially decaying sinusoids,
one will get an optimal answer to an inappropriate question.

With this in mind, note that a seven-independent-frequency model is not the optimal spectral
model for this FID, because a triplet and quartet have very specific meanings in NMR.. The triplet
should have three equally spaced frequencies, with amplitudes in a ratio 1:2:1. There should be a
single phase, and the resonances should decay at the same exponential rate. The quartet should
also have equally spaced frequencies, with amplitudes in a ratio of 1:3:3:1; there should be a single
phase, and they should decay with the same exponential rate. Last, the spacing of the frequencies
in the triplet should be the same as the spacing of the frequencies in the quartet. Thus, there is a
great deal of additional prior information that can be incorporated into this spectral calculation.

This additional information was used to demonstrate probability theory’s ability to select the
correct model even when the “true” model does not fit the data as well as others tested. The results
of this calculation are summarized in Table 1. Each table entry represents a gradual simplification
of the model starting with entry 1, which takes each resonance line as an independent frequency.
This is the model used to determine the number of resonances in the FID. The last entry in the table
is a triplet and a quartet model. Column three describes the model used for the three-frequency
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Figure 7: Probability Of The Number Of Spectral Lines
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Fig. 7. The base 10 logarithm of the posterior probability of the number of spectral line components is
plotted in (A). The normalization was set so that the base 10 logarithm of the three nuisance resonances
was zero. The posterior probability increases over 923 orders of magnitude and reaches a maximum at
seven frequencies. To determine an initial estimate for the eighth frequency, the evidence in favor of another
resonance in the residual was computed (C). Because there is no positive evidence for another frequency, the
search for spectral lines terminated with seven. The fully normalized posterior probability of the number
of resonances has been plotted in (B). The probability is concentrated on the seven frequency model; this
model has a probability of one to six decimal places.
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Table 1: Model Selection

Model Base 10 Log 3 freq. 4 freq. <o > Total
number P(f;|D,I) region  region parameters
1 0.0 3F 4F 464.2 41
2 2.5 3F 1D42F  465.7 38
3 2.8 1D+1F 4F 466.2 38
4 4.2 3F 2D 467.7 35
5 4.8 1D+1F 1D+2F 467.6 35
phase coherent 5.8 3F 4F 468.2 35
6 7.7 T 4F 467.2 34
7 9.5 1D+1F 2D 469.6 32
8 9.9 T 1D+42F  468.6 31
9 10.3 3F Q 468.6 30
10 11.8 T 2D 470.6 28
11 12.6 1D+1F Q 470.5 27
12 18.0 T Q 471.5 23

Note. A series of models beginning with model 1 (10 frequencies total = 7 in the region of interest + 3
nuisance frequencies) and ending with model 12 (a quartet + a triplet + 3 nuisance frequencies) were fit to
the data. See text for a description of how to determine the models. The standard deviation of the noise,
the number of parameters, and the posterior probability of each model were computed. Notice that model 1
fits the data the best (it has the smallest estimated standard deviation of the noise), and it also has the most
parameters; while the model which least fits the data is model 12, the model with the fewest parameters.
But in Bayesian probability theory additional parameters carry a penalty; unless they improve the fit more
than what one would expect from fitting the noise the posterior probability does not increase. Thus, even
though model 1 fits the data best, it is 18 orders of magnitude less probable than model 12.

region, and column four describes the model used for the four-frequency region. The abbreviation
“F” stands for a single exponentially decaying sinusoidal frequency model; “D,” a doublet model,
“T,” a triplet model; and “Q,” a quartet model. For example, the model for Table 1 entry 8 has
the four-frequency region modeled as two independent frequency components plus a doublet, and it
has the three-frequency region modeled as a triplet.

For each of the models, the base 10 logarithm of the posterior probability of the model, the
estimated standard deviation of the noise, and the total number of parameters are shown. The
normalization was set so that the base 10 logarithm of the posterior probability of Table 1 entry
1 was zero. Table 1 is ordered in increasing posterior probability order. The model that fits the
data the best is entry 1 — it has the smallest estimated standard deviation of the noise. The model
that fits the data the worst is entry 12, the quartet and triplet model. The model labeled “phase
coherent” is a seven exponentially decaying sinusoidal model with a single phase. Phase coherence is
an important piece of information and should be included in NMR models whenever possible. The
triplet and quartet model, entry 12, is some 18 orders of magnitude more probable than the seven
independent exponentially decaying sinusoidal model, entry 1. The second most probable model is
entry 11, and it is some 5 orders of magnitude less probable than the triplet and quartet model,
entry 12. Thus, probability theory strongly indicates that the model which “best” accounts for
these data is the model that takes the three-frequency region to be a triplet and the four-frequency
region to be a quartet, despite the fact that of all of the models tested, this model fits the data the
least. As has been emphasized before, additional parameters carry a penalty; if those parameters
do not expand the data better than what one would expect from fitting the noise, then the prior
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will effectively eliminate the model from consideration. This effect is easily seen in Table 1; the
posterior probability increases every time a parameter is removed.

