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Abstract. This paper is an elaboration of an issue that arose in the paper “Nonuni-
form Sampling: Bandwidth and Aliasing” [1]. In that paper the single frequency
estimation problem was explored using Bayesian probability theory for quadra-
ture data that were sampled nonuniformly and nonsimultaneously. In the process
of discussing single frequency estimation, it was shown that the Lomb-Scargle
periodogram is the sufficient statistic for single frequency estimation for a sta-
tionary sinusoid given real nonuniformly sampled data. Here we demonstrate that
the Lomb-Scargle periodogram may be generalized in a straightforward manner
to nonuniformly nonsimultaneously sampled quadrature data when the sinusoid
has arbitrary decay. This generalized Lomb-Scargle periodogram is the sufficient
statistic for single frequency estimation in a wide class of problems ranging from
stationary frequency estimation in real uniformly sampled data, to frequency es-
timation for a single sinusoid having exponential, Gaussian, or arbitrary decay for
either real or quadrature data sampled either uniformly or nonuniformly and for
quadrature data nonsimultaneously.
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1. The Lomb-Scargle Periodogram
The Lomb-Scargle periodogram was derived by Lomb [2] using the model
d(t;) = Acos(2mft; — 6) + Bsin(2wft; — 0) +n; (1)

where d(t;) is the data item acquired at time ¢;, A and B are the cosine and sine
amplitudes of the sinusoid, f is the frequency to be estimated, n; represents noise
at time ¢;, and 6 was chosen by Lomb to make the sine and cosine model functions
orthogonal on the discretely sampled times.

To derive his periodogram, Lomb constrained the amplitudes A and B to their
least-squares value. One then obtains,

Rrs(f)? | Ins(f)?
¢t s 2)
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as the value of Chi-squared (less a constant) where

Rrs(f) = Zd cos(2m ft; — 6),

Ins(f) = Zd )sin(27 ft; — 6),

C ZCOSQ(27Tfti —0),

i=1

N
S = Zsin2(27rfti—0)

=1

with 8 given by

b= 2 ta (Zi\il cos[47rfti]) ' )

This model was later extensively reanalyzed by Jeffrey Scargle [3,4] and, because of
the extent of that analysis, this periodogram now bears both Lomb’s and Scargle’s
name.

2. The Generalized Lomb-Scargle Periodogram

As was shown in [1], by applying the rules of Bayesian probability theory to the
Lomb model, Eq. (1), this periodogram may be derived in a more theoretically
justifiable manner. Knowing this, it is a simple matter to generalize the Lomb
model and thus generalize the Lomb-Scargle periodogram to a much wider class of
problems. Suppose we have nonuniformly nonsimultaneously sampled quadrature
data and we generalize Lomb’s model to

dR(ti) = ACOS(27Tfti — G)Z(tz) + Bsin(27rft,~ — G)Z(tl) + nR(ti) (5)

where dg(t;) denotes the real data at time ¢;, A and B are the cosine and sine
amplitudes, ng(t;) denotes the noise at time ¢;. Following Lomb’s example, § will
be defined in such a way as to make the cosine and sine functions orthogonal on the
discretely sampled times. The function Z(t;) specifies the decay of the sinusoid;
Z(t) could be an exponential, a Gaussian, or any other function appropriate to the
signal being modeled. If Z(t) is a function of any parameters, those parameters
are presumed known; for example, if Z(t) is a decaying exponential, then we are
assuming the decay rate constant is known. Of course, in any Bayesian analysis
we could turn our attention to the parameters in Z(f) and estimate them, but for
this problem we will consider them as known and suppress these parameters from
the notation.

In a quadrature data set one also has a measurement of the imaginary part of
the signal. The imaginary data are 90° out of phase with the real data. Here this
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means that model for the imaginary data is 90° out of phase with the model for
the real data:

di(t;) = —Asin(2r ft; — ) Z(t;) + Bcos(2n ft; — 0)Z(t}) + n(t}) (6)

where N7 is the total number of imaginary data values. We have labeled the times
with a prime superscript to distinguish them from those in the real data and we
have added a subscript, I, to several quantities to indicate that these quantities
refer to the imaginary part of the signal.

The posterior probability for the frequency is denoted as P(f|DI), where D
stands for all of the data: D = {Drg(t1) ... Dr(tng), D1(t}) ... Dr(ty,)}. In this
probability the hypotheses I refers to all of our prior information and does not
refer to the imaginary data; rather it refers to the general background information
on which this problem is founded. The posterior probability for the frequency is
computed from the joint posterior probability for all of the parameters:

P(f|DI) = / dAdBdoP(f ABs|DI) (7)

where o is the standard deviation of the Gaussian noise prior probabilities used to
assign the likelihoods. The right-hand side of this equation may be factored using
Bayes’ theorem and the sum and product rules of probability theory to obtain

P(f|DI) / dAdBdoP(f|I)P(A|I)P(B|I)P(o|I)P(Dg|f ABoI)P(D;|f ABol)
(8)

where we have assumed logical independence of the parameters, and that the
standard deviation of the noise prior probability is the same for both the real and
imaginary data; i.e., our prior information indicate that real and imaginary data
have the same noise levels.

