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DATA ANALYSIS – A DIALOGUE WITH THE DATA
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E-mail: dss@isise.rl.ac.uk

A modern Bayesian physicist, Steve Gull from Cambridge, described data analysis
as simply being ‘a dialogue with the data’. This paper aims to illustrate this
viewpoint with the aid of a simple example: Peelle’s pertinent puzzle.

1. Introduction

The training in data analysis that most of us are given as undergraduates

consists of being taught a collection of disjointed statistical recipes. This is

generally unsatisfactory because the prescriptions appear ad hoc by lacking

a unifying rationale. While the various tests might individually seem sen-

sible at an intuitive level, the underlying assumptions and approximations

are not obvious. It is far from clear, therefore, exactly what question is

being addressed by their use.

Although attempts to give guidelines on ‘best practice’ are laudable, the

shortcomings above will not be remedied without a programme of education

on the fundamental principles of data analysis. To this end, scientists and

engineers are increasingly finding that the Bayesian approach to probabil-

ity theory advocated by mathematical physicists such as Laplace1, Jeffreys2

and Jaynes3 provides the most suitable framework. This viewpoint is out-

lined in Section 2, and its use illustrated with an analysis and resolution

of Peelle’s pertinent puzzlea in Sections 3 and 4 respectively; we conclude

with Section 5.

2. Bayesian Probability Theory

The origins of the Bayesian approach to probability theory dates back over

three hundred years, to people such as the Bernoullis, Bayes and Laplace,

aPosed by Robert Peelle, from the Oak Ridge National Laboratory, Tennessee, in 1987.

1
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and was developed as a tool for reasoning in situations where it is not pos-

sible to argue with certainty. This subject is relevant to all of us because

it pertains to what we have to do everyday of our lives, both professionally

and generally: namely, make inferences based on incomplete and/or unre-

liable data. In this context, a probability is seen as representing a degree

of belief, or a state of knowledge, about something given the information

available. For example, the probability of rain in the afternoon, given that

there are dark clouds in the morning, is denoted by a number between

zero and one, where the two extremes correspond to certainty about the

outcome. Since the assessment of rain could easily be very different with

additional access to the current weather maps, it means that probabilities

are always conditional and that the associated information, assumptions

and approximations must be stated clearly.

2.1. Manipulating Probabilities

In addition to the convention that probabilities should lie between 0 and 1,

there are just two basic rules that they must satisfy:

Pr(X |I ) + Pr
(

X |I
)

= 1 , (1)

Pr(X, Y |I ) = Pr(X |Y, I ) × Pr(Y |I ) . (2)

Here X and Y are two specific propositions, X denotes that X is false, the

vertical bar ‘ | ’ means ‘given’ (so that all items to the right of this con-

ditioning symbol are taken as being true) and the comma is read as the

conjunction ‘and’; I subsumes all the pertinent background information,

assumptions and approximations. Equations (1) and (2), known as the

sum and product rule respectively, are the same as those found in ortho-

dox or conventional statistics; this later school of thought differs from the

Bayesian one in its interpretation of probability, restricting it to apply only

to frequencies, which limits its sphere of direct application.

Many other relationships can be derived from Eqs. (1) and (2). Among

the most useful are:

Pr(X |Y, I ) =
Pr(Y |X, I )× Pr(X |I )

Pr(Y |I )
, (3)

Pr(X |I ) = Pr(X, Y |I ) + Pr
(

X, Y |I
)

. (4)

Equation (3) is called Bayes’ theorem. Its power lies in the fact that it turns

things around with respect to the conditioning symbol: it relates Pr(X |Y, I )



October 27, 2005 12:37 Proceedings Trim Size: 9in x 6in lisbon05

to Pr(Y |X, I ). Equation (4) is the simplest form of marginalisation. Its

generalisations provide procedures for dealing with nuisance parameters

and hypothesis uncertainties.