Now that the correct model is known, the procedures derived in [1] may be applied to estimate
the parameters. The separation A between the center of the triplet and the center of the quartet is

(A)egt = 2.144750 & 0.000025 ppm (43)
at two standard deviations. The coupling constant Jp for the triplet is
(JT)est = 6.979+0.013 Hz (44)
at two standard deviations and the coupling constant Jg for the quartet is
(Jg)est = 6.97£0.02 Hz (45)

at two standard deviations. This last estimate is the worst of the three, and it is some 6.25 times
better than the Rayleigh criteria when all 6848 data values per channel are considered, and it is
some 42 times better than the Rayleigh criteria when 512 data values per channel are considered.

Standard theory indicates that ratio of the total intensity of the triplet to the total intensity of
the quartet should be 3/2. Thus the ratio of the amplitude of the small component of the triplet,
By, to the amplitude of the small component of the quartet, Bg, should be given by

201424 1)Br =3(1+34+3+1)Bg

Br 50 (46)
Bo = 3.0.

The estimated value of this ratio is B
=L —3.05+0.06 (47)
Bq

at two standard deviations.

But these results were calculated from a model that allowed Jg to be different from Jz, and
it allowed Bg to be in an arbitrary ratio with Br. Physics clearly indicates that Jgo = Jp, and
Bp = 3Bg. This suggests that a 13th model, which incorporates this information, should be
considered. The posterior probability of this 13th model was computed, and it was found to be five
orders of magnitude higher than the probability of the 12th model. In this model there is only a
single coupling constant J for both the triplet and quartet. This coupling constant is estimated to
be

J =6977+0.011 Hz (48)

at two standard deviations, and the separation between the triplet and the quartet is given by
(A)egt = 2.144799 &+ 0.000037 ppm. (49)

In this example, probability theory clearly indicates that all systematic effects in these data are
in exact agreement with current theory. Indeed, this last model puts extremely strong constraints
on any alternate theory. For probability theory to prefer an alternate theory, it must either fit
the data much better using the same number of parameters or fit the data similarly using fewer
parameters. But none of the models in Table 1 could significantly improve the fit. This means
that the alternative theory must fit the data at least as well using fewer parameters. This will
be difficult, because the 13th model contained only 5 parameters (one amplitude, one phase, the
center frequency for the triplet, the center frequency of the quartet, and one exponential decay rate
constant). The only reasonable possibility is that the alternative theory could specify the separation
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frequency for the triplet and the quartet. But this separation frequency depends on the molecular
dynamics, and this is very difficult to calculate.

In this calculation there were a total of 13 models tested, 14 if one includes the phase coherent
model. The parameter estimation procedures developed in the earlier paper [1], could have been
applied to any of these 14 models. Every one of these models would produce parameter estimates
that may or may not agree with each other. If they disagree with each other, they do not disagree
in any relevant sense, they simply answer different questions. Probability theory includes Fourier
transforms, maximum likelihood, linear prediction, and least squares as special cases; if any of these
procedures gives misleading or incorrect results, it is almost a given that the model assumed in the
calculation was inappropriate for the data being analyzed. Before asking a parameter estimation
question, one must be absolutely sure that the correct model has been incorporated into the calcu-
lation. Thus, parameter estimation questions are the last questions one should ask, not the first. It
is only after one has carefully checked the alternatives that one can be reasonably sure of obtaining
reasonable parameter estimates.

Summary and Conclusions

In these three papers, full Bayesian probability theory has been applied to the problems of parameter
estimation, signal detection, model selection, and spectral estimation. In the previous paper [1],
the procedures needed to estimate parameters using quadrature NMR models were derived. In the
preceding paper [2], the procedures needed to detect signals and compare models were developed. In
this paper, those procedures were used to demonstrate the relationship between Bayesian probability
theory and the discrete Fourier transform, to detect small signals, to estimate parameters, and to test
various alternative models against theory. These demonstrations illustrate that Bayesian probability
theory contains a quantitative statement of Ockham’s razor: postulate various theories, compare
these to experiment, and when two theories explain the data equally well, prefer the simpler model.
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