If we assign uniform prior probabilities to P(f|I), P(A|I), P(B|I), a Jeffreys’
prior (1/0) to P(o|I), and assign the two likelihoods using Gaussian noise prior
probabilities, one obtains:

P(f|DI) / dA / dB / doo~ N+
— 00 — o0 0

‘o {_ Nd® — 2AR(f) — 2BI(f) + A2C(f) + B2S(f) } ©)

202
where the total data values, IV, is defined as
N = Ngr+ Njp. (10)
The mean-square data value, d2, is defined as

Z=L > dr(t:)® 4+ di(t)?] (11)

i=1 j=1

2
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The function R(f) is defined as

ZdR cos(2nft; — 0)Z Zd, sin(27ft; — 0)Z(t;) (12

which, for uniformly sampled data, reduces to the real part of a weighted discrete
Fourier transform of the complex data. The function Z(t) plays the role of the
weight or apodizing function. The function I(f) is defined as

ZdR sin(2r ft; — 0)Z +Zd, cos(2mft; —0)Z(t;)  (13)

which, for uniformly sampled data, reduces to the imaginary part of the weighted
discrete Fourier transform of the complex data. The function C(f) is defined as

Ecos (2rft; —60)Z +Zsm (2mft; — 0)Z(t;)? (14)

=1

and is an effective number of data items in the real part of the measurement, see
[1] for more on this. Similarly the function S(f) is defined as

Zsm (2nft; —0)Z +Zcos (2nft; — 0)Z(t] ) (15)

=1 j=1

and is the effective number of data items in the imaginary part of the measurement.
Finally, the condition that the cross terms cancel, i.e., that the model functions
are orthogonal, is used to determine the value of §. This condition is given by:

Nr

Z cos(2m ft; — 0) sin(2n ft; — 0)Z(t;)*
i=1

Nr

> sin(2r ft; — 0) cos(2m ft; — 0) Z(t;)".

Jj=1

(16)

Note that if the data are simultaneously sampled, ¢; = t;, Eq. (16) is automatically
satisfied, so # may be defined to be zero. Otherwise, 6 is given by

1, [Nt - 0)7(6) - S sinan st - 0)2(0)°
= —tan~
2 va % cos(4mfit; — 0) Z(t:) — Y1, cos(amft), — 0) Z(t})?

(17)

The triple integral in Eq. (9) may be evaluated as follows: First, the integrals
over the two amplitudes are uncoupled Gaussian quadrature integrals and are
easily done. One needs only complete the square in the exponent, and a simple
change of variables to evaluate them. The remaining integral over the standard
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deviation of the noise prior probability may be transformed into a Gamma integral
and is also easily evaluated. We do not give the details of these evaluations; rather
we simply give the results:

1 o . 2—2N
P(f|DI) x —— |Nd? — h? 18
P Jetgys "
where the sufficient statistic A2 is given by
- R()? I
Y=o 0 19

and is a generalization of the Lomb-Scargle periodogram.

3. Discussion

The generalized Lomb-Scargle periodogram, Eq. (19), has a number of very inter-
esting features. First, when the data are real and the sinusoid is stationary, the
sufficient statistic for single frequency estimation is the Lomb-Scargle periodogram:;
not the Schuster periodogram, i.e., not the power spectrum. Second, when the data
are real, but Z(t) is not constant, then Eq. (19) generalizes the Lomb-Scargle pe-
riodogram in a very straightforward manner to account for the decay of the signal.
Third, for uniformly sampled quadrature data when the sinusoid is stationary,
Eq. (19) reduces to a Schuster periodogram or the power spectrum of the data. So
while the Schuster periodogram is not a sufficient statistic for frequency estimation
in real, i.e., nonquadrature, data, it is a sufficient statistic for quadrature data.
Fourth, for uniformly sampled quadrature data when the sinusoid is not stationary,
Eq. (19) reduced to a weighted power spectrum of the data. Thus the weighted
power spectrum is the sufficient statistic for single frequency estimation when the
data are quadrature. Fifth, when the quadrature data are nonuniformly but simul-
taneously sampled, Eq. (19) generalizes the weighted power spectrum to account
for the nonuniform samples, but otherwise is the exact analogue of a weighted
power spectrum. Finally, when the data are nonuniformly and nonsimultaneously
sampled, Eq. (19) generalizes to a functional form that is formally identical to a
Lomb-Scargle periodogram but adapted to a decaying sinusoid with quadrature
nonuniformly and nonsimultaneously sampled data.
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