2.2. Assigning Probabilities

While Eqs. (1) and (2), and their corollaries, specify how probabilities are to

be manipulated, the rules for their assignment are less well defined. This is

inevitable to some extent as ‘states of knowledge’ can take a myriad different

forms, often rather vague. Nevertheless, there are some simple but powerful

ideas on the issue based on arguments of self-consistency: if two people

have the same information then they should assign the same probability.

We refer the reader to some recent textbooks for a good discussion of this

topic, and for examples of Bayesian analyses in general: Jaynes3, Sivia4,

MacKay5 and Gregory6.

3. Peelle’s Pertinent Puzzle

In 1987, Robert Peelle, from the Oak Ridge National Laboratory, posed

the following simple problem as a way of highlighting an anomalous result

from a standard least-squares analysis that is sometimes encountered by

the nuclear data communityb:

“Suppose we are required to obtain the weighted average of two ex-

perimental results for the same physical quantity. The first result

is 1.5 and the second result is 1.0 . The full covariance matrix of

these data is believed to be the sum of three components. The first

component is fully correlated with standard error of 20% of each

respective value. The second and third components are indepen-

dent of the first and of each other, and correspond to 10% random

uncertainties in each experimental result.

The weighted average obtained from the least-squares method

is 0.88± 0.22, a value outside the range of the input values! Under

what conditions is this the reasonable result that we sought to

achieve by use of an advanced data reduction technique?”

bOh and Seo7 quote this from a secondary source, Chiba and Smith8.
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3.1. The Least-Squares Approximation

Let us begin by reviewing the Bayesian justification for least-squares. Re-

casting the problem in symbolic terms, we wish to infer the value of a

quantity µ given two measurements x = {x1, x2} and related covariance

information I1:
〈

(x1−µ)
2
〉

= σ2

1
,
〈

(x2−µ)
2
〉

= σ2

2
and

〈

(x1−µ) (x2−µ)
〉

= ε σ1σ2 , (5)

where the angled brackets denote expectation values and the coefficient of

correlation, ε, is in the range −1 ≤ ε ≤ 1. This means that we need to

ascertain the conditional probability Pr(µ|x, I1), since it encapsulates our

state of knowledge about µ given the relevant data. Bayes’ theorem allows

us to relate this probability distribution function (pdf) to others that are

easier to assign:

Pr(µ|x, I1) ∝ Pr(x|µ, I1) × Pr(µ|I1) , (6)

where the equality has been replaced by a proportionality due to the omis-

sion of Pr(x|I1) in the denominator, which simply acts as a normalisation

constant here. Armed only with the covariance information in Eq. (5), the

principle of maximum entropy3 (MaxEnt) leads us to assign a Gaussian

likelihood function:

Pr(x|µ, I1) =
e−Q1/2

2πσ1σ2

√
1−ε2

, (7)

where Q1 =
( x1−µ x2−µ )

(

σ2
1

ε σ1σ2

ε σ1σ2 σ2
2

)

−1(

x1−µ

x2−µ

)

. (8)

If we also assign a uniform prior for µ over a suitably large range, to näıvely

represent gross initial ignorance,

Pr(µ|I1) =

{

(µmax−µmin)
−1 for µmin ≤ µ ≤ µmax

0 otherwise
, (9)

then the logarithm of the posterior pdf being sought, L1, becomes

L1 = ln
[

Pr(µ|x, I1)
]

= constant− Q1

2
(10)

for µmin ≤ µ ≤ µmax, and −∞ otherwise. Since Eq. (10) tells us that L1 is

largest when Q1 is smallest, our ‘best’ estimate µ0 is given by that value of

µ which minimises the quadratic scalar mismatch of Eq. (8) — this is the

least-squares solution.
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A Taylor series expansion of L1 shows that Pr(µ|x, I1) is Gaussian, with

the mean and variance parameters, µ0 and σ2, being defined by

dQ1

dµ

∣

∣

∣

∣

µ0

= 0 and
d2Q1

dµ2
=

2

σ2
. (11)

Hence, our inference about µ can be summarised by a best estimate and

an associated error-bar, µ0 ± σ, in the standard way:

µ =
α x1 + β x2

α + β
± σ1σ2

√

1 − ε2

α + β
, (12)

where α = σ2 (σ2 − ε σ1) and β = σ1 (σ1 − ε σ2) . (13)

For Peelle’s pertinent puzzle, x1 = 1.5, x2 = 1.0, σ1 = 0.3354, σ2 = 0.2236

and ε=0.8; this leads to the conclusion that µ = 0.88± 0.22.

3.2. Understanding the Puzzle

The result of the above analysis is anomalous, because it’s at odds with our

expectation that the best estimate should be bounded by the two measure-

ments. Although seemingly weird, is it unacceptable?

From Eq. (12), it’s not too difficult to see that µ0 will lie between x1

and x2 as long as both α and β are positive. Equation (13) translates this

into the requirement that

ε ≤ min

{

σ1

σ2

,
σ2

σ1

}

. (14)

This will always be satisfied for negative correlations, but will fail as ε→1

when σ1 6=σ2. Upon reflection, this is not surprising.

Independence, or ε=0, indicates that x2 is no more likely to be higher or

lower than the true value of µ no matter what the corresponding deviation

of x1; and vice versa. It seems reasonable that µ0 should then lie between

x1 and x2, since this minimises the (sum of squared residuals) mismatch

with the measurements. There is an additional reason for this outcome

when ε < 0, as there is also the expectation that x1−µ and x2−µ have

opposite signs. By the same token, there is increasing pressure for µ0 to be

outside the range spanned by the data as ε→1 so as to satisfy the growing

expectation from the positive correlation that both measurements deviate

from the true value in the same sense. With ε=0.8 in Peelle’s case, a best

estimate of 0.88 for µ doesn’t now seem quite so ludicrous.



October 27, 2005 12:37 Proceedings Trim Size: 9in x 6in lisbon05

4. Peelle’s Pertinent Ambiguity

Although we can understand the reason for the anomalous result in Peelle’s

pertinent puzzle, there is a curious feature in the statement of the problem:

the covariance elements are given in relative, rather than absolute, terms.

Is this significant?

4.1. Least-Squares for Magnitude Data

The least-squares analysis of the preceding section relied, for the most part,

on the Gaussian likelihood of Eqs. (7) and (8). This assignment was based

on the constraints of Eq. (5), and motivated by the principle of MaxEnt. A

more literal interpretation of the covariance information in Peelle’s state-

ment, however, would be
〈

(

δx1

x1

)2
〉

= s2

1 ,

〈

(

δx2

x2

)2
〉

= s2

2 and

〈

(

δx1

x1

)(

δx2

x2

)

〉

= ε s1s2 , (15)

where δx1 and δx2 are the deviations of the measurements from the true

value of µ; the fractional error-bars are equal, with s1 = s2 = 0.2236, but

the correlation coefficient remains unchanged (ε = 0.8). These constraints

can be turned into the simpler form of Eq. (5) through the substitution of

y1 = ln x1 and y2 = ln x2, so that
〈

δy 2

1

〉

= s2

1 ,
〈

δy 2

2

〉

= s2

2 and
〈

δy1δy2

〉

= ε s1s2 . (16)

The MaxEnt principle would then lead us to assign a Gaussian likelihood

for the logarithm of the data,

Pr(lnx|ln µ, I2) =
e−Q2/2

2πs1s2

√
1−ε2

, (17)

where Q2 =

(

ln[x1/µ] ln[x2/µ]
)

(

s2
1

ε s1s2

ε s1s2 s2
2

)

−1(

ln[x1/µ]

ln[x2/µ]

)

, (18)

where I2 denotes the covariance information in Eq. (15).

The above discussion suggests that µ is a scale parameter, or some-

thing that is positive and pertains to a magnitude. As such, the prior that

expresses gross initial ignorance3 is

Pr(ln µ|I2) =

{

(

ln[µmax/µmin]
)

−1
for µmin ≤ µ ≤ µmax

0 otherwise
. (19)
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Figure 1. The posterior pdfs of Eqs. (10) and (21), with Peelle’s measurements marked
by arrows, which have been scaled vertically to have a maximum value of unity to aid
comparison. (a) The posterior pdf of Eq. (21), Pr(lnµ|lnx, I2), which is a Gaussian.
(b) The same pdf transformed to linear µ, Pr(µ|lnx, I2), where it is non-Gaussian; the
posterior pdf of Eq. (10), Pr(µ|x, I1 ), is plotted as a dotted line.

Using Bayes’ theorem,

Pr(ln µ|lnx, I2) ∝ Pr(lnx|lnµ, I2 ) × Pr(ln µ|I2) , (20)

where we have again omitted the denominator Pr(lnx|I2), we find that the

logarithm of the posterior pdf for ln µ is

L2 = ln
[

Pr(ln µ|lnx, I2 )
]

= constant− Q2

2
(21)

for µmin ≤ µ ≤ µmax, and −∞ otherwise. Thus Pr(ln µ|lnx, I2 ) is also a

Gaussian pdf which, for the case of equal relative error-bars s1 = s2 , can

be succinctly summarised by

ln µ = ln
√

x1x2 ± s1

√

1+ε

2
. (22)

The substitution of Peelle’s data yields ln µ = 0.20 ± 0.21 or, through a

standard (linearised) propagation of errors4, µ ≈ 1.22±0.26. The posterior

pdfs of Eqs. (10) and (21) are shown graphically in Fig. 1.

4.2. Looking at the Evidence

The above two analyses of Peelle’s data give noticeably different optimal

estimates of µ, although there is a substantial degree of overlap between

them. This should not be too surprising as each is predicated on a different

set of assumptions, I1 and I2, corresponding to alternative interpretations

of the information provided. Hanson et al.9 correctly point out that the

real solution to this problem rests with the experimentalists giving more
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details on the nature of the uncertainties in the measurements. Whatever

the response, probability theory provides a formal mechanism for dealing

with such ambiguities; it is based on marginalisation.

If I represents the statement of Peelle’s puzzle, and any other informa-

tion pertinent to it, then our inference about the value of µ is encapsulated

by Pr(µ|x, I ). This can be related to analyses based on alternative inter-

pretations of the data, I1, I2, . . . , IM , by

Pr(µ|x, I ) =

M
∑

j=1

Pr(µ, Ij |x, I ) , (23)

which is a generalisation of Eq. (4). Using the product rule of probability

and Bayes’ theorem, each term in the summation becomes

Pr(µ, Ij |x, I ) = Pr(µ|x, Ij ) ×
Pr(x|Ij ) × Pr(Ij |I )

Pr(x|I )
, (24)

where the conditioning on I has been dropped, as being unnecessary, when

Ij is given. Since Pr(x|I ) does not depend on µ or j, it can be treated

as a normalisation constant. Without a prior indication of the ‘correct’

interpretation of the data, when all the Pr(Ij |I ) can be set equal, Eq. (23)

simplifies to

Pr(µ|x, I ) ∝
M
∑

j=1

Pr(µ|x, Ij ) × Pr(x|Ij ) . (25)

This is an average of the alternative analyses weighted by the evidence

of the data, Pr(x|Ij ). The latter, which is also known as the global or

marginal likelihood, or the prior predictive, is simply the denominator term

that is usually omitted in applications of Bayes’ theorem as an uninteresting

normalisation constant:

Pr(µ|x, Ij ) =
Pr(x|µ, Ij ) × Pr(µ|Ij )

Pr(x|Ij )
. (26)

Using the assignments of Eqs. (7) and (9), the evidence for I1 is given by

Pr(x|I1) =

∫

Pr(x, µ|I1) dµ =
1

µmax−µmin

µmax
∫

µmin

e−Q1/2 dµ

2πσ1σ2

√
1−ε2

. (27)

The dependence of the analysis on µmin and µmax might seem surprising,

but that is because their exact values tend to be irrelevant for the more

familiar problem of parameter estimation: the posterior pdf Pr(µ|x, Ij ) is

independent of the bounds as long as they cover a sufficiently large µ-range
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to encompass all the significant region of the likelihood function Pr(x|µ, Ij ).

For the assignments of Eqs. (17) and (19), the corresponding evidence is

best evaluated in log-space:

Pr(x|I2) =
Pr(lnx|I2)

x1x2

=
1

x1x2 ln[µmax/µmin]

ln µmax
∫

ln µmin

e−Q2/2 d ln µ

2πs1s2

√
1−ε2

, (28)

where the x1x2 in the denominator is the Jacobian for the transformation

from Pr(lnx|I2) to Pr(x|I2). It should be noted that µmin and µmax do not

have to have the same values in Eqs. (27) and (28): these bounds must be

positive in Eq. (28), in keeping with the scale parameter view of µ implied

by I2, whereas they are free from this restriction in Eq. (27).

Carrying out the evidence-weighted averaging of Eq. (25) for M =2, with

µmin and µmax set somewhat arbitrarily to 0.1 and 3.0 in both Eqs. (27)

and (28), we obtain the marginal posterior pdf for Peelle’s problem shown

in Fig. 2; it has a mean of 0.96, a standard deviation of 0.27, a maximum at

0.91 and is asymmetric with a tail towards higher µ. Although the precise

result necessarily depends on the µ-bounds chosen, it does so fairly weakly.

The essential conclusion is that a value of µ between 1.5 and 2.0, which is

on the upper-side of the larger measurement, cannot be excluded with such

high certainty if the possibility of I2 is admitted (in addition to I1).

Figure 2. The marginal posterior pdf of Eq. (25), Pr(µ|x, I), for M =2. The evidence-
weighted contributions from the two alternative interpretations of the data considered,
Pr(µ|x, I1) and Pr(µ|x, I2 ), are shown with a dotted and dashed lines; µmin and µmax

were taken to be 0.1 and 3.0 in both cases. Peelle’s measurements are marked by arrows
and, to aid comparison with Fig. 1, all the pdfs have been scaled vertically so that
Pr(µ|x, I ) has a maximum value of unity.
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5. Conclusions

We have used Peelle’s pertinent puzzle as a simple example to illustrate how

the analysis of data is a dynamic process akin to holding a conversation.

When the initial least-squares analysis of Section 3.1 led to results that

seemed ‘wrong’, we reacted by looking more carefully at the validity of the

assumptions that underlie that procedure. This prompted us to formulate

a different question, addressed in Section 4.1, defined by an alternative

interpretation of the information provided. In the absence of experimental

details regarding the nature of the uncertainties associated with the given

measurements, we again turned to probability theory to ask, in Section 4.2,

what we could conclude in face of the ambiguity.

To avoid any confusion, let us clarify further a few points regarding

what we have done in this analysis of Peelle’s pertinent puzzle and about

our Bayesian viewpoint in general.

We have not said that the least-squares analysis was wrong. Indeed,

in Section 3.2, we have explained why the counter-intuitive result could

actually be quite reasonable. We simply asked a series of questions, defined

by alternative assumptions, and addressed them through probability theory

— it was just a dialogue with the data.

The Bayesian viewpoint expounded here follows the approach of math-

ematical physicists such as Laplace1, Jeffreys2 and Jaynes3, and is still not

widely taught to science and engineering undergraduates today. It differs

markedly in its accessibility for scientists from the works of many statis-

ticians engaged in the Bayesian field; the latter carry over much of the

vocabulary and mind-set of their classical frequentist training, which we

believe to be neither necessary nor helpful. We refer the reader to some

recent textbooks, such as Jaynes3, Sivia4, MacKay5 and Gregory6, for a

good introduction to our viewpoint.

To conclude, a black-box approach to the subject of data analysis, even

with useful guidelines, is best avoided because it can be both limiting and

misleading. All analyses are conditional on assumptions and approxima-

tions, and it’s important to understand and state them clearly. While the

evaluation of an arithmetic mean might seem objective and incontrovert-

ible, for example, its status as a crucial number requires some qualified

justification. We believe that an understanding of the principles underly-

ing data analysis, along the lines outlined here, is at least as important as

formal prescriptions of best practice.
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